Unraveling Risk Networks of Cultivated Land Protection: An Exploratory Stakeholder-Oriented Case Study in Xiliuhe Town, Hubei Province, China
Abstract
:1. Introduction
2. Literature Review
2.1. Protection Risk of Cultivated Land
2.2. Stakeholders in Cultivated Land Protection
3. Methods
3.1. The Framework of This Study
3.2. Research Area
3.3. Interviews and Data Collection
4. Results
4.1. Identification of Social Risks
4.2. Visualization and Analysis of Social Network
4.2.1. A Network-Level Analysis
4.2.2. A Node-Level Analysis
4.2.3. Determination and Classification of Key Risk Relationships
5. Discussion and Strategies
5.1. Discussion
5.1.1. Stakeholders and Risks
5.1.2. Risk Relationship
- (1)
- Cultivated land protection costs remain high
- (2)
- The weak position of farmers in cultivated land protection
- (3)
- Unreasonable land use
- (4)
- Distrustful relationships exist among different stakeholders
5.2. Solution to Risk-Mitigation Strategies
5.2.1. Promoting Agricultural Economization and Specialization (SL1)
5.2.2. Promoting Sustainable Agriculture Model (SL2)
5.2.3. Improving the Compensation and Mechanism of Cultivated Land (SL3)
5.2.4. Establish Punishment and Supervision Mechanisms (SL4)
5.3. Validation of Strategies’ Effectiveness
5.4. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, G.A. The spatiality of multifunctional agriculture: A human geography perspective. Geoforum 2009, 40, 269–280. [Google Scholar] [CrossRef]
- Li, Z.; Yu, X.; Gong, C. Intensity Change in Cultivated Land Use in Shandong Province from 1980 to 2010. IERI Procedia 2013, 5, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Strijker, D. Marginal lands in Europe—Causes of decline. Basic Appl. Ecol. 2005, 6, 99–106. [Google Scholar] [CrossRef]
- Su, M.; Guo, R.; Hong, W. Institutional transition and implementation path for cultivated land protection in highly urbanized regions: A case study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [Google Scholar] [CrossRef]
- Wang, G.; Wu, P.; Wu, X.; Zhang, H.; Guo, Q.; Cai, Y. Mapping global research on sustainability of megaproject management: A scientometric review. J. Clean. Prod. 2020, 259, 120831. [Google Scholar] [CrossRef]
- Tang, Y.; Mason, R.J.; Sun, P. Interest distribution in the process of coordination of urban and rural construction land in China. Habitat Int. 2012, 36, 388–395. [Google Scholar] [CrossRef]
- Wang, Y.; Hui, E.C.M. Are local governments maximizing land revenue? Evidence from China. China Econ. Rev. 2017, 43, 196–215. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, Y.; Zhang, Z.; Liu, J.; Ou, W.; Zou, W. Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises. Land Use Policy 2020, 90, 104266. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the world’s countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Janus, J.; Bozek, P. Land abandonment in Poland after the collapse of socialism: Over a quarter of a century of increasing tree cover on agricultural land. Ecol. Eng. 2019, 138, 106–117. [Google Scholar] [CrossRef]
- Minghua, W.; Yueming, H.; Hongmei, W.; Guangsheng, L.; Liying, Y. Remote sensing extraction and feature analysis of abandoned farmland in hilly and mountainous areas: A case study of Xingning, Guangdong. Remote Sens. Appl. Soc. Environ. 2020, 20, 100403. [Google Scholar] [CrossRef]
- Lanz, B.; Dietz, S.; Swanson, T. The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment. Ecol. Econ. 2018, 144, 260–277. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Dargusch, P.; Moss, P.; Aziz, A.A. Land-use change and socio-ecological drivers of wetland conversion in Ha Tien Plain, Mekong Delta, Vietnam. Land Use Policy 2017, 64, 101–113. [Google Scholar] [CrossRef]
- Han, J.; Ge, W.; Hei, Z.; Cong, C.; Ma, C.; Xie, M.; Liu, B.; Feng, W.; Wang, F.; Jiao, J. Agricultural land use and management weaken the soil erosion induced by extreme rainstorms. Agric. Ecosyst. Environ. 2020, 301, 107047. [Google Scholar] [CrossRef]
- Carpio, A.J.; Oteros, J.; Tortosa, F.S.; Guerrero-Casado, J. Land use and biodiversity patterns of the herpetofauna: The role of olive groves. Acta Oecologica 2016, 70, 103–111. [Google Scholar] [CrossRef]
