Underground Land Administration from 2D to 3D: Critical Challenges and Future Research Directions
Abstract
:1. Introduction
2. Underground Land Administration
2.1. Legal Aspects
2.2. Institutional Aspects
- The utility network authorities in the role of data providers.
- The construction sector and engineering agencies in the role of consumers.
- Geographical IT service and software providers.
2.3. Technical Aspects
3. Current Challenges in ULA
3.1. Legal Challenges
- How efficient and effective the current legislation is for registering underground assets and the RRRs associated with them?
- Does the current legislation support the 3D digital registration of underground assets?
- What are the required changes/modifications to the current legislation to enable the use of 3D digital underground physical and legal data?
- Which underground assets should be registered in 3D?
3.2. Institutional Challenges
- Who are the stakeholders of underground land administration?
- What are the use cases of an integrated 3D ULA system?
- What are the roles, responsibilities, tasks, and requirements of the involved parties?
- How can 3D digital models be incorporated into the current workflows for subdividing, registering, and managing underground assets?
- How can the involved parties be coordinated according to their specific policies, processes, and security and data sharing concerns?
3.3. Technical Challenges
- What are the 3D data requirements for underground land administration?
- What 3D data capturing methods can be used for sourcing 3D underground data?
- What 3D data validation rules for checking the geometrical and semantical completeness and correctness of 3D underground data need to be developed?
- What would be the potential 3D data format for the storage of 3D underground digital models?
- What are the technical challenges associated with adopting current 3D data models in underground land administration?
- How can current 3D data models be enhanced/adopted to support a fully integrated 3D data environment for underground land administration?
- What are the users’ requirements for the 3D visualisation of underground physical and legal data?
- What kind of analyses and queries are needed for a 3D ULA system to meet the requirements of different use cases?
4. Proposed Framework for 3D ULA and Future Research Directions
5. Summary and Conclusions
- The 3D data acquisition of buried objects may be differently achieved than the methods used for none-buried objects.
- Specific 3D geometric and semantic validation methods are needed for underground assets such as utilities and tunnels.
- There are 3D visualisation requirements that are specific to underground spaces.
- The development of a comprehensive 3D data model considering a wide range of legal and physical data elements associated with different underground assets (e.g., tunnels, utilities, private basements, shopping malls, train stations, walkways, heritages, and mines) is required.
- Implementing specific 3D data analysis and query methods to support ULA use cases is required.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cai, F.; Ji, J.M.; Jiang, Z.Q.; Mu, Z.R.; Wu, X.; Zheng, W.J.; Zhou, W.X.; Tu, S.T.; Qian, X. Engineering Fronts in 2018. Engineering 2018, 4, 748–753. [Google Scholar] [CrossRef]
- Von der Tann, L.; Sterling, R.; Zhou, Y.; Metje, N. Systems approaches to urban underground space planning and management—A review. Undergr. Space 2020, 5, 144–166. [Google Scholar] [CrossRef]
- AADBYDS. Association of Australian Dial before You Dig. Services 20 Year History. 2019. Available online: https://www.1100.com.au/association-of-australian-dial-before-you-dig-services-20-year-history/ (accessed on 12 July 2020).
- Peng, F.L.; Qiao, Y.K.; Sabri, S.; Atazadeh, B.; Rajabifard, A. A collaborative approach for urban underground space development toward sustainable development goals: Critical dimensions and future directions. Front. Struct. Civ. Eng. 2021, 15, 20–45. [Google Scholar] [CrossRef]
- Rajabifard, A.; Atazadeh, B.; Kalantari, M. BIM and Urban Land Administration; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Oxford Business Group. Ground Rules: Land Acquisition Issues Emerge on the Route of the Klang Valley Mass Transit System. 2020. Available online: https://oxfordbusinessgroup.com/analysis/ground-rules-land-acquisition-issues-emerge-route-klang-valley-mass-transit-system (accessed on 25 October 2020).
- DELWP. Common Terms in Land Titles. 2020. Available online: https://www.propertyandlandtitles.vic.gov.au/land-titles/common-terms (accessed on 5 October 2020).
