Contaminated Areas as Recreational Places—Exploring the Validity of the Decisions Taken in the Development of Antonia Hill in Ruda Śląska, Poland
Abstract
:1. Introduction
2. Characterisation of the Study Area
2.1. Preliminary Site Assessment
2.1.1. Historical Context of the Site
2.1.2. Chemical Conditions of the Dump
2.1.3. Toxic Metal Contamination
2.1.4. Flora of the Site
3. Materials and Methods
3.1. Data Sources and Processing
3.2. Study Methods
3.3. Data Analysis
4. Results
4.1. Risk Assessment
4.2. Social Participation Process
4.3. Predevelopment
4.4. Design
4.4.1. Remediation and Isolation of the Contaminated Heap Material
4.4.2. Combining Cultural and Natural Values
- creating harmony with the habitat conditions on the south slope;
- securing changeability in time when applying the gradual species composition reconstruction of the south escarpment;
- enabling the transience of the natural succession state and allowing for the action of natural forces in this respect;
- implementing complexity by diversifying agricultural solutions adjusted to the soil conditions as well as proposals for people in recreation, sports, education and ecology, including parts of the area with the undergrowth of metallophytes;
- making free arrangements of greenery related to the location of greenery groups, whose geometrical form emphasises the character of the designed landscape and helps to eliminate the impression of derelict land;
- introducing border fluidity with a gradual transition from lawn through a meadow and a wooded area to a massive local wood;
- planning form dynamism with hidden accents, which encourages penetration of the whole object but is also related to the colour aspects of the greenery changing seasonally;
- designing subtlety of accents in the form of dispersed specimens of various plant species, especially in the area of the south escarpment, which preserves the natural succession.
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loures, L.; Vaz, E. Exploring expert perception towards brownfield redevelopment benefits according to their typology. Habitat Int. 2018, 72, 66–76. Available online: https://www.semanticscholar.org/paper/Exploring-expert-perception-towards-brownfield-to-Loures-Vaz/a6c4eb9e33637a61b17330a20eb58efa60ca9b33 (accessed on 21 September 2021). [CrossRef]
- Pb and Zn Ore Locations. Available online: https://www.mindat.org/ (accessed on 29 September 2021).
- Lumat Project. Available online: https://ietu.pl/en/?s=lumat (accessed on 29 September 2021).
- Loures, L.; Burley, J.; Panagopoulos, T. Postindustrial landscape redevelopment: Addressing the past, envisioning the future. Int. J. Energy Environ. 2011, 5, 714–724. Available online: https://www.academia.edu/1151532/Postindustrial_Landscape_Redevelopment_addressing_the_past_envisioning_the_future (accessed on 21 September 2021).
- Mallick, S.K. Prediction-Adaptation-Resilience (PAR) approach—A new pathway towards future resilience and sustainable development of urban landscape. Geogr. Sustain. 2021, 2, 127–133. Available online: https://www.sciencedirect.com/science/article/pii/S2666683921000249 (accessed on 21 September 2021).
- Rostański, K. Modelling Nature in Ecologically Oriented Urban Context; Perspectives on Nature Conservation—Patterns, Pressures and Prospects; John, T., Ed.; InTech: Rijeka, Croatia, 2012; pp. 3–30. ISBN 978-953-51-0033-1. Available online: https://cdn.intechopen.com/pdfs/29839/InTech-Modelling_nature_in_ecologically_oriented_urban_context.pdf (accessed on 29 September 2021).
- Kretschmann, J. Sustainability-orientated post-mining in Germany. Eurasian Min. 2017, 2017, 33–38. Available online: http://rudmet.net/media/articles/Article_EM_01_17_pp.33-38_1.pdf (accessed on 29 September 2021). [CrossRef] [Green Version]
- Kretschmann, J.; Brüggerhoff, S. Mining Heritage: Future-orientated development of an outstanding value in Germany. In Challenges of Post-Mining. Anthology by the Research Institute of Post-Mining; Veröffentlichungen aus dem Deutschen Bergbau-Museum Bochum; Kretschmann, J., Melchers, C., Eds.; TH Georg Agricola University: Bochum, Germany, 2016; pp. 54–55. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-3a3b1bbc-3055-4d6c-8db1-df4749607233 (accessed on 21 September 2021).
