Addressing Social Inequality and Improper Water Distribution in Cities: A Case Study of Karachi, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Asymmetric Nash Bargaining Solution
- The allocation of water to each district should be more than or equal to its lower core bound (Equation (10)):
- The water allocation to each district should be more than its lower core bound and less than its claim (Equation (11))
- The total water allocation for all the districts should be equal to or less than the total available water (Equation (12)):
2.2. Water Allocation Using of Nash Bargaining Theory
3. Case Study
3.1. Description of the Study Area
3.2. Water Sources and Its Availability in Karachi and Current Water Distribution
3.3. Current Domestic Water Requirements for Karachi City and Water Deficit
3.4. Proposed Scenarios
3.4.1. Scenario-1: Total Water Availability = 650 MGD and Water Requirement @ 54 GPCD
3.4.2. Scenario-2: Total Water Availability = 650 MGD and Water Requirement @ 30 GPCD
3.4.3. Scenario-3: Total Water Availability = 422.5 MGD and Water Requirement @ 54 GPCD
3.4.4. Scenario-4: Total Water Availability = 422.5 MGD and Water Requirement @ 30 GPCD
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO/UNICEF. Progress on Drinking Water and Sanitation; 2012 update (MDG Assessment Report); Joint Monitoring Programme for Water Supply and Sanitation: New York, NY, USA, 2012. [Google Scholar]
- Kempin Reuter, T. Human rights and the city: Including marginalized communities in urban development and smart cities. J. Hum. Rights 2019, 18, 382–402. [Google Scholar] [CrossRef]
- Bertule, M.; Glennie, P.; Koefoed Bjørnsen, P.; James Lloyd, G.; Kjellen, M.; Dalton, J.; Rieu-Clarke, A.; Romano, O.; Tropp, H.; Newton, J.; et al. Monitoring water resources governance progress globally: Experiences from monitoring SDG indicator 6.5.1 on integrated water resources management implementation. Water 2018, 10, 1744. [Google Scholar] [CrossRef] [Green Version]
- Satur, P.A. Social Inequality and Water Sensitive Cities in Australia. Ph.D. Dissertation, Monash University, Melbourne, Australia, 2017. [Google Scholar]
- Franceys, R.; Gerlach, E. Regulating Water and Sanitation for the Poor: Economic Regulation for Public and Private Partnerships; Routledge: London, UK, 2012. [Google Scholar]
- Fonjong, L.; Fokum, V. Water Crisis and Options for Effective Water Provision in Urban and Peri-Urban Areas in Cameroon. Soc. Nat. Resour. 2017, 30, 488–505. [Google Scholar] [CrossRef]
- Castro, J. Socio-technical solutions for the provision of safe water and sanitation services in vulnerable communities: A synthesis. Waterlat-Gobacit Netw. Work. Pap. 2016, 2, 7–39. [Google Scholar]
- Tan, Y.; Liu, X. Water shortage and inequality in arid Minqin oasis of northwest China: Adaptive policies and farmers’ perceptions. Local Environ. 2017, 22, 934–951. [Google Scholar] [CrossRef]
- Darrel Jenerette, G.; Harlan, S.L.; Stefanov, W.L.; Martin, C.A. Ecosystem services and urban heat riskscape moderation: Water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl. 2011, 21, 2637–2651. [Google Scholar] [CrossRef]
- Greene, C.S.; Robinson, P.J.; Millward, A.A. Canopy of advantage: Who benefits most from city trees? J. Environ. Manag. 2018, 208, 24–35. [Google Scholar] [CrossRef]
- Sovacool, B.K. Fuel poverty, affordability, and energy justice in England: Policy insights from the Warm Front Program. Energy 2015, 93, 361–371. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Athari, E.; Fallah-Mehdipour, E.; Loáiciga, H.A. Real-time water allocation policies calculated with bankruptcy games and genetic programing. Water Sci. Technol. Water Supply 2018, 18, 430–449. [Google Scholar] [CrossRef]