- Sun, J.; Pan, L.; Tsang, D.C.W.; Zhan, Y.; Zhu, L.; Li, X. Organic contamination and remediation in the agricultural soils of China: A critical review. Sci. Total Environ. 2018, 615, 724–740. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Song, W. Review of the evolution of cultivated land protection policies in the period following China’s reform and liberalization. Land Use Policy 2017, 67, 660–669. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Huang, X.; Sloan, M.; Skitmore, M. Spatial-temporal evolution and classification of marginalization of cultivated land in the process of urbanization. Habitat Int. 2017, 61, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Liu, H.; Qi, Y. Construction land expansion and cultivated land protection in urbanizing China: Insights from national land surveys, 1996–2006. Habitat Int. 2015, 46, 13–22. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X.; Castillo, C.S.Z. How does urbanization affect farmland protection? Evidence from China. Resour. Conserv. Recycl. 2019, 145, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Renwick, A.; Jansson, T.; Verburg, P.H.; Revoredo-Giha, C.; Britz, W.; Gocht, A.; McCracken, D. Policy reform and agricultural land abandonment in the EU. Land Use Policy 2013, 30, 446–457. [Google Scholar] [CrossRef]
- Gao, J.; Song, G.; Sun, X. Does labor migration affect rural land transfer? Evidence from China. Land Use Policy 2020, 99, 105096. [Google Scholar] [CrossRef]
- Khorchani, M.; Nadal-Romero, E.; Tague, C.; Lasanta, T.; Zabalza, J.; Lana-Renault, N.; Domínguez-Castro, F.; Choate, J. Effects of active and passive land use management after cropland abandonment on water and vegetation dynamics in the Central Spanish Pyrenees. Sci. Total Environ. 2020, 717, 137160. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, C.; Wang, K.; Deng, J.; Shahtahmassebi, A.R.; Zhang, L.; Ao, W.; Guan, T.; Pan, Y.; Gan, M. Quantifying the spatiotemporal dynamics and multi-aspect performance of non-grain production during 2000–2015 at a fine scale. Ecol. Indic. 2019, 101, 410–419. [Google Scholar] [CrossRef]
- Liang, C.; Penghui, J.; Wei, C.; Manchun, L.; Liyan, W.; Yuan, G.; Yuzhe, P.; Nan, X.; Yuewei, D.; Qiuhao, H. Farmland protection policies and rapid urbanization in China: A case study for Changzhou City. Land Use Policy 2015, 48, 552–566. [Google Scholar] [CrossRef]
- van Leeuwen, C.C.E.; Cammeraat, E.L.H.; de Vente, J.; Boix-Fayos, C. The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: A review. Land Use Policy 2019, 83, 174–186. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, H.; Song, G.; Liu, Y. Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China. Land Use Policy 2021, 108, 105589. [Google Scholar] [CrossRef]
- Fan, M.; Shibata, H.; Chen, L. Environmental and economic risks assessment under climate changes for three land uses scenarios analysis across Teshio watershed, northernmost of Japan. Sci. Total Environ. 2017, 599–600, 451–463. [Google Scholar] [CrossRef]
- Xue, L.; Zhu, B.; Wu, Y.; Wei, G.; Liao, S.; Yang, C.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic projection of ecological risk in the Manas River basin based on terrain gradients. Sci. Total Environ. 2019, 653, 283–293. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X. Exploring environmental efficiency and total factor productivity of cultivated land use in China. Sci. Total Environ. 2020, 726, 138434. [Google Scholar] [CrossRef]
- Kaiyong, W.; Pengyan, Z. The Research on Impact Factors and Characteristic of Cultivated Land Resources Use Efficiency—Take Henan Province, China as a Case Study. IERI Procedia 2013, 5, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yu, L.; Choguill, C.L. “Dipiao”, Chinese approach to transfer of land development rights: The experiences of Chongqing. Land Use Policy 2020, 99. [Google Scholar] [CrossRef]
- Feng, K.; Cao, S.; Wei, S.; Lu, Z. Application of transferable development rights in cultivated land protection in China. Zhongguo Renkou Ziyuan Yu Huan Jing/China Popul. Resour. Environ. 2008, 18, 8–12. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, C.; Tan, Y.; Zhang, X. The dilemma of land expansion and governance in rural China: A comparative study based on three townships in Zhejiang Province. Land Use Policy 2018, 71, 602–611. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, W.; Fang, C.; Sun, H.; Lin, J. Actors and network in the marketization of rural collectively-owned commercial construction land (RCOCCL) in China: A pilot case of Langfa, Beijing. Land Use Policy 2020, 99, 104990. [Google Scholar] [CrossRef]
- Li, S.; Nadolnyak, D.; Hartarska, V. Agricultural land conversion: Impacts of economic and natural risk factors in a coastal area. Land Use Policy 2019, 80, 380–390. [Google Scholar] [CrossRef]
- Liu, P.; Li, W.; Yu, Y.; Tang, R.; Guo, X.; Wang, B.; Yang, B.; Zhang, L. How much will cash forest encroachment in rainforests cost? A case from valuation to payment for ecosystem services in China. Ecosyst. Serv. 2019, 38, 100949. [Google Scholar] [CrossRef]
- Mayer, C.J.; Somerville, C.T. Land use regulation and new construction. Reg. Sci. Urban Econ. 2000, 30, 639–662. [Google Scholar] [CrossRef]
- Sundaresan, J. Urban planning in vernacular governance: Land use planning and violations in Bangalore, India. Prog. Plann. 2019, 127, 1–23. [Google Scholar] [CrossRef]