- Chylińska, D.; Kołodziejczyk, K. Degraded landscapes as a tourist attraction and place for leisure and recreation. Tourism 2017, 27, 23–33. Available online: https://czasopisma.uni.lodz.pl/tourism/article/view/2791 (accessed on 29 September 2021). [CrossRef] [Green Version]
- Pavolová, H.; Kysel’ová, K.; Bakalár, T. Brownfields as a tool for support of Destination Tourism development. Acta Geoturi 2012, 3, 26–30. Available online: https://www.yumpu.com/en/document/view/38769910/brownfields-as-a-tool-for-support-of-destination-acta-geoturistica/5 (accessed on 21 September 2021).
- Pavolová, H.; Bakalár, T.; Emhemed, E.M.A.; Hajduová, Z.; Pavčo, M. Model of sustainable regional development with implementation of brownfield areas. Entrep. Sustain. 2019, 6, 1088–1100. Available online: https://www.researchgate.net/publication/331836824_Model_of_sustainable_regional_development_with_implementation_of_brownfield_areas (accessed on 29 September 2021). [CrossRef] [Green Version]
- Konior, A.; Pokojska, W. Management of Postindustrial Heritage in Urban Revitalization Processes. Sustainability 2020, 12, 5034. [Google Scholar] [CrossRef]
- Gregorová, B.; Hronček, P.; Tometzová, D.; Molokáč, M. Transforming Brownfields as Tourism Destinations. Sustainability 2020, 12, 10569. Available online: https://www.mdpi.com/2071-1050/12/24/10569 (accessed on 21 September 2021).
- Goudie, A. The human impact in geomorphology—50 years of change. Geomorphology 2018, 366, 106601. [Google Scholar] [CrossRef]
- Myczkowski, Z.; Wielgus, K. Krajobrazy Zaniechane, {Abondoned Landscapes}, Czasopismo Techniczne; 10, seria: Architektura, 5-A; Politechnika Krakowska: Kraków, Poland, 2007; pp. 179–181. Available online: https://www.infona.pl/resource/bwmeta1.element.baztech-article-BGPK-2215-8600 (accessed on 21 September 2021).
- Colocousis, C.R. It Was Tourism Repellent, That’s What We Were Spraying: Natural Amenities, Environmental Stigma, and Redevelopment in a Postindustrial Mill Town1. Sociol. Forum. 2012, 27, 756–776. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1573-7861.2012.01344.x (accessed on 29 September 2021). [CrossRef]
- Jaśkiewicz, A. Perception of the Łódź industrial architecture route by its inhabitants: An example of social participation in tourism research. Turyzm 2017, 27, 7–16. Available online: https://digijournals.uni.lodz.pl/turyzm/vol27/iss1/1/ (accessed on 29 September 2021). [CrossRef] [Green Version]
- Kirchberg, V.; Kagan, S. The roles of artists in the emergence of creative sustainable cities: Theoretical clues and empirical illustrations. City Cult. Soc. 2013, 4, 137–152. [Google Scholar] [CrossRef]
- Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners; European Commission, Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-22821-9. [CrossRef]
- United Nation General Assembly, 2017. Work of the Statistical Commission Pertaining to the 2030 Agenda for Sustainable Development. United Nations A/RES/71/313. Available online: https://digitallibrary.un.org/record/1291226 (accessed on 21 September 2021).
- McIntyre, T. Phytoremediation of Heavy Metals from Soils. In Phytoremediation; Springer: Berlin/Heidelberg, Germany, 2003; pp. 97–123. Available online: https://link.springer.com/chapter/10.1007/3-540-45991-X_4 (accessed on 29 September 2021).
