The Interaction Relationship between Land Use Patterns and Socioeconomic Factors Based on Wavelet Analysis: A Case Study of the Black Soil Region of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Data
2.2.1. Land Use Data
2.2.2. Data Sources and Processing of SEFs
2.3. Model
2.3.1. Continuous Wavelet Transform (CWT)
2.3.2. Cross Wavelet Transform (XWT)
2.3.3. Wavelet Transform Coherence (XWT)
2.3.4. Phase Angle of WTC Spectrum
2.3.5. Sampling Method
3. Results and Discussion
3.1. Sample Line Identification
3.1.1. The Degree of Land Use Diversity
3.1.2. Sample Line Identification Based on Land Use Diversity Degree
3.2. Identify the Interaction Grid Scales between LUPs and SEFs
3.3. The Interaction Direction between LUPs and SEFs
3.4. The Impact Strength Relationship between LUPs and SEFs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviations | Full Name (in Full) |
---|---|
LUPs | Land use patterns |
SEFs | Socioeconomic factors |
GDP | Gross domestic product |
CWT | Continuous wavelet transform |
XWT | Cross wavelet transform |
WTC | Wavelet transform coherence |
References
- Li, K.; Feng, M.; Biswas, A.; Su, H.; Niu, Y.; Gao, J. Driving factors and future prediction of land use and cover change based on satellite remote sensing data by the LCM Model: A Case Study from Gansu Province, China. Sensors 2020, 20, 2757. [Google Scholar] [CrossRef]
- Alijani, Z.; Hosseinali, F.; Biswas, A. Spatio-temporal evolution of agricultural land use change drivers: A case study from chalous region, iran. J. Environ. Manag. 2020, 262, 110326. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y. An analysis of land use conflict potentials based on ecological-production-living function in the southeast coastal area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Deng, J.; Wang, K.; Hong, Y.; Qi, J. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Wang, L.; Anna, H.; Zhang, L.; Xiao, Y.; Wang, Y.; Xiao, Y.; Liu, J.; Ouyang, Z. Spatial and temporal changes of arable land driven by urbanization and ecological restoration in China. Chin. Geogr. Sci. 2019, 29, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sun, Z. Does the transfer of state-owned land-use rights promote or restrict urban development? Land Use Policy 2021, 100, 104945. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, X.; Zheng, M. Do urban planning policies meet sustainable urbanization goals? A scenario-based study in Beijing, China. Sci. Total. Environ. 2019, 670, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Ding, S. Landscape pattern changes at a county scale: A case study in Fengqiu, Henan Province, China from 1990 to 2013. Catena 2016, 137, 152–160. [Google Scholar] [CrossRef]
- Kertész, Á.; Nagy, L.; Balázs, B. Effect of land use change on ecosystem services in Lake Balaton Catchment. Land Use Policy 2019, 80, 430–438. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L. Spatial-temporal impacts of urban land use land cover on land surface temperature: Case studies of two Canadian urban areas. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 171–181. [Google Scholar] [CrossRef]
- Marques, A.; Martins, I.; Kastner, T.; Plutzar, C.; Theurl, M.; Eisenmenger, N.; Huijbregts, M.; Wood, R.; Stadler, K.; Bruckner, M.; et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Luetzenburg, G.; Bittner, M.; Calsamiglia, A.; Renschler, C.; Estrany, J.; Poeppl, R. Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz—Austria, Can Revull—Spain. Sci. Total. Environ. 2019, 704, 135389. [Google Scholar] [CrossRef]
- Chi, W.; Zhao, Y.; Kuang, W.; He, H. Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci. Total. Environ. 2019, 668, 204–215. [Google Scholar] [CrossRef]
