Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey over 34 Years Landsat Google Earth Engine Time-Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source (Landsat5 TM, 7 ETM+, 8 OLI Data, NDVI Data, and Climate Data)
2.3. Surface Water Body Extraction
2.4. Accuracy Assessment of Extracted Surface Water Data
- (1)
- The proposed dataset uses the raw Landsat images to extract the lake borders to monitor the degradation process. To generate a base for an accuracy assessment and to avoid any statistical misrepresentation of the location of assessment points, pixel-by-pixel accuracy assessment methods were employed. By applying the pixel-by-pixel accuracy assessment method, hundreds of thousands of pixels were taken around the coastline of the lake. A rectangle was drawn over the lake area and clipped the lake area from the Sentinel satellite image. The clipped image consists of 3588 rows and 3210 columns, which lead to producing 4,035,395 pixels. These pixels were converted to points. The points were used as a base to extract the pixels values from the NDWI images. The confusion matrix was calculated again using 4,035,395 pixels.
- (2)
- Lastly, the 4,035,395 points act as ground truth points to visually interpret the non-water and water areas based on the 10 m resolution Sentinel-2. Due to the limited temporal Sentinel-2 satellite images, we searched and matched between the images of the same month and year from two datasets (Sentinel images and our produced NDWI). The matching processing is to avoid the sensitivity and seasonality problem of the water area during the accuracy comparison. The found Sentinel images were for the years 2016, 2017, 2018, and 2019 and the 8, 9, 8, 9 months, respectively.
2.5. Statistical Analysis
3. Results and Discussion
3.1. Accuracy Assessment of Surface Water Map
3.2. Spatial and Temporal Changes of Burdur Lake Area from 1984 to 2019
3.3. Descriptive Statistics of Climatological Data, Vegetation, and Temporal Area
3.4. Correlation Analysis
3.5. Factor Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GEE | Google Earth Engine |
NDWI | Normalized Difference Water Index |
NDVI | Normalized Difference Vegetation Index |
TM | Thematic Mapper |
ETM+ | Enhanced Thematic Mapper Plus |
OLI | Operational Land Imager |
TIRS | Thermal Infrared Sensor |
FA | Factor Analysis |
PCA | Principal Components Analysis |
WRS2 | World Reference System |
References
- Duran-Encalada, J.A.; Paucar-Caceres, A.; Bandala, E.R.; Wright, G.H. The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder region. Eur. J. Oper. Res. 2017, 256, 16. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.W.; Grey, D.; Garrick, D.; Fung, F.; Brown, C.; Dadson, S.J.; Sadoff, C.W. Coping with the curse of freshwater variability. Science 2014, 346, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Worden, J.; de Beurs, K.M. Surface water detection in the Caucasus. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102159. [Google Scholar] [CrossRef]
- Rickert, B.; Berg, H.V.D.; Bekure, K.; Girma, S.; Husman, A.M.D.R. Including aspects of climate change into water safety planning: Literature review of global experience and case studies from Ethiopian urban supplies. Int. J. Hyg. Environ. Health 2019, 222, 744–755. [Google Scholar] [CrossRef]
- WHO. Climate-Resilient Water Safety Plans: Managing Health Risks Associated with Climate Variability and Change; World Health Organization: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/handle/10665/258722 (accessed on 5 August 2021).