- Van Der Zaag, P.; Seyam, I.M.; Savenije, H.H.G. Towards measurable criteria for the equitable sharing of international water resources. Water Policy 2002, 4, 19–32. [Google Scholar] [CrossRef]
- Yu, S.; Lu, H. An integrated model of water resources optimization allocation based on projection pursuit model—Grey wolf optimization method in a transboundary river basin. J. Hydrol. 2018, 559, 156–165. [Google Scholar] [CrossRef]
- Iranshahi, M.; Marofi, S.; Nasiri-Gheidari, O. Application of the Asymmetric Nash Bargaining Method to Optimal Allocation of Shared Water Resources under Water Bankruptcy Condition. J. Water Sustain. Develop. 2021, 7, 21–30. [Google Scholar]
- Sgobbi, A. A Stochastic Multiple Players Multi-Issues Bargaining Model for the Piave River Basin. Strateg. Behav. Environ. 2011, 1, 119–150. [Google Scholar] [CrossRef] [Green Version]
- Degefu, D.M.; He, W. Allocating Water under Bankruptcy Scenario. Water Resour. Manag. 2016, 30, 3949–3964. [Google Scholar] [CrossRef]
- Degefu, D.M.; He, W.; Yuan, L.; Min, A.; Zhang, Q. Bankruptcy to Surplus: Sharing Transboundary River Basin’s Water under Scarcity. Water Resour. Manag. 2018, 32, 2735–2751. [Google Scholar] [CrossRef]
- Degefu, D.M.; He, W.; Yuan, L.; Zhao, J.H. Water Allocation in Transboundary River Basins under Water Scarcity: A Cooperative Bargaining Approach. Water Resour. Manag. 2016, 30, 4451–4466. [Google Scholar] [CrossRef]
- Qin, J.; Fu, X.; Peng, S.; Xu, Y.; Huang, J.; Huang, S. Asymmetric Bargaining Model for Water Resource Allocation over Transboundary Rivers. Int. J. Environ. Res. Public Health 2019, 16, 1733. [Google Scholar] [CrossRef] [Green Version]
- Mehta, L. Taking the scare out of scarcity: The case of water 1. In Global Resource Scarcity; Routledge: New York, NY, USA, 2017; pp. 1–210. [Google Scholar]
- Webb, P.; Flynn, D.J.; Kelly, N.M.; Thomas, S.M.; Benton, T.G. Water for Food Systems and Nutrition. Food Syst. Summit Brief. 2021, 1–22. [Google Scholar]
- Antonelli, M.; Siciliano, G.; Turvani, M.E.; Rulli, M.C. Global investments in agricultural land and the role of the EU: Drivers, scope and potential impacts. Land Use Policy 2015, 47, 98–111. [Google Scholar] [CrossRef]
- Hussein, H. Lifting the veil: Unpacking the discourse of water scarcity in Jordan. Environ. Sci. Policy 2018, 89, 385–392. [Google Scholar] [CrossRef]
- Hussein, H. Yarmouk, Jordan, and Disi basins: Examining the impact of the discourse of water scarcity in Jordan on transboundary water governance. Mediterr. Polit. 2019, 24, 269–289. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H. An Analysis of the Discourse of Water Scarcity and Hydropolitical Dynamics in the Case of Jordan. Ph.D. Thesis, University of East Anglia, Norwich, UK, 2016. [Google Scholar]
- Grigg, N.; Foran, T.; Darbas, T.; Kirby, M.; Colloff, M.J.; Ahmad, M.U.; Podger, G. The water-food-energy nexus in Pakistan: A biophysical and socio-economic challenge. Proc. Int. Assoc. Hydrol. Sci. 2018, 376, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.V. Energy–Water–Food Nexus and Recommendations for Security. J. Energy Resour. Technol. 2015, 137, 2014–2017. [Google Scholar] [CrossRef]
- Artioli, F.; Acuto, M.; McArthur, J. The water-energy-food nexus: An integration agenda and implications for urban governance. Polit. Geogr. 2017, 61, 215–223. [Google Scholar] [CrossRef]
- UN. World Urbanization Prospects 2018. Available online: www.un.org/development/desa/en/news/population/2018-revision-of-worldurbanization-prospects.html (accessed on 1 August 2021).