- Guo, F.; Lenoir, J.; Bonebrake, T. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 2018, 9, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Lean, J.; Warrilow, D. Simulation of the regional climatic impact of Amazon deforestation. Nature 1989, 342, 411–413. [Google Scholar] [CrossRef]
- Sun, Z.; Lotz, T.; Chang, N. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications. J. Environ. Manag. 2017, 204, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Şen, G.; Güngör, E. Analysis of land use/land cover changes following population movements and agricultural activities: A case study in northern Turkey. Appl. Ecol. Environ. Res. 2018, 16, 2073–2088. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Singh, V.; Gu, X.; Chen, X. Evaluation of impacts of climate change and human activities on streamflow in the Poyang Lake basin, China. Hydrol. Process. 2016, 30, 2562–2576. [Google Scholar] [CrossRef]
- Hasan, S.; Deng, X.; Li, Z.; Chen, D. Projections of future land use in Bangladesh under the background of baseline, ecological protection and economic development. Sustainability 2017, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Lang, W.; Long, Y.; Chen, T. Rediscovering Chinese cities through the lens of land-use patterns. Land Use Policy 2018, 79, 362–374. [Google Scholar] [CrossRef]
- Dong, S.; Li, Y.; Li, Y.; Li, S. Spatiotemporal patterns and drivers of land use and land cover change in the China-Mongolia-Russia economic corridor. Pol. J. Environ. Stud. 2021, 30, 2527–2541. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land use change and driving factors in rural China during the period 1995-2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Hao, X.; Zhang, H.; Xu, X.; Wang, L.; Cui, Y. Evolution and simulation of land use/land cover pattern in northern Shanxi Province. Acta Ecol. Sin. 2020, 40, 257–265. [Google Scholar] [CrossRef]
- Liu, P.; Hu, Y.; Jia, W. Land use optimization research based on FLUS model and ecosystem services–setting Jinan City as an example. Urban Clim. 2021, 40, 100984. [Google Scholar] [CrossRef]
- Qie, Z.; Rong, L. Reprint of spatial–temporal human exposure modeling based on land-use at a regional scale in China. Saf. Sci. 2017, 97, 99–111. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Wang, Y.; Li, Y.; Jiang, Y.; Wang, M.; Wu, J. Landscape pattern at the class level regulates the stream water nitrogen and phosphorus levels in a Chinese subtropical agricultural catchment. Agric. Ecosyst. Environ. 2020, 295, 106897. [Google Scholar] [CrossRef]
- Gong, J.; Jiang, C.; Chen, W.; Chen, X.; Liu, Y. Spatiotemporal dynamics in the cultivated and built-up land of Guangzhou: Insights from zoning. Habitat Int. 2018, 82, 104–112. [Google Scholar] [CrossRef]
- Cui, J.; Kong, X.; Chen, J.; Sun, J.; Zhu, Y. Spatially explicit evaluation and driving factor identification of land use conflict in Yangtze river economic belt. Land 2021, 10, 43. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Ming, H.; Hu, Y.; Chen, J.; Zhao, B. Past land use decisions and socioeconomic factors influence urban greenbelt development: A case study of Shanghai, China. Landsc. Ecol. 2014, 29, 1759–1770. [Google Scholar] [CrossRef]
- Lai, Y.; Chen, K.; Zhang, J.; Liu, F. Transformation of industrial land in urban renewal in Shenzhen, China. Land 2020, 9, 371. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Kong, X.; Wang, R.; Chen, L. Identifying the relationship between urban land expansion and human activities in the Yangtze River Economic Belt, China. Appl. Geogr. 2018, 94, 163–177. [Google Scholar] [CrossRef]
- Gu, C.; Mu, X.; Gao, P.; Zhao, G.; Sun, W.; Yu, Q. Rainfall erosivity and sediment load over the Poyang Lake Basin under variable climate and human activities since the 1960s. Theor. Appl. Climatol. 2019, 136, 15–30. [Google Scholar] [CrossRef]