- Gallego, A.; Calafat, C.; Segura, M.; Quintanilla, I. Land planning and risk assessment for livestock production based on an outranking approach and GIS. Land Use Policy 2019, 83, 606–621. [Google Scholar] [CrossRef]
- Wang, R.; Tan, R. Patterns of revenue distribution in rural residential land consolidation in contemporary China: The perspective of property rights delineation. Land Use Policy 2020, 97, 104742. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, J.; Feng, C.; Zhong, S. The impact of anti-corruption measures on land supply and the associated implications: The case of China. Land Use Policy 2020, 95, 104605. [Google Scholar] [CrossRef]
- Freeman, R.E.; Reed, D.L. Stockholders and Stakeholders: A New Perspective on Corporate Governance. Calif. Manag. Rev. 1983, 25, 88–106. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Q. A spatial panel statistical analysis on cultivated land conversion and chinese economic growth. Ecol. Indic. 2015, 51, 20–24. [Google Scholar] [CrossRef]
- Li, W.; Feng, T.; Hao, J. The evolving concepts of land administration in China: Cultivated land protection perspective. Land Use Policy 2009, 26, 262–272. [Google Scholar] [CrossRef]
- Xia, H.; Li, C.; Zhou, D.; Zhang, Y.; Xu, J. Peasant households’ land use decision-making analysis using social network analysis: A case of Tantou Village, China. J. Rural Stud. 2020, 80, 452–468. [Google Scholar] [CrossRef]
- Tang, L.; Ma, X.; Zhou, Y.; Shi, X.; Ma, J. Social relations, public interventions and land rent deviation: Evidence from Jiangsu Province in China. Land Use Policy 2019, 86, 406–420. [Google Scholar] [CrossRef]
- Long, K.; Wang, Y.; Zhao, Y.; Chen, L. Who are the stakeholders and how do they respond to a local government payments for ecosystem services program in a developed area: A case study from Suzhou, China. Habitat Int. 2015, 49, 1–9. [Google Scholar] [CrossRef]
- Shen, X.; Wang, L.; Wu, C.; Lv, T.; Lu, Z.; Luo, W.; Li, G. Local interests or centralized targets? How China’s local government implements the farmland policy of Requisition–Compensation Balance. Land Use Policy 2017, 67, 716–724. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, M.; Cheong, K.C. Stakeholder perspectives of China’s land consolidation program: Acase study of Dongnan Village, Shandong Province. Habitat Int. 2014, 43, 172–180. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Long, H.; Cui, W. Community-based rural residential land consolidation and allocation can help to revitalize hollowed villages in traditional agricultural areas of China: Evidence from Dancheng County, Henan Province. Land Use Policy 2014, 39, 188–198. [Google Scholar] [CrossRef]
- Tu, S.; Long, H. Rural restructuring in China: Theory, approaches and research prospect. J. Geogr. Sci. 2017, 27, 1169–1184. [Google Scholar] [CrossRef]
- Shi, X.; Chen, S.; Ma, X.; Lan, J. Heterogeneity in interventions in village committee and farmland circulation: Intermediary versus regulatory effects. Land Use Policy 2018, 74, 291–300. [Google Scholar] [CrossRef]
- Akbari, M.; Najafi Alamdarlo, H.; Mosavi, S.H. The effects of climate change and groundwater salinity on farmers’ income risk. Ecol. Indic. 2020, 110. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Li, H. Has farmer welfare improved after rural residential land circulation? J. Rural Stud. 2019, in press. [Google Scholar] [CrossRef]
- Schlef, K.E.; Kaboré, L.; Karambiri, H.; Yang, Y.C.E.; Brown, C.M. Relating perceptions of flood risk and coping ability to mitigation behavior in West Africa: Case study of Burkina Faso. Environ. Sci. Policy 2018, 89, 254–265. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, W.; Zhou, W.; Zhang, X.; Zuo, J. The effect on poverty alleviation and income increase of rural land consolidation in different models: A China study. Land Use Policy 2020, 99, 104989. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Wong, J.T.Y.; Wan, J.K.M. A review of the effectiveness of urban renewal in Hong Kong. Prop. Manag. 2008, 26, 25–42. [Google Scholar] [CrossRef]
- Perlaviciute, G.; Squintani, L. Public Participation in Climate Policy Making: Toward Reconciling Public Preferences and Legal Frameworks. One Earth 2020, 2, 341–348. [Google Scholar] [CrossRef]
- Salehi-Abari, A.; Boutilier, C.; Larson, K. Empathetic decision making in social networks. Artif. Intell. 2019, 275, 174–203. [Google Scholar] [CrossRef]
- Zhuang, T.; Qian, Q.K.; Visscher, H.J.; Elsinga, M.G.; Wu, W. The role of stakeholders and their participation network in decision-making of urban renewal in China: The case of Chongqing. Cities 2019, 92, 47–58. [Google Scholar] [CrossRef]
- Nguyen, Q.; Kim, D.C. Reconsidering rural land use and livelihood transition under the pressure of urbanization in Vietnam: A case study of Hanoi. Land Use Policy 2020, 99, 104896. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; He, H.; Xin, L.; Tan, M. How reliable are cultivated land assets as social security for Chinese farmers? Land Use Policy 2020, 90, 104318. [Google Scholar] [CrossRef]