- Sriprang, R.; Murooka, Y. Accumulation and detoxification of metals by plants and microbes. In Environmental Bioremediation Technologies; Singh, S.N., Tripathi, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 77–100. Available online: http://link.springer.com/book/10.1007%2F978-3-540-34793-4 (accessed on 29 September 2021).
- Singh, A.; Kuhad, R.C.; Chander, R.; Singh, A.; Ward, O.P. Advances in Applied Bioremediation. In Soil Biology; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hollander, J.; Kirkwood, N.; Gold, J. Principles of Brownfield Regeneration: Cleanup, Design, and Reuse of Derelict Land; Island Press: Washington, DC, USA, 2010; p. 149. [Google Scholar]
- Paliwal, V.; Chande, S.; Purohit, H. Integrated perspective for effective bioremediation. Appl. Biochem. Biotechnol. 2012, 166, 903–924. [Google Scholar] [CrossRef]
- Mani, D.; Kumar, C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 2014, 11, 843–872. [Google Scholar] [CrossRef] [Green Version]
- Wołejko, E.; Wydro, U.; Łoboda, T. The ways to increase efficiency of soil bioremediation. Ecol. Chem. Engineering 2016, 23, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Xie, Y.; Sun, T.; Chen, L.; Zhang, W. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. In The Science of the Total Environment; Elsevier B.V.: Amsterdam, The Netherlands, 2021; Volume 761, Available online: https://www.sciencedirect.com/science/article/abs/pii/S0048969720376427 (accessed on 29 September 2021).
- Adams Krumins, J.; Goodey, N.; Gallagher, F. Plant-soil interactions in metal contaminated soils. Soil Biol. Biochem. 2015, 80, 224–231. Available online: https://www.montclair.edu/profilepages/media/3761/user/Krumins_et_al_2015.pdf (accessed on 29 September 2021). [CrossRef]
- Gallagher, F.; Pechmann, I.; Bogden, J.; Grabosky, J.; Weis, P. Soil metal concentrations and productivity of Betula populifolia (gray birch) as measured by field spectrometry and incremental annual growth in an abandoned urban Brownfield in New Jersey. Environ. Pollut. 2008, 156, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, I.; Lagendijk, E.L.; Bloemberg, G.V.; Lugtenberg, B.J. Rhizoremediation: A beneficial plant-microbe interaction. Mol. Plant-Microbe Interact. 2004, 17, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Krpata, D.; Peintner, U.; Langer, I.; Fitz, W.J.; Schweiger, P. Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol. Res. 2018, 112, 1069–1079. [Google Scholar] [CrossRef]
- Neher, D.A. Ecology of plant and free-living nematodes in natural and agricultural soil. In Annual Review of Phytopathology; VanAlfen, N.K., Bruening, G., Leach, J.E., Eds.; Annual Reviews: Palo Alto, CA, USA, 2010; Volum 48, pp. 371–394. Available online: https://www.annualreviews.org/doi/abs/10.1146/annurev-phyto-073009-114439 (accessed on 29 September 2021).
