Forest Recreational Services in the Face of COVID-19 Pandemic Stress
Abstract
:1. Introduction
2. The Impact of Urban Forest on Urban Environment and Quality of Life
3. Materials and Methods
- -
- How can the forest environment affect human physical and mental health (especially important during the COVID-19 pandemic)?
- -
- What factors determine favorable recreational conditions in the forest?
- -
- What are the dynamics of visiting an urban forest?
- -
- Is there a relationship between attendance and external factors (season, holidays, COVID-19 pandemic)?
4. Field Research
5. Results of Field Research
6. Discussion and Conclusions
- It was found that the peak visits are at the turn of April and May (after winter)-regardless of external factors. In other words, the city forest is always needed for relaxation, and its proximity to the city makes it an attractive place, especially for short-term rest.
- Regardless of the COVID-19 pandemic, the peak of visits to the city forest falls in the following years at the turn of April and May (after winter) and remains within similar quantitative limits. In other words, the city forest is now always needed for the recreation of city people-people want to be among the greenery regardless of the pandemic.
- Urban society always needs contact with nature after winter in the first spring days. It is at the turn of April and May that the forest has the highest share of users. Hence, the organization of tourism and mass events is advisable in the spring. It is the best time to organize outdoor events: excursions, walks, picnics, festivals, etc. Thus, it is valuable information for the managers of the area and organizers of tourism and collective events.
- The most substantial need to improve health in Central Europe occurs in spring, after winter, when society is generally weakened and needs to be strengthened through contact with nature. The obtained results show that the human population intuitively seeks and finds ways to improve its health through recreation in the urban forest.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Galea, S.R.; Merchant, M.; Lurie, N. The mental health consequences of COVID-19 and physical distancing: The need for prevention and early intervention. JAMA Intern. Med. 2020, 180, 817–818. [Google Scholar] [CrossRef] [Green Version]
- Geng, D.C.; Innes, J.; Wu, W.; Wang, G. Impacts of COVID-19 pandemic on urban park visitation: A global analysis. J. For. Res. 2021, 32, 553–567. [Google Scholar] [CrossRef] [PubMed]
- World Health Assembly. Global Burden of Mental Disorders and the Need for a Comprehensive, Coordinated Response from Health and Social Sectors at the Country Level: Report by the Secretariat. World Health Organization 2012. Available online: https://apps.who.int/iris/handle/10665/78898 (accessed on 1 April 2021).
- Soga, M.; Evans, M.J.; Tsuchiya, K.; Fukano, Y. A room with a green view: The importance of nearby nature for mental health during the COVID-19 pandemic. Ecol. Appl. 2020, 31, e2248. [Google Scholar] [CrossRef]
- Bamwesigye, D. Forest ecosystems services in the face of COVID-19 pandemic stress. In Conference Proceedings, Proceedings of the Public Recreation and Landscape Protection—With Sense Hand in Hand, Brno, Czech Republic, 10–11 May 2021; Mendelova univerzita v Brně: Brno, Czech Republic, 2021; pp. 209–213. ISBN 978-80-7509-779-8. Available online: http://www.cski-cr.cz/wp-content/uploads/2021/01/RaOP-2021_sbornik.pdf (accessed on 6 December 2021).
- Sainz-Santamaria, J.; Martinez-Cruz, A.L. Governance of urban green spaces across Latin America-Insights from semi-structured interviews to managers amid COVID-19. SSRN Electron. J. 2021, 3, 2285. [Google Scholar] [CrossRef]
- Karlinsky, A.; Kobak, D. Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset. Elife 2021, 10, e69336. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Bhattacharya, S.; Purkayastha, S.; Kundu, R.; Bhaduri, R.; Ghosh, P.; Mukherjee, B. SARS-CoV-2 infection fatality rates in India: Systematic review, meta-analysis and model-based estimation. Stud. Microecon. 2021, 5, 4324. [Google Scholar] [CrossRef]
- Barchuk, A.; Skougarevskiy, D.; Kouprianov, A.; Shirokov, D.; Dudkina, O.; Tursun-zade, R.; Sergeeva, M.; Tychkova, V.; Komissarov, A.; Zheltukhina, A.; et al. COVID-19 pandemic in Saint Petersburg, Russia: Combining surveillance and population-based serological study data in May, 2020-April, 2021. medRxiv 2021, 21, 1428. [Google Scholar] [CrossRef]
- Banaji, M.; Gupta, A. Estimates of pandemic excess mortality in India based on civil registration data. medRxiv 2021, 1, 31. [Google Scholar] [CrossRef]
- Staub, K.; Panczak, R.; Matthes, K.L.; Floris, J.; Berlin, C.; Junker, C.; Weitkunat, R.; Mamelund, S.E.; Egger, M.; Zwahlen, M.; et al. Pandemic excess mortality in Spain, Sweden, and Switzerland during the COVID-19 pandemic in 2020 was at its highest since 1918. medRxiv 2021, 9, 1–5. [Google Scholar]
- Worldometer. COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 1 December 2021).