- Lv, F.; Deng, L.; Zhang, Z.; Wang, Z.; Wu, Q.; Qiao, J. Multiscale analysis of factors affecting food security in china, 1980–2017. Environ. Sci. Pollut. Res. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Fu, J.; Jiang, D. Production—Living—Ecological Conflict Identification Using a Multiscale Integration Model Based on Spatial Suitability Analysis and Sustainable Development Evaluation: A Case Study of Ningbo, China. Land 2021, 10, 383. [Google Scholar] [CrossRef]
- Huang, S.; Zheng, X.; Ma, L.; Wang, H.; Huang, Q.; Leng, G.; Guo, Y. Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. J. Hydrol. 2020, 584, 124687. [Google Scholar] [CrossRef]
- Sebastian, G.; Krishnaswamy, D.; Nemani, G. Multi-scale association between vegetation growth and climate in India: A wavelet analysis approach. Remote. Sens. 2019, 11, 2703. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.; Wei, J.; Qiu, J.; Li, Q.; Wang, G. Identification of the impact of climate change and human activities on rainfall-runoff relationship variation in the Three–River Headwaters region. Ecol. Indic. 2019, 106, 105516. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Liu, Y.; Tian, L. Identifying the urban-rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China. Environ. Model. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Zhu, W.; Gao, Y.; Zhang, H.; Liu, L. Optimization of the land use pattern in Horqin sandy land by using the CLU Mondo model and Bayesian belief network. Sci. Total. Environ. 2020, 739, 139929. [Google Scholar] [CrossRef]
- Chen, P.; Nie, T.; Chen, S.; Zhang, Z.; Qi, Z.; Liu, W. Recovery efficiency and loss of 15N-labelled urea in a rice–soil system under water saving irrigation in the Songnen Plain of Northeast China. Agric. Water Manag. 2019, 222, 139–153. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y.; Chen, S.; Xu, S.; Zhang, H. Soil loss and conservation in the black soil region of Northeast China: A retrospective study. Environ. Sci. Policy 2010, 13, 793–800. [Google Scholar] [CrossRef]
- Song, G.; Wang, Y. Study on spatial scale recognition and its relationships of land use pattern in Songnen high plain. China Land Sci. 2017, 31, 88–96. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, L.; Deng, X.; Seto, K. The impact of urban expansion on agricultural land use intensity in China. Land Use Policy 2013, 35, 33–39. [Google Scholar] [CrossRef]
- Fleming, C.; Fagan, W.; Mueller, T.; Olson, K.; Leimgruber, P.; Calabrese, J. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 2015, 96, 1182–1188. [Google Scholar] [CrossRef] [Green Version]
- Vazifehkhah, S.; Kahya, E. Hydrological and agricultural droughts assessment in a semi-arid basin: Inspecting the teleconnections of climate indices on a catchment scale. Agric. Water Manag. 2019, 217, 413–425. [Google Scholar] [CrossRef]
- She, D.; Fei, Y.; Chen, Q.; Timm, L. Spatial scaling of soil salinity indices along a temporal coastal reclamation area transect in China using wavelet analysis. Arch. Agron. Soil Sci. 2016, 62, 1625–1639. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, P.; Wei, H. Improved mapping and understanding of desert vegetation-habitat complexes from intraannual series of spectral endmember space using cross-wavelet transform and logistic regression. Remote. Sens. Environ. 2020, 236, 111516. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Cambardella, C.; Moorman, T.; Parkin, T. Field scale variability of soil properties in central low a soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Goumas, S.; Zervakis, M.; Stavrakakis, G. Classification of washing machines vibration signals using discrete wavelet analysis for feature extraction. IEEE Trans. Instrum. Meas. 2002, 51, 497–508. [Google Scholar] [CrossRef]