- Basumatary, B.; Saikia, R.; Bordoloi, S.; Das, H.C.; Sarma, H.P. Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of upper Assam, India. J. Chem. Technol. Biotechnol. 2012, 87, 1329–1334. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.3773 (accessed on 29 September 2021). [CrossRef]
- Kalogerakis, N.; Mantzavinos, D.; Scherr, K.; Fava, F. Bioremediation. J. Chem. Technol. Biotechnol. 2012, 87, 1219–1221. Available online: https://onlinelibrary.wiley.com/toc/10974660/2012/87/9 (accessed on 21 September 2021). [CrossRef]
- Lai, T.; Cao, A.; Zucca, A.; Carucci, A. Use of natural zeolites charged with ammonium or carbon dioxide in phytoremediation of lead- and zinc-contaminated soils. J. Chem. Technol. Biotechnol. 2012, 87, 1342–1348. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.3788 (accessed on 29 September 2021). [CrossRef]
- Atlas, R. Bioremediation. Chem. Eng. News 1995, 73, 32. [Google Scholar] [CrossRef]
- Giller, K.E.; Witter, E.; McGrath, S.P. Heavy metals and soil microbes. Soil Biol. Biochem. 2009, 41, 2031–2037. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0038071709001813 (accessed on 29 September 2021). [CrossRef]
- Hawumba, J.F.; Sseruwagi, P.; Hung, Y.-T.; Tay, J.-H.; Tay, S.T.-L. (Eds.) Handbook of Environmental Engineering. Environmental Bioengineering; 2010; Volume 11, pp. 277–316. Available online: https://www.academia.edu/360644/Environmental_BioEngineering (accessed on 29 September 2021).
- Faivre, N.; Fritz, M.; Freitas, T.; Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0013935117316080 (accessed on 21 September 2021). [CrossRef]
- Wierzbicka, M.; Pielichowska, M. Adaptation of Biscutella laevigata L., a metal hyperaccumulator, to growth on a zinc-lead waste heap in southern Poland. I Differences between waste-heap and mountain populations. Chemosphere 2004, 54, 1663–1674. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0045653503007872 (accessed on 21 September 2021). [CrossRef]
- Fialkowski, W.; Rainbow, P.S. The discriminatory power of two biomonitors of trace metal bioavailabilities in freshwater streams. Water Res. 2006, 40, 1805–1810. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0043135406001205 (accessed on 29 September 2021). [CrossRef]
- Damek-Poprawa, M.; Sawicka-Kapusta, K. Histopathological changes in the liver, kidneys, and testes of bank voles environmentally exposed to heavy metal emissions from the steelworks and zinc smelter in Poland. Environ Res. 2004, 96, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Pogrzeba, M.; Rusinowski, S.; Krzyżak, J.; Palos-Ladeiro, M.; Geffard, A. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest. Environ. Sci. Pollut. Res. Int. 2018, 25, 12096–12106. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940723/ (accessed on 10 September 2021). [CrossRef] [PubMed] [Green Version]
- Rusinowski, S.; Krzyżak, J.; Sitko, K.; Kalaji, H.M.; Jensen, E.; Pogrzeba, M. Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits. Environ. Pollut. 1987, 250, 300–311. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0269749119304713 (accessed on 21 September 2021). [CrossRef]
- Rusinowski, S.; Krzyżak, J.; Clifton-Brown, J.; Jensen, E.; Mos, M.; Webster, R.; Sitko, K.; Pogrzeba, M. New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations. Environ. Pollut. 2019, 252, 1377–1387. [Google Scholar] [CrossRef]
- WHO. 1988: Urbanisation and its Implications for Child Health: Potential for Action; WHO: Geneva, Switzerland, 1988; Available online: https://iris.paho.org/handle/10665.2/45089 (accessed on 21 September 2021).
- Gulson, B.; Mizon, K.; Davis, J.; Palmer, J.; Vimpani, G. Identification of sources of lead in children in a primary zinc-lead smelter environment. Environ. Health Perspect. 2004, 112, 52–60. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1241797/ (accessed on 21 September 2021). [CrossRef] [PubMed] [Green Version]
- Cabała, J. Metale ciężkie w środowisku glebowym olkuskiego rejonu eksploatacji rud Zn-Pb. In Heavy Metals in the Soil Environment of the Olkusz Zn-Pb Ores Exploiting Region; Wydawnictwo Uniwersytetu Ślaskiego: Katowice, Poland, 2009; Available online: https://core.ac.uk/download/pdf/197746498.pdf (accessed on 29 September 2021).