- White, D.D.; Wutich, A.Y.; Larson, K.L.; Lant, T. Water management decision makers’ evaluations of uncertainty in a decision support system: The case of WaterSim in the Decision Theater. J. Environ. Plan. Manag. 2015, 58, 616–630. [Google Scholar] [CrossRef]
- Fallah-Mehdipour, E.; Haddad, O.B.; Mariño, M.A. Extraction of Optimal Operation Rules in an Aquifer-Dam System: Genetic Programming Approach. J. Irrig. Drain. Eng. 2013, 139, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Solgi, M.; Bozorg-Haddad, O.; Loáiciga, H.A. The Enhanced Honey-Bee Mating Optimization Algorithm for Water Resources Optimization. Water Resour. Manag. 2017, 31, 885–901. [Google Scholar] [CrossRef]
- Farhadian, M.; Haddad, O.B.; Seifollahi-Aghmiuni, S.; Loáiciga, H.A. Assimilative Capacity and Flow Dilution for Water Quality Protection in Rivers. J. Hazard. Toxic Radioact. Waste 2015, 19, 04014027. [Google Scholar] [CrossRef] [Green Version]
- Roozbahani, R.; Schreider, S.; Abbasi, B. Optimal water allocation through a multi-objective compromise between environmental, social, and economic preferences. Environ. Model. Softw. 2015, 64, 18–30. [Google Scholar] [CrossRef]
- Habibi Davijani, M.; Banihabib, M.E.; Nadjafzadeh Anvar, A.; Hashemi, S.R. Optimization model for the allocation of water resources based on the maximization of employment in the agriculture and industry sectors. J. Hydrol. 2016, 533, 430–438. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, J.Y.; Shahid, S.; Guan, E.H.; Wu, Y.X.; Gao, J.; He, R.M. Adaptation to climate change impacts on water demand. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 81–99. [Google Scholar] [CrossRef]
- Engel, K.; Jokiel, D.; Kraljevic, A.; Geiger, M.; Smith, K. Big Cities. Big Water. Big Challenges. Water in an Urbanizing World; World Wildlife Fund: Koberich, Germany, 2011. [Google Scholar]
- The New Humanitarian. Karachi Water Shortage. 2002. Available online: https://www.thenewhumanitarian.org/news/2002/01/16/karachi-water-shortage (accessed on 1 September 2021).
- Hassan, S. JI stages protest sit-in at KWSB office over water shortage in Karachi. Dawn. 9 November 2021. Available online: https://epaper.dawn.com/DetailImage.php?StoryImage=09_09_2021_113_004 (accessed on 1 October 2021).
- Safari, N.; Zarghami, M.; Szidarovszky, F. Nash bargaining and leader-follower models in water allocation: Application to the Zarrinehrud River basin, Iran. Appl. Math. Model. 2014, 38, 1959–1968. [Google Scholar] [CrossRef]
- Houba, H. Asymmetric Nash Solutions in the River Sharing Problem. 2013. Available online: https://ideas.repec.org/p/tin/wpaper/20130051.html (accessed on 1 September 2021).
