Gross Ecosystem Productivity Dominates the Control of Ecosystem Methane Flux in Rice Paddies
Abstract
:1. Introduction
2. Methods
2.1. Study Site and Crop Management
2.2. Crop Establishment
2.3. Eddy Covariance Measurements and Data Processing
2.4. Statistics
3. Results and Discussion
3.1. Seasonal Variations in CH4 Fluxes and Predictors
3.2. Annual C and GHG Budgets
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J. Anthropogenic and Natural Radiative Forcing. Clim. Chang. 2013, 423, 658–740. [Google Scholar]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget: 2000–2017. Under Open Review for Earth System Science Data. Earth Syst. Sci. Data 2019. [Google Scholar] [CrossRef]
- IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability Working Group II Contribution to the Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014.
- Aulakh, M.S.; Wassmann, R.; Rennenberg, H. Methane emissions from rice fields—Quantification, mechanisms, role of management, and mitigation options. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2001; Volume 70, pp. 193–260. [Google Scholar]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Jiang, H.; Xiang, W.; Chang, J.; Deng, X.; et al. Methane Emissions from Rice Paddies Natural Wetlands, Lakes in China: Synthesis New Estimate. Glob. Chang. Biol. 2013, 19, 19–32. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past, Present and Future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Meijide, A.; Manca, G.; Goded, I.; Magliulo, V.; di Tommasi, P.; Seufert, G.; Cescatti, A. Seasonal Trends and Environmental Controls of Methane Emissions in a Rice Paddy Field in Northern Italy. Biogeosciences 2011, 8, 3809–3821. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.D. How Eddy Covariance Flux Measurements Have Contributed to Our Understanding of Global Change Biology. Glob. Chang. Biol. 2020, 26, 242–260. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Ju, W.; Zhang, Y.; He, Q.; Song, L.; Li, J. Variations and Drivers of Methane Fluxes from a Rice-Wheat Rotation Agroecosystem in Eastern China at Seasonal and Diurnal Scales. Sci. Total Environ. 2019, 690, 973–990. [Google Scholar] [CrossRef]
- Ge, H.-X.; Zhang, H.-S.; Zhang, H.; Cai, X.-H.; Song, Y.; Kang, L. The Characteristics of Methane Flux from an Irrigated Rice Farm in East China Measured Using the Eddy Covariance Method. Agric. For. Meteorol. 2018, 249, 228–238. [Google Scholar] [CrossRef]
- Knox, S.H.; Jackson, R.B.; Poulter, B.; McNicol, G.; Fluet-Chouinard, E.; Zhang, Z.; Hugelius, G.; Bousquet, P.; Canadell, J.G.; Saunois, M.; et al. FLUXNET-CH4 Synthesis Activity: Objectives, Observations, and Future Directions. Bull. Am. Meteor. Soc. 2019, 100, 2607–2632. [Google Scholar]
- Hatala, J.A.; Detto, M.; Baldocchi, D.D. Gross Ecosystem Photosynthesis Causes a Diurnal Pattern in Methane Emission from Rice. Geophys. Res. Lett. 2012, 39, L06409. [Google Scholar] [CrossRef] [Green Version]
- McNicol, G.; Knox, S.H.; Guilderson, T.P.; Baldocchi, D.D.; Silver, W.L. Where Old Meets New: An Ecosystem Study of Methanogenesis in a Reflooded Agricultural Peatland. Glob. Chang. Biol. 2020, 26, 772–785. [Google Scholar] [PubMed]
- Chu, H.; Chen, J.; Gottgens, J.F.; Ouyang, Z.; John, R.; Czajkowski, K.; Becker, R. Net Ecosystem Methane and Carbon Dioxide Exchanges in a Lake Erie Coastal Marsh and a Nearby Cropland. J. Geophys. Res. Biogeosci. 2014, 119, 722–740. [Google Scholar] [CrossRef]