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Ulutaş, K.; Pekey, H.; Demir, S.; Dinçer, F. The Impact of Environmental Odor, near the Waste Water Treatment Plant on the Urban Life Quality. In Proceedings of the VII. Ulusal Hava Kirliliği Ve Kontrolü Sempozyumu, Antalya, Turkey, 1–3 November 2017. [Google Scholar]
- Chenoweth, J.; Hadjinicolaou, P.; Bruggeman, A.; Lelieveld, J.; Levin, Z.; Lange, M.A.; Xoplaki, E.; Hadjikakou, M. Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resour. Res. 2011, 47, W06506. [Google Scholar] [CrossRef]
- Lacirignola, C.; Capone, R.; Debs, P.; El Bilali, H.; Bottalico, F. Natural Resources – Food Nexus: Food-Related Environmental Footprints in the Mediterranean Countries. Front. Nutr. 2014, 1, 2296–861X. [Google Scholar] [CrossRef] [Green Version]
- Gorguner, M.; Kavvas, M.L. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a Mediterranean basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Yazicigil, H. Potential Impacts of Climate Change on Turkish Water Resources: A Review. Clim. Chang. Its Eff. Water Resour. 2011, 3, 105–114. [Google Scholar]
- Adaman, F.; Hakyemez, S.; Özkaynak, B. The Political Ecology of a Ramsar Site Conservation Failure: The Case of Burdur Lake, Turkey. Environ. Plan. C Gov. Policy 2009, 27, 783–800. [Google Scholar] [CrossRef]
- Varol, S.; Davraz, A. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: A case study of the Tefenni plain (Burdur/Turkey). Environ. Earth Sci. 2014, 73, 1725–1744. [Google Scholar] [CrossRef]
- Walker, J.J.; Soulard, C.E.; Petrakis, R.E. Integrating stream gage data and Landsat imagery to complete time-series of surface water extents in Central Valley, California. Int. J. Appl. Earth Obs. Geoinf. 2019, 84, 101973. [Google Scholar] [CrossRef]
- Davraz, A.; Şener, E.; Sener, S. Evaluation of climate and human effects on the hydrology and water quality of Burdur Lake, Turkey. J. Afr. Earth Sci. 2019, 158, 103569. [Google Scholar] [CrossRef]
- Liu, J.; Heiskanen, J.; Maeda, E.E.; Pellikka, P.K. Burned area detection based on Landsat time series in savannas of southern Burkina Faso. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.-P. A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Pham-Duc, B.; Prigent, C.; Aires, F. Surface Water Monitoring within Cambodia and the Vietnamese Mekong Delta over a Year, with Sentinel-1 SAR Observations. Water 2017, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Huang, Y. Advances in Artificial Neural Networks–Methodological Development and Application. Algorithms 2009, 2, 973–1007. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.; Burn, D.H. Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res. 2004, 40, W09301. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, R.; Shaharuddin, S.; Chang, C.K.; Zakaria, N.A.; Ab Ghani, A.; Chan, N.W. Prediction of water quality index in constructed wetlands using support vector machine. Environ. Sci. Pollut. Res. 2014, 22, 6208–6219. [Google Scholar] [CrossRef]
- Yoshioka, M.; Fujinaka, T.; Omatu, S. SAR image classification by support vector machine. In Image Processing for Remote Sensing; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Liong, S.-Y.; Sivapragasam, C. FLOOD STAGE FORECASTING WITH SUPPORT VECTOR MACHINES. JAWRA J. Am. Water Resour. Assoc. 2002, 38, 173–186. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping. Water Resour. Manag. 2017, 31, 2761–2775. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, Y.; Fu, L.; Liu, Q.; Peng, Q.; Kang, M. Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China. Water 2015, 7, 4427–4445. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Liu, J.; Gong, J. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier—A Case of Yuyao, China. Water 2015, 7, 1437–1455. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Wu, J.; Gao, L.; Barrett, D.; Xu, T.; Li, X.; Li, L.; Huang, C.; Yu, J. Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard. Risk Anal. 2016, 37, 756–773. [Google Scholar] [CrossRef]
- Pernkopf, F. Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Anal. Appl. 2004, 7, 333–342. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2015, 174, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Chowdary, V.; Chandran, R.V.; Neeti, N.; Bothale, R.; Srivastava, Y.; Ingle, P.; Ramakrishnan, D.; Dutta, D.; Jeyaram, A.; Sharma, J.; et al. Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agric. Water Manag. 2008, 95, 754–766. [Google Scholar] [CrossRef]
- Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Alademomi, A.S.; Okolie, C.J.; Daramola, O.E.; Agboola, R.O.; Salami, T.J. Assessing the Relationship of LST, NDVI and EVI with Land Cover Changes in the Lagos Lagoon Environment. Quaest. Geogr. 2020, 39, 87–109. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Ben Abbes, A.; Rhif, M.; Pagiatakis, S.D.; Farah, I.R. Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software. Int. J. Remote Sens. 2019, 41, 2374–2390. [Google Scholar] [CrossRef]