- Ploeger, H.D.; Stoter, J.E. Cadastral registration of cross-boundary infrastructure objects. In Proceedings of the FIG Working Week 2004: The Olympic Spirit in Surveying, Athens, Greece, 22–27 May 2004. [Google Scholar]
- Stoter, J.E. 3D Cadastre; Delft University of Technology: Delft, The Netherlands, 2004. [Google Scholar]
- Pouliot, J.; Girard, P. 3D Cadastre: With or without Subsurface Utility Network? In Proceedings of the 5th International FIG 3D Cadastre Workshop, Athens, Greece, 18–20 October 2016. [Google Scholar]
- Land Use Victoria. In Subdivision Plan; Department of Environment, Land, Water & Planning Melbourne: East Melbourne, Australia, 2020.
- Olde Scholtenhuis, L.L.; den Duijn, X.; Zlatanova, S. Representing geographical uncertainties of utility location data in 3D. Autom. Constr. 2018, 96, 483–493. [Google Scholar] [CrossRef]
- Karataş, K.; Bıyık, C.; Demir, O. The Underground Cadastre and Its Implementations in Turkey. In Proceedings of the Shaping the Change XXIII FIG Congress, Munich, Germany, 8–13 October 2006. [Google Scholar]
- Den Duijn, X. A 3D Data Modeling Approach for Integrated Management of below and above Ground Utility Network Features; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Bobylev, N. Underground space as an urban indicator: Measuring use of subsurface. Tunn. Undergr. Space Technol. 2016, 55, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Janečka, K.; Bobíková, D. Registering the underground objects in the 3D cadastre: A case study of wine cellar located in the vineyard area Tokaj. Acta Montan. Slovaca 2018, 23, 260–270. [Google Scholar]
- Kim, S.; Heo, J. Development of 3D underground cadastral data model in Korea: Based on land administration domain model. Land Use Policy 2017, 60, 123–138. [Google Scholar] [CrossRef]
- Kim, S.; Heo, J. Registration of 3D underground parcel in Korean cadastral system. Cities 2019, 89, 105–119. [Google Scholar] [CrossRef]
- Matuk, O. Conception of Registration of Underground Spatial Structures in Modern 3D Cadastral System. Geomat. Environ. Eng. 2019, 13, 47–60. [Google Scholar] [CrossRef]
- Yan, J.; Jaw, S.W.; Soon, K.H.; Wieser, A.; Schrotter, G. Towards an Underground Utilities 3D Data Model for Land Administration. Remote Sens. 2019, 11, 1957. [Google Scholar] [CrossRef] [Green Version]
- United Nations/Economic Commission for Europe. Land Administration Guidelines: With Special Reference to Countries in Transition; United Nations/Economic Commission for Europe: Geneva, Switzerland, 1996. [Google Scholar]
- Indrajit, A.; Jaya, V.E.; van Loenen, B.; Lemmen, C.; van Oosterom, P.; Ploeger, H.; Theodore, R. The Role of the Revised Land Administration Domain Model and Spatial Data Infrastructure in Improving Ease of Doing Business in Indonesia. In Proceedings of the 2020 World Bank Conference On Land And Poverty, Washington, DC, USA, 16–20 March 2020. [Google Scholar]
- Williamson, I.; Enemark, S.; Wallace, J.; Rajabifard, A. Land Administration for Sustainable Development; ESRI Press Academic: Redlands, CA, USA, 2010. [Google Scholar]
- ICSM. Cadastre 2034—Powering Land and Real Property: Cadastral Reform and Innovation for Australia—A National Strategy; Intergovernmental Committee on Surveying and Mapping (ICSM): Canberra, Australia, 2013.
- Kalogianni, E.; van Oosterom, P.; Dimopoulou, E.; Lemmen, C. 3D Land Administration: A review and a future vision in the context of the spatial development lifecycle. ISPRS Int. J. Geo-Inf. 2020, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Aien, A.; Rajabifard, A.; Kalantari, M.; Williamson, I. Aspects of 3D cadastre: A case study in Victoria. In Proceedings of the FIG Working Week 2011, Marrakech, Morocco, 18–22 May 2011. [Google Scholar]
- Paulsson, J.; Paasch, J.M. 3D property research from a legal perspective. Comput. Environ. Urban Syst. 2013, 40, 7–13. [Google Scholar] [CrossRef]
- Lokrantz, H. 2012. Available online: https://www.slideshare.net/SGU_Sverige/02-geoarena-citybananhanna (accessed on 2 May 2020).