- Saleh, H.M. (Ed.) Heavy Metals; IntechOpen: London, UK, 2018; eBook (PDF); ISBN 978-1-83881-533-2. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; pp. 67–83. [Google Scholar] [CrossRef]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M.; Green, D. Misled about lead: An assessment of online public health education material from Australia’s lead mining and smelting towns. Environ. Health 2016, 15, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jooste, S.; Thirion, C. An ecological risk assessment for a South African acid mine drainage. Water Sci. Technol. 1999, 39, 297–303. [Google Scholar] [CrossRef]
- Jonczy, I. Forms of occurrence of selected metals in metallurgical slags in comparison with their geochemical properties. In Gospodarka Surowcami Mineralnymi—Mineral Resources Management; Tom 28, Zeszyt 1; Instytut Gospodarki Surowcami Mineralnymi i Energią PAN: Kraków, Poland, 2012; pp. 63–75. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPZ7-0002-0004 (accessed on 29 September 2021).
- Gobran, G.R.; Clegg, S.; Courchesne, F. The rhizosphere and trace element acquisition in soils. In Fate and Transport of Heavy Metals in the Vadose Zone; Selim, H.M., Iskandar, A., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 225–250. [Google Scholar] [CrossRef]
- Dahmani-Muller, H.; Van Oort, F.; Gelie, B.; Balabane, M. Strategies of Heavy Metal Uptake by Three Plant Species Growing Near a Metal Smelter. Environ. Pollut. 2000, 109, 231–238. [Google Scholar] [CrossRef]
- Martin, R.R.; Naftel, S.J.; Macfie, S.; Skinner, W.; Courchesne, F.; Séguin, V. Time of flight secondary ion mass spectrometry studies of the distribution of metals between the soil, rhizosphere and roots of Populus tremuloides Minchx growing in forest soil. Chemosphere 2004, 54, 1121–1125. Available online: https://europepmc.org/article/med/14664840 (accessed on 29 September 2021). [CrossRef]
- Hong, S.; Piao, S.; Chen, A.; Liu, Y.; Liu, L.; Peng, S.; Sardans, J.; Sun, Y.; Penuelas, J.; Zeng, H. Afforestation neutralizes soil pH. Nat. Commun. 2018, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Analiza Możliwości Wykorzystania Materiału Zdeponowanego na Hałdzie Pocynkowej Położonej Przy ul. 1 Maja—Czarnoleśna w Rudzie Śląskiej—Wirku. {Analysis of the Possibility of using the Material Deposed on a Post-Zinc Heap in Ruda Slaska}; CBP Projekt: Laski, Poland, 2013; (Expertise ordered by municipality, unpublished).
- Sozological Map. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html?gpmap=gp0&locale=en,shouldbeonlyonthelayer:Archivaldata/Thematicmaps/SozologicalmapofPoland (accessed on 29 September 2021).
- Drobek, L. Ocena Przydatności Materiału z Hałdy Pocynkowej Zlokalizowanej przy ul. Nowary w Rudzie Śląskiej—Wirku do Celów Budownictwa Drogowego Wraz z Szacunkowym Określeniem Wartości Kruszywa. {Assessment of the Suitability of the Material from the Post-Zinc Dump Located at the Nowary Street in Ruda Śląska-Wirek for Road Construction Purposes, together with the Estimated Value of Aggregate}; Główny Instytut Górnictwa: Katowice, Poland, 2007; (Expertise ordered by municipality, unpublished). [Google Scholar]
- Wierzbicka, M.; Rostański, A. Microevolutionary changes in the ecotypes of calamine waste heap vegetation near Olkusz, Poland. Acta Biol. Crac. Ser. Bot. 2002, 44. Available online: https://www.researchgate.net/publication/273832622_Microevolutionary_changes_in_ecotypes_of_calamine_waste_heap_vegetation_near_Olkusz_Poland_A_review (accessed on 21 September 2021).