- Chinowsky, P.; Diekmann, J.; Galotti, V. Social Network Model of Construction. J. Constr. Eng. Manag. 2008, 134, 804–812. [Google Scholar] [CrossRef]
- Bai, J.; Cao, Y.; Chu, Y.; Zhang, X. An improved immersed finite element particle-in-cell method for plasma simulation. Comput. Math. Appl. 2018, 75, 1887–1899. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M.; Fischer, A.P.; Ager, A. A social-ecological network approach for understanding wildfire risk governance. Glob. Environ. Chang. 2019, 54, 113–123. [Google Scholar] [CrossRef]
- Penman, T.D.; Cirulis, B.; Marcot, B.G. Bayesian decision network modeling for environmental risk management: A wildfire case study. J. Environ. Manag. 2020, 270, 110735. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, Y.; Zuo, J.; Pan, N.; Ma, G. On the management of social risks of hydraulic infrastructure projects in China: A case study. Int. J. Proj. Manag. 2015, 33, 483–496. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Zhu, Z.W.; Wang, H.J.; Huang, J. Handling social risks in government-driven mega project: An empirical case study from West China. Int. J. Proj. Manag. 2016, 34, 202–218. [Google Scholar] [CrossRef]
- Xiao, S.; Ho, Y.C.; Che, H. Building the Momentum: Information Disclosure and Herding in Online Crowdfunding. Prod. Oper. Manag. 2021. [Google Scholar] [CrossRef]
- Bravo, R.Z.B.; Leiras, A.; Cyrino Oliveira, F.L. The Use of UAVs in Humanitarian Relief: An Application of POMDP-Based Methodology for Finding Victims. Prod. Oper. Manag. 2019, 28, 421–440. [Google Scholar] [CrossRef]
- Approach, O.I.; Marche, P.; Paciarotti, C.; Valiakhmetova, I. Evaluating Disaster Operations Management: An Outcome-Process Integrated Approach. Prod. Oper. Manag. 2021, 30, 543–562. [Google Scholar] [CrossRef]
- Yu, T.; Shen, G.Q.; Shi, Q.; Lai, X.; Li, C.Z.; Xu, K. Managing social risks at the housing demolition stage of urban redevelopment projects: A stakeholder-oriented study using social network analysis. Int. J. Proj. Manag. 2017, 35, 925–941. [Google Scholar] [CrossRef]
- Yang, F.; Chi, G.; Wang, G.; Tang, S.; Li, Y.; Ju, C. Untangle the Complex Stakeholder Relationships in Rural Settlement Consolidation in China: A Social Network Approach. Land 2020, 9, 210. [Google Scholar] [CrossRef]
- Li, C.Z.; Hong, J.; Xue, F.; Shen, G.Q.; Xu, X.; Mok, M.K. Schedule risks in prefabrication housing production in Hong Kong: A social network analysis. J. Clean. Prod. 2016, 134, 482–494. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xiao, H.; Duan, M.; Zhang, X.; Yu, Z. Farmers’ attitudes towards the introduction of agri-environmental measures in agricultural infrastructure projects in China: Evidence from Beijing and Changsha. Land Use Policy 2015, 49, 92–103. [Google Scholar] [CrossRef]
- Saint-laurent, D.; Hähni, M.; St-laurent, J.; Baril, F. Comparative Assessment of Soil Contamination by Lead and Heavy Metals in Riparian and Agricultural Areas (Southern Québec, Canada). Int. J. Environ. Res. Public Health 2010, 1, 3100–3114. [Google Scholar] [CrossRef]
- Boyd, C.E.; Massaut, L. Risks associated with the use of chemicals in pond aquaculture. Aquac. Eng. 1999, 20, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, L.J.; Wong, N.D.; Reusch, J.E.B.; Arnold, S.V.; Kosiborod, M.N.; Tang, Y.; Laffel, L.M.; Mehta, S.N. Regional differences in the management of cardiovascular risk factors among adults with diabetes: An evaluation of the Diabetes Collaborative Registry. J. Diabetes Complicat. 2020, 107591. [Google Scholar] [CrossRef]
- Jianjun, J.; Chong, J.; Thuy, T.D.; Lun, L. Public preferences for cultivated land protection in Wenling City, China: A choice experiment study. Land Use Policy 2013, 30, 337–343. [Google Scholar] [CrossRef]
- Smit, J.; Nasr, J. Urban agriculture for sustainable cities: Using wastes and idle land and water bodies as resources. Environ. Urban. 1992, 4, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Vaverková, M.D.; Maxianová, A.; Winkler, J.; Adamcová, D.; Podlasek, A. Environmental consequences and the role of illegal waste dumps and their impact on land degradation. Land Use Policy 2019, 89. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Bellout, A.; Vaz, E.; Penfound, E. Rethinking agricultural land use in Algiers: A spatial analysis of the Eastern Mitidja Plain. Habitat Int. 2020, 104, 102239. [Google Scholar] [CrossRef]