- Leksono, B.E.; Ristiawan, A.; Sadikin, H.; Meyke, L. The Underground Space Use Right Registration with the Approach of 3 Dimensional Cadastre Concept. In Cadastre: Geo-Information Innovations in Land Administration; Springer: Cham, Switzerland, 2017; pp. 121–136. [Google Scholar]
- Zaini, F.; Hussin, K.; Raid, M. Legal considerations for urban underground space development in Malaysia. Undergr. Space 2017, 2, 234–245. [Google Scholar] [CrossRef]
- Döner, F.; Thompson, R.; Stoter, J.; Lemmen, C.; Ploeger, H.; van Oosterom, P.; Zlatanova, S. 4D cadastres: First analysis of legal, organizational, and technical impact—With a case study on utility networks. Land Use Policy 2010, 27, 1068–1081. [Google Scholar] [CrossRef]
- Paasch, J.M.; Paulsson, J. 3D Property Research from a Legal Perspective Revisited. Land 2021, 10, 494. [Google Scholar] [CrossRef]
- Daems, J. KLIP as a Response to the OGC Underground RFI; Informatie Vlaanderen: Brussel, Belgium, 2017. [Google Scholar]
- Aien, A. 3D Cadastral Data Modelling; University of Melbourne: Melbourne, Australia, 2013. [Google Scholar]
- Asghari, A.; Kalantari, M.; Rajabifard, A. A structured framework for 3D cadastral data validation—A case study for Victoria, Australia. Land Use Policy 2020, 98, 104359. [Google Scholar] [CrossRef]
- Atazadeh, B. Building Information Modelling for Urban Land Administration; University of Melbourne: Melbourne, Australia, 2017. [Google Scholar]
- Van Oosterom, P.; Erba, D.A.; Aien, A.; Grant, D.; Kalantari, M.; Karki, S.; Shojaei, D.; Thompson, R.; Muggenhuber, G.; Navratil, G.; et al. Best Practices 3D Cadastres: Extended Version; International Federation of Surveyors (FIG): Copenhagen, Denmark, 2018. [Google Scholar]
- Atazadeh, B.; Rajabifard, A.; Zhang, Y.; Barzegar, M. Querying 3D cadastral information from BIM models. ISPRS Int. J. Geo-Inf. 2019, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Kalogianni, E.; Dimopoulou, E.; Thompson, R.J.; Lemmen, C.; Ying, S.; van Oosterom, P. Development of 3D spatial profiles to support the full lifecycle of 3D objects. Land Use Policy 2020, 98, 104177. [Google Scholar] [CrossRef]
- Arancibia, G.; Philips, W.; Janes, A. The 3D Cadastre for underground infrastructure: A challenged approach from Professional Surveyors Canada. In Proceedings of the FIG Congress 2018, Istanbul, Turkey, 6–11 May 2018. [Google Scholar]
- Sandberg, H. Three-dimensional partition and registration of subsurface land space. Isr. Law. Rev. 2003, 37, 119. [Google Scholar] [CrossRef]
- Barker, M. Legal and administrative issues in underground space use: A preliminary survey of ITA member nations. Tunn. Undergr. Space Technol. 1991, 6, 191–209. [Google Scholar] [CrossRef]
- Pouliot, J.; Girard, P. Subsurface Utility Network Registration and the Publication of Real Rights: Pending for a Full 3D Cadastre. In Proceedings of the FIG Working Week, Christchurch, New Zealand, 2–6 May 2016. [Google Scholar]
- Kitsakis, D.; Paasch, J.M.; Paulsson, J.; Navratil, G.; Vučić, N.; Karabin, M.; El-Mekawy, M.; Koeva, M.; Janecka, K.; Erba, D.; et al. Best Practices 3D Cadastres—Chapter 1. Legal foundations; International Federation of Surveyors (FIG): Copenhagen, Denmark, 2018. [Google Scholar]
- Wenjun, Z.; Jun, Y.; Xingde, K. Integrated Administration of Urban Underground Space in China: Laws & Regulations, Present & Future; Research Publishing: Singapore, 2013. [Google Scholar]