- Knox, S.H.; Matthes, J.H.; Sturtevant, C.; Oikawa, P.Y.; Verfaillie, J.; Baldocchi, D. Biophysical Controls on Interannual Variability in Ecosystem-Scale CO2 and CH4 Exchange in a California Rice Paddy. J. Geophys. Res. Biogeosci. 2016, 121, 978–1001. [Google Scholar] [CrossRef]
- Li, H.; Guo, H.-Q.; Helbig, M.; Dai, S.-Q.; Zhang, M.-S.; Zhao, M.; Peng, C.-H.; Xiao, X.-M.; Zhao, B. Does Direct-Seeded Rice Decrease Ecosystem-Scale Methane Emissions?—A Case Study from a Rice Paddy in Southeast China. Agric. For. Meteorol. 2019, 272–273, 118–127. [Google Scholar]
- Chauhan, B.S.; Jabran, K.; Mahajan, G. (Eds.) Rice Production Worldwide; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-47514-1. [Google Scholar]
- Li, C.; Qiu, J.; Frolking, S.; Xiao, X.; Salas, W.; Moore, B.; Boles, S.; Huang, Y.; Sass, R. Reduced Methane Emissions from Large-Scale Changes in Water Management of China’s Rice Paddies during 1980–2000. Geophys. Res. Lett. 2002, 29, 1972. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhang, Y.; Lin, F.; Zhang, L.; Zou, J. Methane and Nitrous Oxide Emissions from Direct-Seeded and Seedling-Transplanted Rice Paddies in Southeast China. Plant Soil 2014, 374, 285–297. [Google Scholar] [CrossRef]
- Yadav, S.; Gill, G.; Humphreys, E.; Kukal, S.S.; Walia, U.S. Effect of Water Management on Dry Seeded and Puddled Transplanted Rice. Part 1: Crop Performance. Field Crop. Res. 2011, 120, 112–122. [Google Scholar] [CrossRef]
- Caine, R.S.; Yin, X.; Sloan, J.; Harrison, E.L.; Mohammed, U.; Fulton, T.; Biswal, A.K.; Dionora, J.; Chater, C.C.; Coe, R.A.; et al. Rice with Reduced Stomatal Density Conserves Water and Has Improved Drought Tolerance under Future Climate Conditions. New Phytol. 2019, 221, 371–384. [Google Scholar] [CrossRef]
- Damour, G.; Simonneau, T.; Cochard, H.; Urban, L. An Overview of Models of Stomatal Conductance at the Leaf Level. Plant Cell Environ. 2010, 33, 1419–1438. [Google Scholar] [CrossRef]
- Kumar, A.; Nayak, A.K.; Mohanty, S.; Das, B.S. Greenhouse Gas Emission from Direct Seeded Paddy Fields under Different Soil Water Potentials in Eastern India. Agric. Ecosyst. Environ. 2016, 228, 111–123. [Google Scholar] [CrossRef]
- Li, H.; Dai, S.; Ouyang, Z.; Xie, X.; Guo, H.; Gu, C.; Xiao, X.; Ge, Z.; Peng, C.; Zhao, B. Multi-Scale Temporal Variation of Methane Flux and Its Controls in a Subtropical Tidal Salt Marsh in Eastern China. Biogeochemistry 2018, 137, 163–179. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality Control and Flux Sampling Problems for Tower and Aircraft Data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic Anemometer Tilt Correction Algorithms. Bound.-Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour Transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Finkelstein, P.L.; Sims, P.F. Sampling Error in Eddy Correlation Flux Measurements. J. Geophys. Res.-Atmos. 2001, 106, 3503–3509. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the Separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Foken, T.; Gockede, M.; Mauder, M.; Mahrt, L.; Amiro, B.; Munger, W. Post-field data quality control. In Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Aanlysis; Springer: Berlin/Heidelberg, Germany, 2004; Volume 29, pp. 181–208. ISBN 1383-8601. [Google Scholar]