- Valtonen, E.; Falkenbach, H.; van der Krabben, E. Risk management in public land development projects: Comparative case study in Finland, and the Netherlands. Land Use Policy 2017, 62, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Dai, B.; Gu, X.; Xie, B. Policy Framework and Mechanism of Life Cycle Management of Industrial Land (LCMIL) in China. Land Use Policy 2020, 99, 104997. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Lehmann, N.; Briner, S.; Finger, R. The impact of climate and price risks on agricultural land use and crop management decisions. Land Use Policy 2013, 35, 119–130. [Google Scholar] [CrossRef]
- Lian, H.; Li, H.; Ko, K. Market-led transactions and illegal land use: Evidence from China. Land Use Policy 2019, 84, 12–20. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Huang, X. Can land market development suppress illegal land use in China? Habitat Int. 2015, 49, 403–412. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Zhu, A.X.; Lao, C.; Hu, G.; Hu, Y. Scenario farmland protection zoning based on production potential: A case study in China. Land Use Policy 2020, 95, 104581. [Google Scholar] [CrossRef]
- Long, H.; Zou, J.; Liu, Y. Differentiation of rural development driven by industrialization and urbanization in eastern coastal China. Habitat Int. 2009, 33, 454–462. [Google Scholar] [CrossRef]
- Cabini, E.; Fontana, L.; Malavasi, P.; Iavicoli, I. Land use: The perception of risk by the citizens and local administrators in the North of Italy. Land Use Policy 2018, 76, 553–564. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, Y.; Huang, X.; Shi, R.; Yu, W.; Zhang, T. Exploring the driving forces of farmland loss under rapidurbanization using binary logistic regression and spatial regression: A case study of Shanghai and Hangzhou Bay. Ecol. Indic. 2018, 95, 455–467. [Google Scholar] [CrossRef]
- Lin, Y.; Yao, S. Land Use Policy Impact of the Sloping Land Conversion Program on rural household income: An integrated estimation. Land Use Policy 2014, 40, 56–63. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, H.; Zhang, C.; Li, J. National-scale paddy-upland rotation in Northern China promotes sustainable development of cultivated land. Agric. Water Manag. 2016, 170, 20–25. [Google Scholar] [CrossRef]
- Li, D.; Cao, C.; Zhang, L.; Chen, X.; Ren, S.; Zhao, Y. Effects of corporate environmental responsibility on financial performance: The moderating role of government regulation and organizational slack. J. Clean. Prod. 2017, 166, 1323–1334. [Google Scholar] [CrossRef]
- Farrington, J. Farmer participation in agricultural research. Food Policy 1989, 14, 97–100. [Google Scholar] [CrossRef]
- Li, P.; Chen, Y.; Hu, W.; Li, X.; Yu, Z.; Liu, Y. Possibilities and requirements for introducing agri-environment measures in land consolidation projects in China, evidence from ecosystem services and farmers’ attitudes. Sci. Total Environ. 2019, 650, 3145–3155. [Google Scholar] [CrossRef]
- Fang, Y.G.; Shi, K.J.; Niu, C.C. A comparison of the means and ends of rural construction land consolidation: Case studies of villagers’ attitudes and behaviours in Changchun City, Jilin province, China. J. Rural Stud. 2016, 47, 459–473. [Google Scholar] [CrossRef]
- Lin, Y.; Dong, Z.; Zhang, W.; Zhang, H. Estimating inter-regional payments for ecosystem services: Taking China ’ s Beijing-Tianjin-Hebei region as an example. Ecol. Econ. 2020, 168, 106514. [Google Scholar] [CrossRef]
- Phillips, J.M. Farmer Education and Efficiency: A Frontier Production Function Approach. Econ. Educ. Rev. 1986, 257–264. [Google Scholar] [CrossRef]
- Hodge, I.D.; Adams, W.M. Geoforum Neoliberalisation, rural land trusts and institutional blending. Geoforum 2012, 43, 472–482. [Google Scholar] [CrossRef]
- Tang, P.; Lai, S. A framework for managing public security risks with complex interactions in cities and its application evidenced from Shenzhen City in China. Cities 2019, 95, 102390. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, K.; Li, W.; Ji, C.; Wang, Z.; Skibniewski, M.J. Social network analysis for social risks of construction projects in high-density urban areas in China. J. Clean. Prod. 2018, 198, 940–961. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Zuo, J.; Hu, W.; Nie, Q.; Lei, H. Who drives green innovations? Characteristics and policy implications for green building collaborative innovation networks in China. Renew. Sustain. Energy Rev. 2021, 143, 110875. [Google Scholar] [CrossRef]
- Farzam, A.; Samal, A.; Jost, J. Degree difference: A simple measure to characterize structural heterogeneity in complex networks. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, I. Change and stability in shopping tourist destination networks: The case of Seoul in Korea. J. Destin. Mark. Manag. 2018, 9, 267–278. [Google Scholar] [CrossRef]
- Tang, P.; Xia, Q.; Wang, Y. Addressing cascading effects of earthquakes in urban areas from network perspective to improve disaster mitigation. Int. J. Disaster Risk Reduct. 2019, 35, 101065. [Google Scholar] [CrossRef]