- Darin, G. Legal Operations from Below: The Compulsory Purchase of Subsoil Rights for Underground Tunnels; St Cross College: Oxford, UK, 2019. [Google Scholar]
- Tsvetkov, O.; Vasileva, E.; Kulakov, K. Features of cadastral registration of real estate objects using 3D technologies. In Proceedings of the E3S Web of Conferences, Rostov-on-Don, Russia, 20–23 October 2020; EDP Sciences: Les Ulis, France, 2020. [Google Scholar] [CrossRef]
- Thomas, W.A. Ownership of Subterranean Space. Undergr. Space 1979, 3, 155–163. [Google Scholar]
- Zhang, Z.; Tang, W.; Gong, J. Property rights of urban underground space in China: A public good perspective. Land Use Policy 2017, 65, 224–237. [Google Scholar] [CrossRef]
- Xu, S. Research on current legislation for urban underground space in China. In Proceedings of the International Conference on Pipelines and Trenchless Technology 2014 (ICPTT), Xiamen, China, 13–15 November 2014; pp. 1–12. [Google Scholar]
- Zaini, F.; Hussin, K.; Jamalludin, N.A.; Zakaria, S.R.A. The principle of depth for underground land development: A review. J. Teknol. 2015, 75. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Soon, K.H.; Jaw, S.W.; Schrotter, G. A LADM-based 3D Underground Utility Data Model: A Case Study of Singapore. In Proceedings of the 8th International FIG workshop on the Land Administration Domain Model, Kuala Lumpur, Malaysia, 1–3 October 2019. [Google Scholar]
- Aien, A.; Rajabifard, A.; Kalantari, M.; Williamson, I. Review and assessment of current cadastral data models for 3D cadastral applications. In Advances in 3D Geoinformation; Springer: Cham, Switzerland, 2017; pp. 423–442. [Google Scholar]
- Knoth, L.; Atazadeh, B.; Rajabifard, A. Developing a new framework based on solid models for 3D cadastres. Land Use Policy 2020, 92, 104480. [Google Scholar] [CrossRef]
- Karabin, M.; Kitsakis, D.; Koeva, M.; Navratil, G.; Paasch, J.M.; Paulsson, J.; Vučić, N.; Janečk, K.; Lisec, A. Layer approach to ownership in 3D cadastre: A subway case. In Proceedings of the 6th International FIG 3D Cadastre Workshop, Delft, The Netherlands, 2–4 October 2018; pp. 111–136. [Google Scholar]
- Pouliot, J.; Bordin, P.; Cuissard, R. Cadastral mapping for underground networks: A preliminary analysis of user needs. In Proceedings of the International Cartographic Conference, Rio de Janeiro, Brazil, 23–28 August 2015. [Google Scholar]
- Atazadeh, B.; Kalantari, M.; Rajabifard, A.; Ho, S. Modelling building ownership boundaries within BIM environment: A case study in Victoria, Australia. Comput. Environ. Urban. Syst. 2017, 61, 24–38. [Google Scholar] [CrossRef]
- Libbis, S. Subdivisions Victoria: The Ultimate Guide; Hybrid Publishers: Onitsha, Nigeria, 2018. [Google Scholar]
- Melbourne Water Corporation. Sewerage Network Main Pipelines; Melbourne Water Corporation: Melbourne, Austrlia, 2020. [Google Scholar]
- Geovation. Deep Dig, Underground Assets Challenge; Geovation: London, UK, 2016. [Google Scholar]
- Yan, J.; Jaw, S.W.; Van Son, R.; Soon, K.H.; Schrotter, G. Three-dimensional data modelling for underground utility network mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 711–715. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Jaw, S.W.; Soon, K.H.; Schrotter, G. The ladm-based 3d underground utility mapping: Case study in Singapore. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Singapore, 24–27 September 2019. [Google Scholar] [CrossRef] [Green Version]