- Nanzad, L.; Zhang, J.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. J. Arid. Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- Gupta, S.K.; Pandey, A.C. Spectral aspects for monitoring forest health in extreme season using multispectral imagery. Egypt. J. Remote Sens. Space Sci. 2021, in press. [Google Scholar] [CrossRef]
- Ali, M.I.; Dirawan, G.D.; Hasim, A.H.; Abidin, M.R. Detection of Changes in Surface Water Bodies Urban Area with NDWI and MNDWI Methods. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 946. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jia, Y.; Yao, Y.; Xu, D. Accuracy Assessment of Land Use Classification Using Support Vector Machine and Neural Network for Coal Mining Area of Hegang City, China. Nat. Environ. Pollut. Technol. 2019, 18, 335–341. [Google Scholar]
- Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2017, 11, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Popkin, G. Technology and satellite companies open up a world of data. Nature 2018, 557, 745–747. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Thieme, A.; Yadav, S.; Oddo, P.; Fitz, J.M.; McCartney, S.; King, L.; Keppler, J.; McCarty, G.W.; Hively, W.D. Using NASA Earth observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed. Remote Sens. Environ. 2020, 248, 111943. [Google Scholar] [CrossRef]
- Pan, L.; Xia, H.; Yang, J.; Niu, W.; Wang, R.; Song, H.; Guo, Y.; Qin, Y. Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102376. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Lee, J.S.H.; Wich, S.; Widayati, A.; Koh, L.P. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2016, 4, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.; Phinn, S.; Taylor, M. Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2015, 1, 36–49. [Google Scholar] [CrossRef]
- Duan, Q.; Tan, M.; Guo, Y.; Wang, X.; Xin, L. Understanding the Spatial Distribution of Urban Forests in China Using Sentinel-2 Images with Google Earth Engine. Forests 2019, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Doughty, R.; Chen, B.; Zhang, X.; Chen, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sens. Environ. 2020, 239, 111665. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, U.N.T.; Pham, L.T.H.; Dang, T.D. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environ. Monit. Assess. 2019, 191, 1–12. [Google Scholar] [CrossRef]
- Bostan, H. Türkiye’de İç Göçlerin Toplumsal Yapıda Neden Olduğu Değişimler, Meydana Getirdiği Sorunlar ve Çözüm Önerileri. J. Geogr. 2020, 1, 1–16. [Google Scholar] [CrossRef]
- Öztürk, M.; Çetinkaya, G.; Aydın, S. Climate Types of Turkey According to Köppen-Geiger Climate Classification. Istanbul Univ. J. Geogr. 2017, 2017, 17–27. [Google Scholar] [CrossRef]
- USGS. USGS Landsat 5 TM Collection 1 Tier 1 Raw Scenes. Google Earth Engine. 2021. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1 (accessed on 5 July 2021).
- USGS. USGS Landsat 7 Surface Reflectance Tier 1. Google Earth Engine. 2021. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_SR (accessed on 5 July 2021).
- USGS. USGS Landsat 8 Collection 1 Tier 1 Raw Scenes. Google Earth Engine. 2021. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1 (accessed on 5 July 2021).
- USGS. ERA5-Land Monthly Averaged-ECMWF Climate Reanalysis. Google Earth Engine. 2021. Available online: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY#description (accessed on 5 July 2021).
- USGS. MODIS Combined 16-Day NDVI. Google Earth Engine. 2021. Available online: https://developers.google.com/earth-engine/datasets/catalog/MODIS_MCD43A4_006_NDVI?hl=en (accessed on 5 July 2021).
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- NOAA. Meteorological Versus Astronomical Seasons. 2016. Available online: https://www.ncei.noaa.gov/news/meteorological-versus-astronomical-seasons (accessed on 9 September 2021).
- Stehman, S.V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 2014, 35, 4923–4939. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Alkarkhi, A.F.M.; Low, H.C. Elementary Statistics for Technologist; Penerbit Universiti Sains Malaysia: Penang, Malaysia, 2012. [Google Scholar]
- Alkarkhi, A.F.M.; Ismail, N.; Ahmed, A.; Easa, A.M. Analysis of heavy metal concentrations in sediments of selected estuaries of Malaysia—a statistical assessment. Environ. Monit. Assess. 2008, 153, 179–185. [Google Scholar] [CrossRef]
- Yusup, Y.; Alqaraghuli, W.A.A.; Alkarkhi, A.F.M. Factor analysis and back trajectory of PM and its metal constituents. Environ. Forensics 2016, 17, 319–337. [Google Scholar] [CrossRef]
- Ministry of Development, Burdur Gölü’nün Sorunları, Çözümleri, Yönetimi ve Ekonomik Potansiyeli; Ministry of Development: Burdur, Turkey, 2012.