- Wierzbicka, M. (Ed.) Ekotoksykologia. Rośliny, gleby, metale. In Eco-Toxycology. Plants, Soils, Metals; Wydawnictwo Uniwersytetu Warszawskiego: Warszawa, Poland, 2021. [Google Scholar]
- Idziak, A.; Herman, K. Między kopalnią a krajobrazem. Transformacje sztuki krajobrazu. Instalacje, rzeźba, performance jako formy rekultywacji krajobrazów postindustrialnych. [in] Zarządzanie krajobrazem kulturowym. In Prace Komisji Krajobrazu Kulturowego Nr 10; Komisja Krajobrazu Kulturowego PTG: Sosnowiec, Poland, 2008; Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-45947f43-3756-462e-8d47-4d8ee29d642e (accessed on 29 September 2021).
- Faro Convention—Council of Europe Framework Convention on the Value of Cultural Heritage for Society, Faro, 27.X.2005. Available online: https://rm.coe.int/1680083746 (accessed on 21 September 2021).
- Rygus, P. Zarys Historyczny Hutnictwa Cynku na Górnym Śląsku w Latach 1798-1980. {A Brief History of Zinc Industry in Upper Silesia in 1798–1980}; Fundacja Ochrony Dziedzictwa Przemysłowego Śląska: Katowice, Poland, 2015; Available online: http://silesiaca.pl/zarys-historyczny-hutnictwa-cynku-na-gornym-slasku-w-latach-17981980-p-103.html (accessed on 21 September 2021).
- Boryczka, A.; Blacha, L. Hutnictwo Cynku na Śląsku do Końca XIX Wieku. {Zinc metallurgy in Silesia by the End of 19th Century.} Rudy i Metale Nieżelazne nr 8, 2002. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BOS5-0012-0057 (accessed on 21 September 2021).
- Jonczy, I.; Stawowiak, M. The history of mining and metallurgy of metal ores in upper Silesia preserved in metallurgical waste dumps. New Trends Prod. Eng. 2019, 2, 376–383. Available online: https://sciendo.com/pdf/10.2478/ntpe-2019-0040 (accessed on 21 September 2021). [CrossRef] [Green Version]
- Naveh, Z. Ten major premises for a holistic conception of multifunctional landscapes. Landsc. Urban Plan. 2001, 57, 269–284. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0169204601002092 (accessed on 29 September 2021). [CrossRef]
- Dębicki, J. Przemysł Cynkowy. {Zinc industry}; Gebethner i Wolff: Warszawa, Poland, 1927; Available online: https://sbc.org.pl/dlibra/publication/89008/edition/86846/przemysl-cynkowy-szkic-historyczno-gospodarczy-debicki-janusz?language=pl (accessed on 29 September 2021).
- Alberg, M. Cynk, Ołów i Materiały Pochodne. {Zinc, Lead and Materials Derived}; Wydawnictwa Instytutu Śląskiego: Katowice, Poland, 1936; Available online: https://docplayer.pl/56814608-Michal-alberg-cynk-olow-materjaly-pochodne-monografja-gospodarcza-katowice-1936.html (accessed on 29 September 2021).
- Piernikarczyk, J. Historja Górnictwa i Hutnictwa na Górnym Śląsku. {History of Mining and Metal Industry in Upper Silesia}; Cz. 2, Śląski Związek Akademicki: Katowice, Poland, 1936; Available online: https://kpbc.ukw.edu.pl/dlibra/publication/166550/edition/180519 (accessed on 21 September 2021).
- Jonsen-Verbeke, M. Industrial heritage: A nexus for sustainable tourism development. Tour. Geogr. 1999, 1, 70–85. [Google Scholar] [CrossRef]
- Marot, N. Zasavje (Slovenia)–A region reinventing itself. In Post-Mining Regions in Central Europe—Problems, Potentials, Possibilities; Wirth, P., Cernic Mali, B., Fischer, W., Eds.; OEKOM: München, Germany, 2012; pp. 104–117. Available online: https://ojs.zrc-sazu.si/ags/article/download/1340/1103 (accessed on 21 September 2021).