- Estrada, V.; Torres, R.; Toral, C. A study of wavelet analysis and data extraction from second-order self-similar time series. Math. Probl. Eng. 2013, 2013, 102834. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Xu, Y.; Huang, A.; Liu, Y.; Wang, H.; Lu, L.; Sun, P.; Zheng, W. Spatial identification of land use multifunctionality at grid scale in farming-pastoral area: A case study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sandoval, J.; Maimaitiyiming, M. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 161–174. [Google Scholar] [CrossRef]
- Wang, R.; Feng, Y.; Tong, X.; Zhao, J.; Zhai, S. Impacts of spatial scale on the delineation of spatiotemporal urban expansion. Ecol. Indic. 2021, 129, 107896. [Google Scholar] [CrossRef]
- Li, J.; Sun, Z. Urban function orientation based on spatiotemporal differences and driving factors of urban construction land. J. Urban Plan. Dev. 2020, 146, 05020011. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhu, G.; Zhou, H.; Yan, H.; Xue, P. Land Use/Land Cover Changes and Their Driving Factors in the Northeastern Tibetan Plateau Based on Geographical Detectors and Google Earth Engine: A Case Study in Gannan Prefecture. Remote Sens. 2020, 12, 3139. [Google Scholar] [CrossRef]
- Hui, E.; Wu, Y.; Deng, L.; Zheng, B. Analysis on coupling relationship of urban scale and intensive use of land in China. Cities 2015, 42, 63–69. [Google Scholar] [CrossRef]
- Gong, Y.; Li, J.; Li, Y. Spatiotemporal characteristics and driving mechanisms of arable land in the Beijing-Tianjin-Hebei region during 1990–2015. Socio-Econ. Plan. Sci. 2020, 70, 100720. [Google Scholar] [CrossRef]
- Wang, F.; Yuan, X.; Xie, X. Dynamic change of land use/land cover patterns and driving factors of Nansihu Lake Basin in Shandong Province, China. Environ. Earth Sci. 2021, 80, 180. [Google Scholar] [CrossRef]
- Na, X.; Zang, S.; Zhang, N.; Cui, J. Impact of land use and land cover dynamics on Zhalong wetland reserve ecosystem, Heilongjiang Province, China. Int. J. Environ. Sci. Technol. 2015, 12, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Song, G.; Lu, S. Study on the ecological protection redline (EPR) demarcation process and the ecosystem service value (ESV) of the EPR zone: A case study on the city of Qiqihaer in China. Ecol. Indic. 2020, 109, 105754. [Google Scholar] [CrossRef]
- Zhu, G.; Tang, Z.; Shangguan, Z.; Peng, C.; Deng, L. Factors affecting the spatial and temporal variations in soil erodibility of China. J. Geophys. Res. Earth Surf. 2019, 124, 737–749. [Google Scholar] [CrossRef]
- Song, G.; Wang, Y. Spatial and temporal distribution of land use pattern change in Songnen high plain. Trans. Chin. Soc. Agric. Eng. Trans. CSAE 2016, 32, 225–233. (In Chinese) [Google Scholar] [CrossRef]
- Adnan, M.; Abdullah, A.; Dewan, A.; Hall, J. The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy 2020, 99, 104868. [Google Scholar] [CrossRef]
Years | Model | C | C0 | C0/(C0 + C) | Error |
---|---|---|---|---|---|
1991 | Gaussian | 0.0124 | 0.0407 | 0.7662 | 0.9567 |
2005 | Gaussian | 0.0165 | 0.0389 | 0.7027 | 0.9763 |
2019 | Gaussian | 0.0173 | 0.0377 | 0.6855 | 0.9517 |
Factors | Years | Interaction Grid Scales | |||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | ||
Population | 1991 | 1984–10,591 | 21,181–47,644 | / | / |
2005 | 1983–5008 | 7486–35,120 | / | / | |
2019 | 1574–5595 | 7913–13,208 | 13,694–32,094 | 47,548–65,992 | |
GDP | 1991 | 2978–4758 | 18,820–53,975 | / | / |
2005 | 1574–2629 | 7486–11,259 | 14,136–18,820 | 4400–37,641 | |
2019 | 1984–5008 | 10,226–29,738 | / | / | |
Land use intensity | 1991 | 11,911–17,805 | 20,032–37,122 | / | / |
2005 | 2798–16,962 | 19,992–36,358 | / | / | |
2019 | 2805–6295 | 7082–35,858 | / | / |