- Karabin, M.; Kitsakis, D.; Koeva, M.; Navratil, G.; Paasch, J.M.; Paulsson, J.; Vučić, N.; Janečka, K.; Lisec, A. Layer approach to ownership in 3D cadastre in the case of underground tunnels. Land Use Policy 2020, 98, 104464. [Google Scholar] [CrossRef]
- Atazadeh, B.; Kalantari, M.; Rajabifard, A.; Ho, S.; Champion, T. Extending a BIM-based data model to support 3D digital management of complex ownership spaces. Int. J. Geogr. Inf. Sci. 2017, 31, 499–522. [Google Scholar] [CrossRef]
- Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I.; Wallace, J. Towards integration of 3D legal and physical objects in cadastral data models. Land Use Policy 2013, 35, 140–154. [Google Scholar] [CrossRef]
- Den Duijn, X.; Agugiaro, G.; Zlatanova, S. Modelling below-and above-ground utility network features with the CityGML Utility Network ADE: Experiences from Rotterdam. In Proceedings of the 3rd International Conference on Smart Data and Smart Cities, Delft, The Netherlands, 4–5 October 2018. [Google Scholar]
- Lemmen, C.; van Oosterom, P.; Bennett, R. The land administration domain model. Land Use Policy 2015, 49, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Silva, W.D.O.; Carneiro, A.F.T. Subsurface Utility Network Cadastre Proposal, Based on Ladm (ISO/FDIS 19152). Bol. Ciênc. Geod. 2020, 26. [Google Scholar] [CrossRef]
- Yan, J.; van Son, R.; Soon, K.H. From underground utility survey to land administration an underground utility 3D data model. Land Use Policy 2021, 102, 105267. [Google Scholar] [CrossRef]
- Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.H. OGC City Geography Markup Language (CityGML) Encoding Standard; Open Geospatial Consortium: Wayland, MA, USA, 2012. [Google Scholar]
- ISO. Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries; International Organization for Standardization (ISO): Geneva, Switzerland, 2013. [Google Scholar]
- Scarponcini, P. OGC® Land and Infrastructure Conceptual Model. Standard (LandInfra); Open Geospatial Consortium: Wayland, MA, USA, 2016; Version 1.0. [Google Scholar]
- OGC. OGC LandInfra/InfraGML. 2021. Available online: https://www.ogc.org/standards/infragml (accessed on 27 September 2021).
- Kumar, K.; Labetski, A.; Ohori, K.A.; Ledoux, H.; Stoter, J. The LandInfra standard and its role in solving the BIM-GIS quagmire. Open Geospat. Data Softw. Stand. 2019, 4, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Góźdź, K.; Pachelski, W.; van Oosterom, P.; Coors, V. The possibilities of using CityGML for 3D representation of buildings in the cadastre. In Proceedings of the 4th International Workshop on 3D Cadastres, Dubai, United Arab Emirates, 9–11 November 2014. [Google Scholar]
- Li, L.; Wu, J.; Zhu, H.; Duan, X.; Luo, F. 3D modeling of the ownership structure of condominium units. Comput. Environ. Urban. Syst. 2016, 59, 50–63. [Google Scholar] [CrossRef]
- Atazadeh, B.; Kalantari, M. Connecting LADM and IFC Standards–Pathways towards an Integrated Legal-Physical Model. In Proceedings of the 7th International FIG Workshop on the Land Administration Domain Model, Zagreb, Croatia, 12–13 April 2018. [Google Scholar]
- Bitenc, M.; Dahlberg, K.; Doner, F.; van Goor, B.; Lin, K.; Yin, Y.; Yuan, X.; Zlatanova, S. Utility registration: Slovenia, China, Sweden and Turkey. GISt Rep. 2008, 49, 48. [Google Scholar]
- Višnjevac, N.; Mihajlović, R.; Šoškić, M.; Cvijetinović, Ž.; Marošan, S.; Bajat, B. Developing Serbian 3D Cadastre System-Challenges and Directions. In Proceedings of the 6th International FIG 3D Cadastre Workshop, Delft, The Netherlands, 2–4 October 2018; FIG (International Federation of Surveyors): Delft, The Netherlands, 2018. [Google Scholar]