- Królikowski, J.T. Interpretacje Krajobrazów; Wyd. SGGW: Warszawa, Poland, 2006. [Google Scholar]
- Kastner, J.; Wallis, B. Land and Environmental Art; Phaidon: London, UK, 2005. [Google Scholar]
- Prigann, H.; Strelow, H.; David, V. Ecological Aesthetic. In Art in Environmental Design: Theory and Practise; Birkhauser: Berlin, Germany, 2004. Available online: https://pubmed.ncbi.nlm.nih.gov/29453723/ (accessed on 21 September 2021).
- Jonczy, I. Charakterystyka Mineralogiczno-Chemiczna Zwałowiska Pocynkowego Zlokalizowanego w Rudzie Śląskiej w Rejonie ul. 1 Maja Opracowana dla Potrzeb Projektu Implementation of Sustainable Land Use in Integrated Environmental Management of Functional Urban Areas—LUMAT. {Mineralogical and Chemical Characteristics of the Post-Zinc Dump Located in Ruda Śląska in the Area of ul. May 1, Completed for the Project Implementation of Sustainable Land Use in Integrated Environmental Management of Functional Urban Areas—LUMAT}; Silesian University of Technology: Gliwice, Poland, 2017; (Expertise ordered by municipality, unpublished). [Google Scholar]
- Rozporządzenie Ministra Środowiska z dnia 1 Września 2016 r. w Sprawie Sposobu Prowadzenia Oceny Zanieczyszczenia Powierzchni Ziemi Dz.U. 2016, Poz. 1395. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001395 (accessed on 28 September 2021).
- Pogrzeba, M.; IETU, Katowice, Poland. Odczyn gleb pHKCl. Personal Communication, 2017. [Google Scholar]
- Fialkowski, W.; Rainbow, P.S.; Smith, B.D.; Zmudzinski, L. Seasonal variation in trace metal concentrations in three talitrid amphipods from the Gulf of Gdansk, Poland. J. Exp. Mar. Biology Ecol. 2003, 288, 81–93. Available online: https://www.infona.pl/resource/bwmeta1.element.elsevier-4418f985-f0fa-31dd-86e1-beece099f82d (accessed on 29 September 2021). [CrossRef]
- Rostański, K.; Rostański, L.; Rostański, A.; Bronicka, B.; Trocer, S.; Żmudzińska-Nowak, M.; Chrapek, M.; Marzec, M. Dokumentacja Projektowa Budowlano-Wykonawcza dla Zadania: “Rewitalizacja Zwałowiska Pocynkowego Zlokalizowanego w Rudzie Śląskiej w rejonie ul. 1 Maja Wraz z Prowadzeniem Nadzoru Autorskiego w Trakcie Realizacji” w Ramach Projektu Implementation of Sustainable Land Use in Integrated Environmental Management of Functional Urban Areas—LUMAT. {Construction and Executive Design Documentation for the Task: “Revitalization of the Post-Zinc Dump Located in Ruda Śląska in the Area of ul. May 1, along with the Author’s Supervision during the Implementation ”under the Project Implementation of Sustainable Land Use in Integrated Environmental Management of Functional Urban Areas—LUMAT}; Pracownia HORTUS: Katowice, Poland, 2017; Available online: https://rudaslaska.bip.info.pl/dokument.php?iddok=55292&idmp=3155&r=r (accessed on 21 September 2021).
- Zimring, C.; Reizenstein, J. Post-Occupancy Evaluation. Environ. Behav. 1980, 12, 429–450. [Google Scholar] [CrossRef]
- Zięba, A.; Stangel, M. Rewitalizacja kluczowych przestrzeni publicznych w centrach miast obszaru funkcjonalnego Chorzowa, Rudy Śląskiej i Świętochłowic. Stud. Kom. Przestrz. Zagosp. Kraju PAN 2016, 168, 94–110. Available online: https://journals.pan.pl/Content/97896/mainfile.pdf (accessed on 29 September 2021).