- Gözükara, G.; Altunbaş, S.; Sarı, M. Burdur Gölü’ndeki seviye değişimi sonucunda ortaya çıkan lakustrin materyalin zamansal ve mekansal değişimi. Anadolu J. Agric. Sci. 2019, 34, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Kaya, L.G.; Yücedağ, C.; Duruşkan, Ö. Burdur Gölü Havzasının Çevresel Açıdan İrdelenmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilim. Enstitüsü Derg. 2015, 6, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Ataol, M. Burdur Gölü’nde Seviye Değişimleri. Coğrafi Bilim. Derg. 2010, 8, 77–92. [Google Scholar] [CrossRef]
- Şahin, Ş.; Beyhan, M.; Keskin, E.; Harman, B.İ. Burdur Çevresinde Yaşanan Depremler ve Çevre Sorunları. I. Burdur Sempozyumu Turk. 2004, 910–914. [Google Scholar]
Non-Water Class | Water Class | User’s Accuracy (%) | ||
---|---|---|---|---|
2016 | Non-water | 2,695,685 | 2848 | 99.9% |
water | 5464 | 1,331,398 | 99.6% | |
Producer’s Accuracy | 99.8% | 99.8% | ||
Overall Accuracy | 99.8% | |||
Cohen’s Kappa | 0.9953 | |||
2017 | Non-water | 2,739,899 | 2853 | 99.9% |
water | 4726 | 1,287,917 | 99.6% | |
Producer’s Accuracy | 99.8% | 99.8% | 99.8% | |
Overall Accuracy | 100% | |||
Cohen’s Kappa | 0.9957 | |||
2018 | Non-water | 2,754,160 | 857 | 100% |
water | 6178 | 1,274,200 | 99.5% | |
Producer’s Accuracy | 99.8% | 99.9% | ||
Overall Accuracy | 99.8 % | |||
Cohen’s Kappa | 0.9960 | |||
2019 | Non-water | 2,775,806 | 3702 | 99.9% |
water | 6957 | 1,248,930 | 99.4% | |
Producer’s Accuracy | 99.7% | 99.7% | ||
Overall Accuracy | 99.7% | |||
Cohen’s Kappa | 0.9938 |
Variables | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|
Temperature (Kelvin) | 273.440 | 300.930 | 286.860 | 8.095 |
Evaporation (m) | −0.005 | 0.000 | −0.002 | 0.002 |
Precipitation (m) | 0.000 | 0.010 | 0.002 | 0.001 |
Albedo (%) | 0.080 | 0.180 | 0.092 | 0.014 |
Radiation (J/m2) | 5,330,000 | 27100 | 16,478,000 | 6,449,530 |
Reduction (km2) | −3.840 | 3.780 | −0.142 | 0.863 |
NDVI | 0.000 | 0.000 | 0.300 | 0.058 |
Temperature | Evaporation | Precipitation | Albedo | Radiation | Reduction | NDVI | |
---|---|---|---|---|---|---|---|
Temperature | 1 | −0.925 ** | −0.629 ** | −0.307 ** | 0.871 ** | −0.311 ** | 0.047 |
Evaporation | −0.925 ** | 1 | 0.548 ** | 0.172 ** | −0.919 ** | 0.233 ** | −0.063 |
Precipitation | −0.629 ** | 0.548 ** | 1 | 0.346 ** | −0.526 ** | 0.204 ** | 0.136 * |
Albedo | −0.307 ** | 0.172 ** | 0.346 ** | 1 | −0.240 ** | 0.164 * | -0.299 ** |
Radiation | 0.871 ** | −0.919 ** | −0.526 ** | −0.240 ** | 1 | −0.183 ** | 0.260 ** |
Reduction | −0.311 ** | 0.233 ** | 0.204 ** | 0.164 * | −0.183 ** | 1 | 0.152 * |
NDVI | 0.047 | −0.063 | 0.136 * | −0.299 ** | 0.260 ** | 0.152 * | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abujayyab, S.K.M.; Almotairi, K.H.; Alswaitti, M.; Amr, S.S.A.; Alkarkhi, A.F.M.; Taşoğlu, E.; Hussein, A.M. Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey over 34 Years Landsat Google Earth Engine Time-Series. Land 2021, 10, 1301. https://doi.org/10.3390/land10121301
Abujayyab SKM, Almotairi KH, Alswaitti M, Amr SSA, Alkarkhi AFM, Taşoğlu E, Hussein AM. Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey over 34 Years Landsat Google Earth Engine Time-Series. Land. 2021; 10(12):1301. https://doi.org/10.3390/land10121301
Chicago/Turabian StyleAbujayyab, Sohaib K. M., Khaled H. Almotairi, Mohammed Alswaitti, Salem S. Abu Amr, Abbas F. M. Alkarkhi, Enes Taşoğlu, and Ahmad MohdAziz Hussein. 2021. "Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey over 34 Years Landsat Google Earth Engine Time-Series" Land 10, no. 12: 1301. https://doi.org/10.3390/land10121301
APA StyleAbujayyab, S. K. M., Almotairi, K. H., Alswaitti, M., Amr, S. S. A., Alkarkhi, A. F. M., Taşoğlu, E., & Hussein, A. M. (2021). Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey over 34 Years Landsat Google Earth Engine Time-Series. Land, 10(12), 1301. https://doi.org/10.3390/land10121301