- Harsanyi, J.C. A simplified bargaining model for the n-person cooperative game. In Papers in Game Theory; Springer: Dordrecht, The Netherlands, 1982; pp. 44–70. [Google Scholar]
- Dinar, A.; Rosegrant, M.W.; Meinzen-Dick, R.S. Water Allocation Mechanisms: Principles and Examples (No. 1779); World Bank Publications: New York, NY, USA, 1997. [Google Scholar]
- Roa-García, M.C. Equity, efficiency and sustainability in water allocation in the andes: Trade-offs in a full world. Water Altern. 2014, 7, 298–319. [Google Scholar]
- Irfan, M.; Kazmi, S.J.H.; Arsalan, M.H. Sustainable harnessing of the surface water resources for Karachi: A geographic review. Arab. J. Geosci. 2018, 11, 24. [Google Scholar] [CrossRef]
- Fazal, O.; Hotez, P.J. Ntds in the age of urbanization, climate change, and conflict: Karachi, Pakistan as a case study. PLoS Negl. Trop. Dis. 2020, 14, e0008791. [Google Scholar] [CrossRef]
- Rahman, P. Water Supply in Karachi: Situation/Issues, Priority Issues, and Solutions; Orangi Pilot Project-Research and Training Institute: Karachi, Pakistan, 2008. [Google Scholar]
- Ihsanullah. Evaluation and Prospects of Scientific Management of Water Resources in Karachi City: A GIS Perspective. 2009. Available online: https://agris.fao.org/agris-search/search.do?recordID=AV2012059913 (accessed on 1 October 2021).
- WWF. Situational Analysis of Water Resources in Karachi; WWF: Karachi, Pakistan, 2019; pp. 1–59. [Google Scholar]
District | Population Density | Bargaining Weight |
---|---|---|
Karachi Central | 43,064 | 0.40 |
Karachi East | 20,686 | 0.19 |
Karachi South | 14,502 | 0.14 |
Karachi West | 4206 | 0.04 |
Korangi | 23,866 | 0.22 |
Malir | 891 | 0.01 |
Name of Division | Status | Population as per Latest Census | Water Requirement @ 54 GPCD (In MGD) | Water Requirement @ 30 GPCD (In MGD) |
---|---|---|---|---|
Karachi Central | District | 2,971,382 | 161 | 89 |
Karachi East | District | 2,875,315 | 155 | 86 |
Karachi South | District | 1,769,230 | 96 | 53 |
Karachi West | District | 3,907,065 | 211 | 117 |
Korangi | District | 2,577,556 | 139 | 77 |
Malir | District | 1,924,346 | 104 | 58 |
Total | Division | 16,024,894 | 866 | 480 |
Sr. No | Town | Water Requirement (Million Gallon per Day) (MGD) | Actual Received | |
---|---|---|---|---|
(MGD) | % Quota | |||
1 | Lyari | 14 | 12 | 85 |
2 | Saddar | 32 | 30 | 93 |
3 | Kemari | 10 | 8 | 80 |
4 | Jamshed | 30 | 14 | 46 |
5 | Gulshan | 35 | 20 | 57 |
6 | Shah Faisal | 12 | 9 | 75 |
7 | Malir | 20 | 12 | 60 |
8 | Landhi | 16 | 20 | 125 |
9 | Korangi | 24 | 21 | 87 |
10 | Bin Qasim | 14 | 14 | 100 |
11 | Gulberg | 22 | 17 | 77 |
12 | North Nazimabad | 20 | 14 | 70 |
13 | Liaqatabad | 18 | 18 | 100 |
14 | North Karachi | 35 | 20 | 57 |
15 | Orangi | 40 | 12 | 30 |
16 | Baldia | 20 | 8 | 40 |
17 | Site | 18 | 10 | 55 |
18 | Gadap | 8 | 3 | 37 |
19 | Cantonment | 22 | 22 | 100 |
20 | DHA | 6 | 9 | 133 |
Total | 416 | 293 |
Reference Scenarios | Water Availability (MGD) | Water Requirements (MGD) | Shortfall (Total) (MGD) | |
---|---|---|---|---|
Scenario-1 | 650 MGD | Karachi Central (KC) Karachi East (KE) Karachi South (KS) Karachi West (KW) Korangi (KoR) Malir (ML) Total | = 161 = 155 = 96 = 211 = 139 = 104 = 866 | 226 |