- Mazlan, H.; Jaw, S.; Maged, M. Subsurface utility mapping for underground cadastral infrastructure. In Proceedings of the 31st Asian Conference on Remote Sensing, Hanoi, Vietnam, 1–5 November 2010. [Google Scholar]
- Bieda, A.; Bydłosz, J.; Warchoł, A.; Balawejder, M. Historical Underground Structures as 3D Cadastral Objects. Remote Sens. 2020, 12, 1547. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Jung, J.; Heo, J. Development of a 3D underground cadastral system with indoor mapping for as-built BIM: The case study of gangnam subway station in korea. Sensors 2015, 15, 30870–30893. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zheng, Z.R.; You, Y.; Shi, F.X. Discussion Cadastral Survey of the Underground Space of the 3D Cadastre. Mod. Surv. Mapp. 2012, 18. [Google Scholar] [CrossRef]
- Ustavich, G.A.; Salnikova, P.P.; Salnikov, V.G.; Soboleva, E.L. Development of the technological scheme of surveying works for cadastral registration of underground parkings. Vestn. SSUGT 2018, 3, 28–31. [Google Scholar] [CrossRef] [Green Version]
- Asghari, A.; Kalantari, M.; Rajabifard, A. Advances in techniques to formulate the watertight concept for cadastre. Trans. GIS 2021, 25, 213–237. [Google Scholar] [CrossRef]
- Döner, F.; Thompson, R.; Stoter, J.; Lemmen, C.; Ploeger, H.; van Oosterom, P.; Zlatanova, S. Solutions for 4D cadastre–with a case study on utility networks. Int. J. Geogr. Inf. Sci. 2011, 25, 1173–1189. [Google Scholar] [CrossRef]
- Jeong, D.H.; Jang, B.B.; Lee, J.Y.; Hong, S.I.; Van Oosterom PJ, M.; de Zeeuw, K.; Stoter, A.; Lemmen, C.; Zevenbergen, J. Initial design of an LADM-based 3D Cadastre-Case study from Korea. In Proceedings of the 3rd International FIG Workshop on 3D Cadastres: Developments and practices, Shenzhen, China, 25–26 October 2012; International Federation of Surveyors (FIG): Copenhagen, Denmark, 2012. [Google Scholar]
- Liu, R.; Issa, R. 3D visualization of sub-surface pipelines in connection with the building utilities: Integrating GIS and BIM for facility management. In Proceedings of the International Conference on Computing in Civil Engineering, Clearwater Beach, FL, USA, 17–20 June 2012; pp. 341–348. [Google Scholar] [CrossRef]
- Fenais, A. Developing an Augmented Reality Solution for Mapping Underground Infrastructure. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2020. [Google Scholar]
- Andrianesi, D.; Dimopoulou, E.A. Integrated Bim-Gis Platform for Representing and Visualizing 3d Cadastral Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 6, 3–11. [Google Scholar] [CrossRef]
- Ortega, S.; Wendel, J.; Santana, J.M.; Murshed, S.M.; Boates, I.; Trujillo, A.; Nichersu, A.; Suárez, J.P. Making the Invisible Visible—Strategies for Visualizing Underground Infrastructures in Immersive Environments. ISPRS Int. J. Geo-Inf. 2019, 8, 152. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Li, L.; Ying, S.; Luo, P.; He, B.; Jiang, R. Developing a 3D cadastre for the administration of urban land use: A case study of Shenzhen, China. Comput. Environ. Urban. Syst. 2013, 40, 46–55. [Google Scholar] [CrossRef]
- Becker, T.; Nagel, C.; Kolbe, T.H. Semantic 3D modeling of multi-utility networks in cities for analysis and 3D visualization. In Progress and New Trends in 3D Geoinformation Sciences; Springer: Berlin/Heidelberg, Germany, 2013; pp. 41–62. [Google Scholar]