Factors | Population | GDP | Land Use Intensity | ||||
---|---|---|---|---|---|---|---|
Years | Positive (+) | Negative (−) | Positive (+) | Negative (−) | Positive (+) | Negative (−) | |
1991 | 55,110–81,930 | 38,190–161,000 | 56,490–93,420 | 152,250–161,900 | 18,450–25,290 | 39,240–164,500 | |
/ | / | / | 111,500–148,900 | 56,760–66,900 | 161,280–182,100 | ||
/ | / | / | 41,160–158,280 | / | / | ||
2005 | 66,600–84,120 | 5310–35,700 | 67,340–95,340 | 6420–25,020 | / | 8610–45,670 | |
/ | / | / | 121,600–142,400 | / | 122,160–137,800 | ||
/ | / | / | 106,600–174,150 | / | 122,600–182,200 | ||
/ | / | / | / | / | 110,130–163,740 | ||
2019 | 89,880–113,400 | 12,3540–13,9100 | 93,990–105,200 | 11,070–27,480 | 54,570–63,330 | 6420–41,700 | |
93,690–108,200 | 13,4460–15,4710 | 73,440–85,230 | 22,830–43,080 | / | 26,670–44,190 | ||
/ | / | 163,740–176,600 | 109,560–126,810 | / | 117,500–134,800 | ||
/ | / | / | 110,500–127,400 | / | 117,000–180,990 | ||
/ | / | / | 135,000–159,400 | / | 109,020–159,100 |
Land Use Types | CS and Numbers | Dry Land | Paddy Field | Forest Land | Grass-land | Construction Land | Water Area | Other Land | LUPs | |
---|---|---|---|---|---|---|---|---|---|---|
Factors | ||||||||||
Population | 1991 | CS | 0.8236 | 0.8166 | 0.8046 | 0.8367 | 0.8026 | 0.8169 | 0.8358 | 0.8213 |
Numbers | 37617 | 3944 | 9145 | 1545 | 3757 | 1225 | 3772 | 61,005 | ||
2005 | CS | 0.8256 | 0.7948 | 0.7878 | 0.8010 | 0.8227 | 0.8049 | 0.8163 | 0.8198 | |
Numbers | 30360 | 2919 | 9860 | 1610 | 3265 | 1249 | 3178 | 52,461 | ||
2019 | CS | 0.8148 | 0.8269 | 0.7922 | 0.8245 | 0.8196 | 0.8184 | 0.8324 | 0.8133 | |
Numbers | 30859 | 7495 | 7902 | 834 | 3697 | 1015 | 3005 | 54807 | ||
GDP | 1991 | CS | 0.8101 | 0.8022 | 0.7955 | 0.7827 | 0.8248 | 0.8122 | 0.8123 | 0.8139 |
Numbers | 49,527 | 5507 | 16,875 | 2276 | 4642 | 2082 | 6349 | 87,258 | ||
2005 | CS | 0.8103 | 0.8142 | 0.7652 | 0.7916 | 0.8121 | 0.7913 | 0.7022 | 0.8060 | |
Numbers | 49536 | 5513 | 16,592 | 2316 | 4582 | 1163 | 6515 | 87,366 | ||
2019 | CS | 0.7989 | 0.7936 | 0.8006 | 0.8072 | 0.8084 | 0.7877 | 0.8021 | 0.8024 | |
Numbers | 49,517 | 5533 | 16,802 | 2279 | 4613 | 2011 | 6473 | 87,391 | ||
Land use intensity | 1991 | CS | 0.8094 | 0.8045 | 0.8025 | 0.7992 | 0.8172 | 0.8133 | 0.8261 | 0.8168 |
Numbers | 53,353 | 6946 | 20,119 | 3720 | 5488 | 2511 | 7334 | 99,471 | ||
2005 | CS | 0.8193 | 0.7913 | 0.8012 | 0.8055 | 0.8198 | 0.7895 | 0.8037 | 0.8181 | |
Numbers | 49,133 | 73141 | 19,811 | 2598 | 6312 | 2347 | 5581 | 97,986 | ||
2019 | CS | 0.8376 | 0.8231 | 0.8360 | 0.8377 | 0.8362 | 0.8326 | 0.8365 | 0.8340 | |
Numbers | 48,764 | 12,953 | 18,941 | 1549 | 7325 | 2252 | 4871 | 96,655 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Song, G.; Li, W. The Interaction Relationship between Land Use Patterns and Socioeconomic Factors Based on Wavelet Analysis: A Case Study of the Black Soil Region of Northeast China. Land 2021, 10, 1237. https://doi.org/10.3390/land10111237
Wang Y, Song G, Li W. The Interaction Relationship between Land Use Patterns and Socioeconomic Factors Based on Wavelet Analysis: A Case Study of the Black Soil Region of Northeast China. Land. 2021; 10(11):1237. https://doi.org/10.3390/land10111237
Chicago/Turabian StyleWang, Yue, Ge Song, and Wenying Li. 2021. "The Interaction Relationship between Land Use Patterns and Socioeconomic Factors Based on Wavelet Analysis: A Case Study of the Black Soil Region of Northeast China" Land 10, no. 11: 1237. https://doi.org/10.3390/land10111237
APA StyleWang, Y., Song, G., & Li, W. (2021). The Interaction Relationship between Land Use Patterns and Socioeconomic Factors Based on Wavelet Analysis: A Case Study of the Black Soil Region of Northeast China. Land, 10(11), 1237. https://doi.org/10.3390/land10111237