- WANG, S.X.; Yu Benjamin, F.U. Labor mobility barriers and rural-urban migration in transitional China. China Econ. Rev. 2019, 53, 211–224. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, J.; Lei, K.; Wu, Y.; Sun, L. Labor migration and the decoupling of the crop-livestock system in a rural mountainous area: Evidence from Chongqing, China. Land Use Policy 2020, 99. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, B.; Yu, L.; Yang, H.; Yin, S. Social capital, land tenure and the adoption of green control techniques by family farms: Evidence from Shandong and Henan Provinces of China. Land Use Policy 2019, 89, 104250. [Google Scholar] [CrossRef]
- Wen, L.; Chatalova, L.; Butsic, V.; Hu, F.Z.Y.; Zhang, A. Capitalization of land development rights in rural China: A choice experiment on individuals’ preferences in peri-urban Shanghai. Land Use Policy 2020, 97, 104803. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Huang, X.; Chen, Y. Influence of government leaders’ localization on farmland conversion in Chinese cities: A “sense of place” perspective. Cities 2019, 90, 74–87. [Google Scholar] [CrossRef]
- Lin, R.; Zhu, D. A spatial and temporal analysis on land incremental values coupled with land rights in China. Habitat Int. 2014, 44, 168–176. [Google Scholar] [CrossRef]
- Xu, W.; Jin, X.; Liu, J.; Zhou, Y. Analysis of influencing factors of cultivated land fragmentation based on hierarchical linear model: A case study of Jiangsu Province, China. Land Use Policy 2021, 101, 105119. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Li, Y.; Zhu, Y.; Wang, J.; Ma, J. A multi-faceted, location-specific assessment of land degradation threats to peri-urban agriculture at a traditional grain base in northeastern China. J. Environ. Manag. 2020, 271, 111000. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Song, W.; Zhai, L. Land abandonment under rural restructuring in China explained from a cost-benefit perspective. J. Rural Stud. 2016, 47, 524–532. [Google Scholar] [CrossRef]
- He, Y.; Xie, H.; Peng, C. Analyzing the behavioural mechanism of farmland abandonment in the hilly mountainous areas in China from the perspective of farming household diversity. Land Use Policy 2020, 99, 104826. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, X.; He, L. Collective Action in maintaining rural infrastructures: Cadre-farmer relationship, institution rules and their interaction terms. Land Use Policy 2020, 99, 105043. [Google Scholar] [CrossRef]
- Qi, X.; Dang, H. Addressing the dual challenges of food security and environmental sustainability during rural livelihood transitions in China. Land Use Policy 2018, 77, 199–208. [Google Scholar] [CrossRef]
- Liang, X.; Yuan, Q.; Tan, X.; Chen, S. The conservation of collective-owned farmland via the transfer of development rights (TDR) in China--the case of Ecological Fruit Park in Guangzhou. J. Rural Stud. 2020, 78, 399–410. [Google Scholar] [CrossRef]
- Xie, H.; Wang, W.; Zhang, X. Evolutionary game and simulation of management strategies of fallow cultivated land: A case study in Hunan province, China. Land Use Policy 2018, 71, 86–97. [Google Scholar] [CrossRef]
- Fielke, S.J.; Bardsley, D.K. The importance of farmer education in South Australia. Land Use Policy 2014, 39, 301–312. [Google Scholar] [CrossRef]
- Zhang, J.; Mishra, A.K.; Zhu, P. Identifying livelihood strategies and transitions in rural China: Is land holding an obstacle? Land Use Policy 2019, 80, 107–117. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Bao, H.J.; Zhang, X.L. The policy and praxis of compensation for land expropriations in China: An appraisal from the perspective of social exclusion. Land Use Policy 2013, 32, 309–316. [Google Scholar] [CrossRef]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Azadi, H.; Speelman, S. Sustainable agricultural practices, environmental risk mitigation and livelihood improvements: Empirical evidence from Northern Ethiopia. Land Use Policy 2019, 95, 103799. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, X.; Xiao, B.; Hu, K. Rice-crab coculture to sustain cleaner food production in Liaohe River Basin, China: An economic and environmental assessment. J. Clean. Prod. 2019, 208, 188–198. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, X. Land Use Policy Are they satis fi ed with land taking? Aspects on procedural fairness, monetary compensation and behavioral simulation in China’s land expropriation story. Land Use Policy 2018, 74, 166–178. [Google Scholar] [CrossRef]
- Xiang, J.; Li, X.; Xiao, R.; Wang, Y. Effects of land use transition on ecological vulnerability in poverty-stricken mountainous areas of China: A complex network approach. J. Environ. Manag. 2021, 297, 113206. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wu, Y.; Liu, J.; Xu, M.; Zuo, T. Ecological civilization and government administrative system reform in China. Resour. Conserv. Recycl. 2020, 155, 104654. [Google Scholar] [CrossRef]