- Guerrero, J.; Zlatanova, S.; Meijers, B. 3D visualisation of underground pipelines: Best strategy for 3D scene creation. In Proceedings of the 8th 3DGeoInfo Conference & WG II/2 Workshop, Istanbul, Turkey, 27–29 November 2013. ISPRS Archives Volume II-2/W1, ISPRS. [Google Scholar]
- Balogun, A.-L.; Matori, A.-N.; Lawal, D.U. Geovisualization of sub-surface pipelines: A 3D approach. Mod. Appl. Sci. 2011, 5, 158. [Google Scholar] [CrossRef]
- Pouliot, J.; Ellul, C.; Hubert, F.; Wang, C.; Rajabifard, A.; Kalantari, M. Visualization and new opportunities. In Best 3D Cadastres: Extended Version; International Federation of Surveyors (FIG): Copenhagen, Denmark, 2018. [Google Scholar]
- Chen, Q.; Liu, G.; Ma, X.; Yao, Z.; Tian, Y.; Wang, H. A virtual globe-based integration and visualization framework for aboveground and underground 3D spatial objects. Earth Sci. Inform. 2018, 11, 591–603. [Google Scholar] [CrossRef]
- Davidson, N. 3D BIM Underground Assets; Engineering for Public Works (EPW): Queensland, Australia, 2016. [Google Scholar]
- Lieberman, J. Model for Underground Data Definition and Integration (MUDDI) Engineering Report; Open Geospatial Consortium: Wayland, MA, USA, 2019. [Google Scholar]
- Lieberman, J.; Roensdorf, C. Modular Approach to 3D Representation of Underground Infrastructure in the Model for Underground Data Definition and Integration (MUDDI). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 44, 75–81. [Google Scholar] [CrossRef]
- Lieberman, J.; Ryan, A. OGC Underground Infrastructure Concept Study Engineering Report; OGC Engineering Report; Open Geospatial Consortium: Wayland, MA, USA, 2017. [Google Scholar]
- LandVictoria. ePlan Handbook: Version 2.2; Department of Environment, Land, Water & Planning Melbourne: Melbourne, Australia, 2019.
- Brown, C.A. The Millimeter Legal Coordinated Cadaster; The University of Maine: Orono, ME, USA, 2011. [Google Scholar]
- ICSM. GDA Frequently Asked Questions. 2021. Available online: https://www.icsm.gov.au/datum/gda-frequently-asked-questions (accessed on 1 October 2021).
- Shojaei, D.; Kalantari, M.; Bishop, I.D.; Rajabifard, A.; Aien, A. Visualization requirements for 3D cadastral systems. Comput. Environ. Urban. Syst. 2013, 41, 39–54. [Google Scholar] [CrossRef]
- Plale, B.; Kouper, I. The centrality of data: Data lifecycle and data pipelines. In Data Analytics for Intelligent Transportation Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 91–111. [Google Scholar]
- Shojaei, D. 3D Cadastral Visualisation: Understanding Users’ Requirements. Ph.D. Thesis, University of Melbourne, Melbourne, Australia, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeidian, B.; Rajabifard, A.; Atazadeh, B.; Kalantari, M. Underground Land Administration from 2D to 3D: Critical Challenges and Future Research Directions. Land 2021, 10, 1101. https://doi.org/10.3390/land10101101
Saeidian B, Rajabifard A, Atazadeh B, Kalantari M. Underground Land Administration from 2D to 3D: Critical Challenges and Future Research Directions. Land. 2021; 10(10):1101. https://doi.org/10.3390/land10101101
Chicago/Turabian StyleSaeidian, Bahram, Abbas Rajabifard, Behnam Atazadeh, and Mohsen Kalantari. 2021. "Underground Land Administration from 2D to 3D: Critical Challenges and Future Research Directions" Land 10, no. 10: 1101. https://doi.org/10.3390/land10101101
APA StyleSaeidian, B., Rajabifard, A., Atazadeh, B., & Kalantari, M. (2021). Underground Land Administration from 2D to 3D: Critical Challenges and Future Research Directions. Land, 10(10), 1101. https://doi.org/10.3390/land10101101