- Kim, Y.; Johnson, M.S.; Knox, S.H.; Black, T.A.; Dalmagro, H.J.; Kang, M.; Kim, J.; Baldocchi, D. Gap-Filling Approaches for Eddy Covariance Methane Fluxes: A Comparison of Three Machine Learning Algorithms and a Traditional Method with Principal Component Analysis. Glob. Chang. Biol. 2020, 26, 1499–1518. [Google Scholar] [CrossRef]
- Aurela, M.; Laurila, T.; Tuovinen, J. Annual CO2 Balance of a Subarctic Fen in Northern Europe: Importance of the Wintertime Efflux. J. Geophys. Res. Atmos. 2002, 10, 1–12. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of Biochar Amendment on Soil Quality, Crop Yield and Greenhouse Gas Emission in a Chinese Rice Paddy: A Field Study of 2 Consecutive Rice Growing Cycles. Field Crop. Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Chanton, J.P.; Whiting, G.J.; Blair, N.E.; Lindau, C.W.; Bollich, P.K. Methane Emission from Rice: Stable Isotopes, Diurnal Variations, and CO2 Exchange. Glob. Biogeochem. Cycles 1997, 11, 15–27. [Google Scholar] [CrossRef]
- Huang, Y.; Sass, R.; Fisher, F. Methane Emission from Texas Rice Paddy Soils. 2. Seasonal Contribution of Rice Biomass Production to CH4 Emission. Glob. Chang. Biol. 1997, 3, 491–500. [Google Scholar] [CrossRef]
- Chanton, J.P. The Effect of Gas Transport on the Isotope Signature of Methane in Wetlands. Org. Geochem. 2005, 36, 753–768. [Google Scholar] [CrossRef]
- Holzapfel-Pschorn, A.; Conrad, R.; Seiler, W. Effects of Vegetation on the Emission of Methane from Submerged Paddy Soil. Plant Soil 1986, 92, 223–233. [Google Scholar] [CrossRef]
- Kim, J.; Verma, S.B.; Billesbach, D.P.; Clement, R.J. Diel Variation in Methane Emission from a Midlatitude Prairie Wetland: Significance of Convective Throughflow in Phragmites Australis. J. Geophys. Res. Atmos. 1998, 103, 28029–28039. [Google Scholar] [CrossRef]
- Alberto, M.C.R.; Wassmann, R.; Buresh, R.J.; Quilty, J.R.; Correa, T.Q., Jr.; Sandro, J.M.; Centeno, C.A.R. Measuring Methane Flux from Irrigated Rice Fields by Eddy Covariance Method Using Open-Path Gas Analyzer. Field Crop. Res. 2014, 160, 12–21. [Google Scholar] [CrossRef]
- Centeno, C.A.R.; Alberto, M.C.R.; Wassmann, R.; Sander, B.O. Assessing Diel Variation of CH4 Flux from Rice Paddies through Temperature Patterns. Atmos. Environ. 2017, 167, 23–39. [Google Scholar] [CrossRef]
- Swain, C.K.; Bhattacharyya, P.; Nayak, A.K.; Singh, N.R.; Neogi, S.; Chatterjee, D.; Pathak, H. Dynamics of Net Ecosystem Methane Exchanges on Temporal Scale in Tropical Lowland Rice. Atmos. Environ. 2018, 191, 291–301. [Google Scholar] [CrossRef]
- Knox, S.H.; Sturtevant, C.; Matthes, J.H.; Koteen, L.; Verfaillie, J.; Baldocchi, D. Agricultural Peatland Restoration: Effects of Land-Use Change on Greenhouse Gas (CO2 and CH4) Fluxes in the Sacramento-San Joaquin Delta. Glob. Chang. Biol. 2015, 21, 750–765. [Google Scholar] [CrossRef]
- Hemes, K.S.; Chamberlain, S.D.; Eichelmann, E.; Knox, S.H.; Baldocchi, D.D. A Biogeochemical Compromise: The High Methane Cost of Sequestering Carbon in Restored Wetlands. Geophys. Res. Lett. 2018, 45, 6081–6091. [Google Scholar] [CrossRef]
- van der Gon, H.; Kropff, M.J.; van Breemen, N.; Wassmann, R.; Lantin, R.S.; Aduna, E.; Corton, T.M.; van Laar, H.H. Optimizing Grain Yields Reduces CH4 Emissions from Rice Paddy Fields. Proc. Natl. Acad. Sci. USA 2002, 99, 12021–12024. [Google Scholar] [CrossRef] [Green Version]