- Liu, M.; Yang, L.; Bai, Y.; Min, Q. The impacts of farmers’ livelihood endowments on their participation in eco-compensation policies: Globally important agricultural heritage systems case studies from China. Land Use Policy 2018, 77, 231–239. [Google Scholar] [CrossRef]
- Phelps, J.; Dermawan, A.; Garmendia, E. Institutionalizing environmental valuation into policy: Lessons from 7 Indonesian agencies. Glob. Environ. Chang. 2017, 43, 15–25. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Wang, Z.; Wang, G.; Zuo, J.; Wu, G.; Liu, B. To be green or not to be: How environmental regulations shape contractor greenwashing behaviors in construction projects. Sustain. Cities Soc. 2020, 63, 102462. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, C.; Hughes, R.M.; Davis, W.S. China’s new environmental protection regulatory regime: Effects and gaps. J. Environ. Manag. 2017, 187, 464–469. [Google Scholar] [CrossRef]
- Yang, R.J.; Zou, P.X.W. Stakeholder-associated risks and their interactions in complex green building projects: A social network model. Build. Environ. 2014, 73, 208–222. [Google Scholar] [CrossRef]
Risk Category | Risk | Risk Description | References | Risk Factor |
---|---|---|---|---|
C1 | R1 | Lack of irrigation and conservancy infrastructure | [52,77] | S1R1; S2R1; S3R1; S5R1; S7R1 |
R10 | Natural disasters | [37] | S1R10; S3R10; S4R10; S5R10; S6R10; S7R10 | |
R25 | Industrial pollution and agricultural wastes | [78] | S1R25; S3R25; S4R25; S5R25; S7R25 | |
R26 | Decreased soil fertility | [79] | S4R26; S5R26; S6R26 | |
R36 | Poor topographic condition | Interview | S1R36; S2R36 | |
C2 | R3 | The defective functional layout of cultivated land | [80] | S1R3;S2R3;S3R3;S5R3 |
R11 | The increasing cost of cultivated land protection | [81] | S3R11; S4R11; S6R11 | |
R14 | Low efficiency of land utilization | [82,83] | S1R14; S2R14; S3R14; S4R14; S5R14; S6R14 | |
R18 | Inadequate and low quality of cultivated land | [84] | S1R18; S4R18; S6R18; S7R18 | |
R27 | Improper cultivated land construction plan | [85] | S3R27 | |
R35 | Superfluous homestead and unreasonable layout | Interview | S1R35; S2R35; S3R35; S4R35 | |
C3 | R2 | Imperfect incentive and constraint mechanism on cultivated land protection | [41] | S1R2; S2R2; S6R2 |
R4 | Unreasonable land planning and management | [86] | S1R4; S2R4; S3R4 | |
R17 | Imperfect land regulatory mechanism | [43] | S1R17; S2R17; S5R17 | |
R20 | Unreasonable distribution mechanism of land revenues | [42,58] | S1R20; S2R20; S6R20 | |
R28 | Imperfect industry standards of land use | [87] | S2R28 | |
C4 | R5 | Lenient land law | [88] | S1R5; S2R5 |
R22 | Unavailable or lack of subsidy funds during the land acquisition | [89] | S1R22; S2R22; S4R22; S5R22; S6R22; S7R22 | |
R23 | Difficulties in identifying land violations of the local government | [40,43] | S2R23; S4R23; S5R23; S6R23 | |
R24 | Difficulties in identifying the illegal land use of enterprises and farmers | [90,91] | S2R24; S3R24; S4R24; S5R24 | |
R29 | Perfunctory protection measures for grain-producing areas | [21,92] | S1R29; S2R29 | |
R33 | Quantity and quality of unbalanced cultivated land occupation and compensation | Interview | S1R33; S2R33; S4R33 | |
R34 | Inadequate publicity of cultivated land protection policies | Interview | S1R34; S2R34; S5R34 | |
C5 | R6 | Discordance of urban and rural economic development | [93,94] | S1R6; S2R6; S3R6; S4R6; S5R6; S6R6; S7R6 |
R7 | Increasing demand for construction land | [39] | S1R7; S2R7; S5R7; S6R7; S7R7 | |
R8 | Unbalanced industrial structure | [94] | S1R8; S2R8; S3R8; S5R8; S7R8 | |
R16 | The overwhelming profit-driven development approach | [38] | S1R16; S2R16; S3R16; S5R16; S6R16 | |
R21 | Benefit transmission during the transition from cultivated land to non-cultivated land | [95] | S1R21; S2R21; S4R21; S5R21 | |
R31 | The proportion of agricultural income within the total income | [96] | S2R31; S3R31; S4R31; S5R31; S6R31 | |
C6 | R9 | Unprofessional agricultural technician | [97] | S1R9; S2R9; S3R9 |
R12 | The diminishing role of local government in cultivated land protection | [98] | S1R12; S2R12; S5R12; S6R12 | |
R13 | The weak position of farmers | [99] | S6R13 | |
R15 | Lacking awareness of cultivated land protection | [100,101] | S1R15; S2R15; S3R15; S4R15; S5R15; S6R15; S7R15 | |
R19 | Low level of farmer comprehensive productivity | [102] | S4R19; S5R19; S6R19 | |
R30 | Low level of education | [103] | S4R30; S5R30; S6R30 | |
R32 | Distrust among stakeholders | [104] | S1R32; S2R32; S5R32; S6R32; S7R32 |
Rank | SR | In-Status Centrality | SR | Out-Status Centrality | SR | In-Closeness Centrality | SR | Out-Closeness Centrality | SR | Degree Difference |
---|---|---|---|---|---|---|---|---|---|---|