Scenario-2 | 650 MGD | Karachi Central (KC) Karachi East (KE) Karachi South (KS) Karachi West (KW) Korangi (KoR) Malir (ML) Total | = 89 = 86 = 53 = 117 = 77 = 58 = 480 | No Shortfall |
Scenario-3 | 422.5 MGD | Karachi Central (KC) Karachi East (KE) Karachi South (KS) Karachi West (KW) Korangi (KoR) Malir (ML) Total | = 161 = 155 = 96 = 211 = 139 = 104 = 866 | 443.5 |
Scenario-4 | 422.5 MDG | Karachi Central (KC) Karachi East (KE) Karachi South (KS) Karachi West (KW) Korangi (KoR) Malir (ML) Total | = 89 = 86 = 53 = 117 = 77 = 58 = 480 | 57.5 |
Total Water Availability: 650 MG Total Water Availability after Losses: 422.5 MGD | ||||
---|---|---|---|---|
Name of Division | Water Requirement @ 54 GPCD (In MGD) | Water Requirement @ 30 GPCD (In MGD) | Minimum Water Requirement for 54 GPCD (40 % of Claim) | Minimum Water Requirement for 30 GPCD (40 % of Claim) |
Karachi Central | 161 | 89 | 64 | 36 |
Karachi East | 155 | 86 | 62 | 34 |
Karachi South | 96 | 53 | 38 | 15 |
Karachi West | 211 | 117 | 84 | 34 |
Korangi | 139 | 77 | 56 | 22 |
Malir | 104 | 58 | 42 | 17 |
Total | 866 | 480 |
Scenarios | District | Allocation (Using Equal Weights) | Allocation (Using Bargaining Weights) | Allocation as Percentage of the claim (Using Equal Weights) | Allocation as Percentage of the Claim (Using Bargaining Weights) |
---|---|---|---|---|---|
Scenario 1 | Karachi Central | 115 | 161 | 71% | 100% |
Karachi East | 113 | 136 | 73% | 88% | |
Karachi South | 89 | 90 | 93% | 94% | |
Karachi West | 135 | 99 | 64% | 47% | |
Korangi | 107 | 138 | 77% | 99% | |
Malir | 93 | 27 | 89% | 26% | |
Scenario 3 | Karachi Central | 77 | 95 | 48% | 59% |
Karachi East | 75 | 75 | 48% | 48% | |
Karachi South | 51 | 49 | 53% | 51% | |
Karachi West | 97 | 94 | 46% | 45% | |
Korangi | 69 | 74 | 50% | 53% | |
Malir | 55 | 35 | 53% | 34% | |
Scenario 4 | Karachi Central | 80 | 161 | 50% | 100% |
Karachi East | 78 | 62 | 50% | 40% | |
Karachi South | 59 | 43 | 61% | 45% | |
Karachi West | 78 | 62 | 37% | 29% | |
Korangi | 66 | 50 | 47% | 36% | |
Malir | 61 | 45 | 59% | 43% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janjua, S.; Hassan, I.; Ali, M.U.; Ibrahim, M.M.; Zafar, A.; Kim, S. Addressing Social Inequality and Improper Water Distribution in Cities: A Case Study of Karachi, Pakistan. Land 2021, 10, 1278. https://doi.org/10.3390/land10111278
Janjua S, Hassan I, Ali MU, Ibrahim MM, Zafar A, Kim S. Addressing Social Inequality and Improper Water Distribution in Cities: A Case Study of Karachi, Pakistan. Land. 2021; 10(11):1278. https://doi.org/10.3390/land10111278
Chicago/Turabian StyleJanjua, Shahmir, Ishtiaq Hassan, Muhammad Umair Ali, Malik Muhammad Ibrahim, Amad Zafar, and Sangil Kim. 2021. "Addressing Social Inequality and Improper Water Distribution in Cities: A Case Study of Karachi, Pakistan" Land 10, no. 11: 1278. https://doi.org/10.3390/land10111278
APA StyleJanjua, S., Hassan, I., Ali, M. U., Ibrahim, M. M., Zafar, A., & Kim, S. (2021). Addressing Social Inequality and Improper Water Distribution in Cities: A Case Study of Karachi, Pakistan. Land, 10(11), 1278. https://doi.org/10.3390/land10111278