Year | 2015–2016 | 2016–2017 | 2017–2018 | |||
---|---|---|---|---|---|---|
Season | Wheat | Rice | Wheat | Rice | Wheat | Rice |
Plant date | 28 October | 11 June | 18 December | 7 June | 26 October | 6 June |
Harvest date | 30 May | 11 November | 26 May | 24 October | 28 May | 15 November |
Year | Period | GEP | Tg | Pa | u* | VWC | WTD | Cond |
---|---|---|---|---|---|---|---|---|
2016 | Before MSD | 66.87 *** | 3.91 | 3.55 | 8.99 * | 0.11 | ||
2017 | 18.36 ** | 24.64 ** | 0.01 | 0.54 | 0.15 | |||
2018 | 22.94 *** | 8.47 * | 9.15 | 0.60 | 2.56 | 4.10 | ||
2016 | After MSD | 171.29 *** | 18.14 *** | 5.22 * | 4.64 * | 2.15 | ||
2017 | 157.40 *** | 15.88 ** | 2.54 | 0.43 | 5.94 * | |||
2018 | 86.74 *** | 1.61 | 2.07 | 2.35 | 0.18 | 0.05 |
Before Mid-Season Drainage | After Mid-Season Drainage | |||||
---|---|---|---|---|---|---|
Year | Variable | R2 | AIC | Variable | R2 | AIC |
2016 | GEP | 0.83 | −49.76 | GEP | 0.79 | −25.96 |
GEP + Tg | 0.87 | −50.81 | GEP + Tg | 0.84 | −32.07 | |
GEP + Tg + u* | 0.92 | −54.95 | GEP + Tg + Pa | 0.88 | −36.96 | |
GEP + Tg + u* + Pa | 0.98 | −68.16 | GEP + Tg+ Pa + u* | 0.89 | −38.74 | |
GEP + Tg+ Pa + VPD | 0.89 | −38.75 | ||||
2017 | GEP | 0.60 | −27.51 | GEP | 0.71 | −42.84 |
GEP + Tg | 0.91 | −43 | GEP + Tg | 0.73 | −44.97 | |
GEP + Tg + VWC | 0.85 | −65.39 | ||||
2018 | GEP | 0.52 | −44.95 | GEP | 0.71 | 9.39 |
GEP + Tg | 0.63 | −47.05 | GEP + Tw | 0.76 | −3.18 | |
GEP + Tg + spcond | 0.68 | −47.18 | GEP + Tw + spcond | 0.77 | −5.44 | |
GEP + Tg + spcond + WTD | 0.73 | −47.7 | GEP + Tw + spcond + WTD | 0.78 | −4.53 | |
GEP + Tg + spcond + WTD + Pa | 0.91 | −55.82 | GEP + Tw + spcond + WTD + Pa | 0.80 | −10.45 |
Season | NEE | GEP | CH4 | C Budget | GHG Budget | ||
---|---|---|---|---|---|---|---|
g C m−2 | g C m−2 | g C m−2 | g CO2eq m−2 | g C m−2 | g CO2eq m−2 | ||
2016 | wheat | −186.44 | 972.03 | 2.03 | 75.91 | −184.41 | −607.71 |
rice | −558.64 | 1786.52 | 44.56 | 1663.74 | −514.08 | −384.60 | |
year | −689.13 | 2743.44 | 48.86 | 1824.00 | −640.27 | −702.81 | |
2017 | wheat | −158.15 | 857.22 | 1.98 | 74.03 | −156.17 | −505.84 |
rice | −354.46 | 1573.59 | 43.26 | 1615.06 | −311.20 | 315.37 | |
year | −407.31 | 2535.42 | 46.23 | 1726.03 | −361.08 | 232.54 | |
2018 | wheat | −168.54 | 1195.16 | 2.22 | 83.13 | −166.32 | −534.84 |
rice | −228.97 | 1474.50 | 42.66 | 1592.73 | −186.31 | 753.17 | |
year | −425.98 | 2675.04 | 44.95 | 1678.14 | −381.03 | 116.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhao, M.; Peng, C.; Guo, H.; Wang, Q.; Zhao, B. Gross Ecosystem Productivity Dominates the Control of Ecosystem Methane Flux in Rice Paddies. Land 2021, 10, 1186. https://doi.org/10.3390/land10111186
Li H, Zhao M, Peng C, Guo H, Wang Q, Zhao B. Gross Ecosystem Productivity Dominates the Control of Ecosystem Methane Flux in Rice Paddies. Land. 2021; 10(11):1186. https://doi.org/10.3390/land10111186
Chicago/Turabian StyleLi, Hong, Min Zhao, Changhui Peng, Haiqiang Guo, Qing Wang, and Bin Zhao. 2021. "Gross Ecosystem Productivity Dominates the Control of Ecosystem Methane Flux in Rice Paddies" Land 10, no. 11: 1186. https://doi.org/10.3390/land10111186
APA StyleLi, H., Zhao, M., Peng, C., Guo, H., Wang, Q., & Zhao, B. (2021). Gross Ecosystem Productivity Dominates the Control of Ecosystem Methane Flux in Rice Paddies. Land, 10(11), 1186. https://doi.org/10.3390/land10111186