1 | S6R11 | 1.84 | S2R1 | 1.00 | S1R8 | 0.18 | S3R25 | 0.12 | S2R33 | 8 |
2 | S6R13 | 1.70 | S2R34 | 0.95 | S6R11 | 0.18 | S2R33 | 0.11 | S2R34 | 6 |
3 | S1R1 | 1.67 | S3R25 | 0.94 | S6R13 | 0.16 | S2R4 | 0.10 | S2R29 | 5 |
4 | S5R32 | 1.34 | S2R33 | 0.93 | S1R1 | 0.16 | S3R16 | 0.10 | S2R7 | 5 |
5 | S1R8 | 1.28 | S2R2 | 0.81 | S2R36 | 0.16 | S2R29 | 0.10 | S3R16 | 5 |
6 | S1R6 | 1.18 | S3R16 | 0.76 | S6R10 | 0.16 | S1R29 | 0.10 | S3R25 | 5 |
7 | S7R15 | 1.15 | S6R16 | 0.76 | S2R31 | 0.16 | S2R1 | 0.10 | S1R29 | 4 |
8 | S6R10 | 1.04 | S6R11 | 0.70 | S2R6 | 0.14 | S1R21 | 0.10 | S2R16 | 4 |
9 | S6R32 | 0.99 | S1R1 | 0.68 | S4R6 | 0.14 | S2R2 | 0.09 | S2R17 | 4 |
10 | S7R10 | 0.76 | S4R14 | 0.67 | S6R6 | 0.14 | S2R24 | 0.09 | S2R21 | 4 |
11 | S2R31 | 0.76 | S4R30 | 0.65 | S5R32 | 0.13 | S2R12 | 0.09 | S2R24 | 4 |
12 | S2R12 | 0.67 | S1R21 | 0.64 | S3R31 | 0.13 | S5R10 | 0.09 | S2R9 | 4 |
13 | S2R35 | 0.65 | S2R17 | 0.64 | S7R8 | 0.13 | S2R28 | 0.08 | S4R30 | 4 |
14 | S2R2 | 0.63 | S2R7 | 0.60 | S7R10 | 0.13 | S2R17 | 0.08 | S5R10 | 3 |
15 | S6R6 | 0.63 | S1R33 | 0.60 | S2R12 | 0.13 | S3R3 | 0.08 | S1R21 | 3 |
Rank | SR | Node Betweenness Centrality | Interaction ID | Link Betweenness Centrality |
---|---|---|---|---|
1 | S2R12 | 0.08 | S2R6→S2R12 | 1423.00 |
2 | S6R13 | 0.07 | S6R13→S2R6 | 1264.00 |
3 | S2R6 | 0.07 | S2R12→S2R4 | 1003.58 |
4 | S6R11 | 0.06 | S6R11→S6R13 | 754.17 |
5 | S2R4 | 0.06 | S2R4→S1R21 | 741.33 |
6 | S1R1 | 0.05 | S1R1→S4R10 | 677.58 |
7 | S1R8 | 0.04 | S4R10→S2R1 | 621.00 |
8 | S1R6 | 0.03 | S1R8→S1R1 | 546.67 |
9 | S1R21 | 0.03 | S1R21→S2R2 | 501.92 |
10 | S4R10 | 0.03 | S1R6→S6R13 | 496.33 |
11 | S2R1 | 0.03 | S2R1→S6R30 | 440.50 |
12 | S2R2 | 0.03 | S6R18→S1R6 | 399.00 |
13 | S6R30 | 0.02 | S6R32→S6R11 | 374.33 |
14 | S6R18 | 0.02 | S6R11→S1R8 | 330.00 |
15 | S6R32 | 0.02 | S1R8→S6R11 | 241.33 |
Risk Aspects | Challenges Description | Critical Risk Factors/Interactions | Associated Stakeholders |
---|---|---|---|
Economic aspect |
| S2R6→S2R12 S2R12→S2R4 S2R4→S1R21 S1R21→S2R2 S1R21 S2R7 S2R34 | The local government The local government The local government The village committee The village committee The local government The local government |
| S1R8→S1R1 S1R8→S6R11 S6R11→S6R13 S6R11→S1R8 S6R11 | The village committee The village committee Land flow-out farmers Land flow-out farmers Land flow-out farmers | |
| S1R6→S6R13 S6R13→S2R6 S3R16 S6R13 | The village committee Land flow-out farmers Land-use organization Land flow-out farmers | |
Social aspect |
| S6R32→S6R11 S2R12 S2R29 S6R13 | Land flow-out farmers The local government The local government Land flow-out farmers |
Environmental aspect |
| S1R1→S4R10 S4R10→S2R1 S2R1→S6R30 S6R18→S1R6 S1R1 S3R25 S5R10 | The village committee Land non-flow farmers The local government Land flow-out farmers The village committee Land-use organization land flow-in farmers |
Solution | Deleted | Result | ||
---|---|---|---|---|
Nodes | Links | Link Percent | Network Density Percent | |
SL1: Promoting agricultural economization and specialization | S1R21 S2R7 S2R34 S3R16 S6R11 S6R13 | S1R6→S6R13 S1R8→S1R1 S1R8→S6R11 S1R21→S2R2 S2R4→S1R21 S2R6→S2R12 S2R12→S2R4 S6R11→S1R8 S6R11→S6R13 S6R13→S2R6 | ↓17.00% | ↓15.38% |
SL2: Promoting a sustainable agriculture model | S1R1 S1R21 S2R7 S2R34 S3R25 S5R10 | S1R1→S4R10 S1R21→S2R2 S2R1→S6R30 S2R4→S1R21 S2R6→S2R12 S2R12→S2R4 S4R10→S2R1 S6R18→S1R6 | ↓15.81% | ↓7.7% |
SL3: Improving the compensation and mechanism of cultivated land | S1R21 S2R7 S2R34 S6R11 | S1R8→S1R1 S1R8→S6R11 S1R21→S2R2 S2R4→S1R21 S2R6→S2R12 S2R12→S2R4 S6R11→S1R8 S6R11→S6R13 | ↓11.86% | ↓7.7% |
SL4: Establish punishment and supervision mechanisms | S2R12 S2R29 S6R11 S6R13 | S1R8→S1R1 S1R8→S6R11 S6R11→S1R8 S6R11→S6R13 S6R32→S6R11 | ↓14.62% | ↓15.38% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Guo, Q.; Cai, Y.; Wang, G. Unraveling Risk Networks of Cultivated Land Protection: An Exploratory Stakeholder-Oriented Case Study in Xiliuhe Town, Hubei Province, China. Land 2021, 10, 1222. https://doi.org/10.3390/land10111222
Guo Z, Guo Q, Cai Y, Wang G. Unraveling Risk Networks of Cultivated Land Protection: An Exploratory Stakeholder-Oriented Case Study in Xiliuhe Town, Hubei Province, China. Land. 2021; 10(11):1222. https://doi.org/10.3390/land10111222
Chicago/Turabian StyleGuo, Zhaoxia, Qinqin Guo, Yujie Cai, and Ge Wang. 2021. "Unraveling Risk Networks of Cultivated Land Protection: An Exploratory Stakeholder-Oriented Case Study in Xiliuhe Town, Hubei Province, China" Land 10, no. 11: 1222. https://doi.org/10.3390/land10111222
APA StyleGuo, Z., Guo, Q., Cai, Y., & Wang, G. (2021). Unraveling Risk Networks of Cultivated Land Protection: An Exploratory Stakeholder-Oriented Case Study in Xiliuhe Town, Hubei Province, China. Land, 10(11), 1222. https://doi.org/10.3390/land10111222