- Pogrzeba, M.; Szada-Borzyszkowska, A. Remediation technologies for environmental management to improve the safety and comfort of living in urban areas—An example of application in Ruda Śląska. In Integrated Environmental Management of Land and Soil in European Urban Areas, Ed. A.Starzewska-Sikorska; Starzewska-Sikorska, A., Ed.; Institute of Environmnetal Engineering of the Polish Academy of Science, WORKS & STUDIES (PRACE I STUDIA): Warsaw, Poland, 2021; Volume 93, (under review; accepted; in press). [Google Scholar]
- Plant Signatures in New Zealand. Available online: https://www.masterlandscapers.org.nz/crm-core/contact/1520 (accessed on 29 September 2021).
- Cullen, G. The Concise Townscape; The Architectural Press: London, UK, 1971; pp. 1–19. [Google Scholar]
- Loudon, J.C. The Landscape Gardening and Landscape Architecture of the Late Humphry Repton; ESQ, Longman & Co.: London, UK, 1840; Available online: https://books.google.pl/books?id=BfkDAAAAQAAJ&redir_esc=y (accessed on 29 September 2021).
- Rostański, A.; Michalska, M. Rich population of orchid (Epipactis palustris (L.) Cranz) on a zinc-colliery heap in Świętochłowice—Chiropaczów (Upper Silesia, Poland). Arch. Ochr. Sr. 2003, 29, 115–118. Available online: https://www.infona.pl/resource/bwmeta1.element.baztech-article-BUS2-0001-0023 (accessed on 29 September 2021).
Contaminant | Detected Content | Permissible Content for Parks | Permissible Content for Industrial Area |
---|---|---|---|
As | 140–3100 | 25 | 100 |
Cd | 18–210 | 2 | 15 |
Pb | 590–21,000 | 200 | 600 |
Zn | 4200–81,000 | 500 | 2000 |
Location | Detected pH |
---|---|
North escarpment | 5.27–6.35 |
Plateau | 6.15–7.10 |
South escarpment | 6.90–7.70 |
Model | Goals |
---|---|
The historical and philosophical model | The relationship to nature in the context of the historical duality of being a part of it or being its master |
The legal model | Control of activities in the environment and control of the environment itself |
The functional model | Nature as a system and our place in it |
The formal model | Nature as a source of admirable formal patterns |
The perception model | The nature we perceive, how we understand it, how we act in it, how we react to its manifestations |
The holistic model | An attempt to describe how nature manifests itself in structures built by man, how we perceive our place in it, how we describe nature to understand it and how we shape nature to ensure that we understand our surroundings; this is the final model of a collection of particular models |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostański, K.M. Contaminated Areas as Recreational Places—Exploring the Validity of the Decisions Taken in the Development of Antonia Hill in Ruda Śląska, Poland. Land 2021, 10, 1165. https://doi.org/10.3390/land10111165
Rostański KM. Contaminated Areas as Recreational Places—Exploring the Validity of the Decisions Taken in the Development of Antonia Hill in Ruda Śląska, Poland. Land. 2021; 10(11):1165. https://doi.org/10.3390/land10111165
Chicago/Turabian StyleRostański, Krzysztof M. 2021. "Contaminated Areas as Recreational Places—Exploring the Validity of the Decisions Taken in the Development of Antonia Hill in Ruda Śląska, Poland" Land 10, no. 11: 1165. https://doi.org/10.3390/land10111165
APA StyleRostański, K. M. (2021). Contaminated Areas as Recreational Places—Exploring the Validity of the Decisions Taken in the Development of Antonia Hill in Ruda Śląska, Poland. Land, 10(11), 1165. https://doi.org/10.3390/land10111165