- Lieberoth, A.; Lin, S.Y.; Stöckli, S.; Han, H.; Kowal, M.; Gelpi, R.; Chrona, S.; Tran, T.P.; Jeftić, A.; Rasmussen, J.; et al. Stress and worry in the 2020 coronavirus pandemic: Relationships to trust and compliance with preventive measures across 48 countries in the COVIDiSTRESS global survey. R. Soc. Open Sci. 2021, 8, 200589. [Google Scholar] [CrossRef]
- Yamada, Y.; Ćepulić, D.B.; Coll-Martín, T.; Debove, S.; Gautreau, G.; Han, H.; Rasmussen, J.; Tran, T.P.; Travaglino, G.A.; Lieberoth, A.; et al. COVIDiSTRESS Global Survey dataset on psychological and behavioural consequences of the COVID-19 outbreak. Sci. Data 2021, 8, 3. [Google Scholar] [CrossRef]
- Pfefferbaum, B.; North, C.S. Mental health and the Covid-19 pandemic. N. Engl. J. Med. 2020, 383, 510–512. [Google Scholar] [CrossRef]
- Moreno, C.; Wykes, T.; Galderisi, S.; Nordentoft, M.; Crossley, N.; Jones, N.; Cannon, M.; Correll, C.U.; Byrne, L.; Carr, S.; et al. How mental health care should change as a consequence of the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 813–824. [Google Scholar] [CrossRef]
- Zhai, Y.; Du, X. Addressing collegiate mental health amid COVID-19 pandemic. Psychiatry Res. 2020, 288, 113003. [Google Scholar] [CrossRef] [PubMed]
- Vindegaard, N.; Benros, M.E. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav. Immun. 2020, 89, 531–542. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, N. Chinese mental health burden during the COVID-19 pandemic. Asian J. Psychiatry 2020, 51, 102052. [Google Scholar] [CrossRef]
- Imran, N.; Zeshan, M.; Pervaiz, Z. Mental health considerations for children & adolescents in COVID-19 Pandemic. Pak. J. Med. Sci. 2020, 36, S67. [Google Scholar] [PubMed]
- Bamwesigye, D. Data Results before and during COVID-19 Lockdown Crisis. OSF. Available online: https://doi.org/10.17605/OSF.IO/8NAKW (accessed on 16 September 2021).
- Fortuna-Antoszkiewicz, B. Roślinność w kompozycji przestrzennej: Wartości i zachowanie dziedzictwa; Wydawnictwo SGGW: Warszawa, Poland, 2019. [Google Scholar]
- Łukaszkiewicz, J. Zadrzewienia w krajobrazie miasta: Wybrane Aspekty Kształtowania Struktury i Funkcji; Wydawnictwo SGGW: Warszawa, Poland, 2019. [Google Scholar]
- Relf, P.D.; Lohr, V.I. Human issues in horticulture. HortScience 2003, 38, 984–993. [Google Scholar] [CrossRef] [Green Version]
- Qing, L. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 2010, 15, 9–17. [Google Scholar]
- Derks, J.; Giessen, L.; Winkel, G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. For. Policy Econ. 2020, 118, 102253. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.; Barton, D.; Gundersen, V.; Figari, H.; Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Slater, S.J. Recommendations for keeping parks and green space accessible for mental and physical health during COVID-19 and other pandemics. Prev. Chronic Dis. 2020, 17, 200204. [Google Scholar] [CrossRef]
- Unep-United Nations Environmental Programme: Annual Report 2007. Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/7647/UNEP%202007%20Annual%20Report-2008806.pdf?sequence=5&isAllowed=y (accessed on 21 July 2018).
- Bell, J.N.B.; Treshow, M. Zanieczyszczenie Powietrza a ZYYcie Roślin; Wydawnictwo Naukowo-Techniczne: Warszawa, Poland, 2004. [Google Scholar]
- Gawronski, S.W. Fitoremediacyjna rola roślin na terenach zurbanizowanych. In Drzewa i Krzewy w Rekultywacji, Proceedings of the IX Zjazdu Polskiego Towarzystwa Dendrologicznego, Konferencja Naukowa, Wirty-Ustka, Poland, 19–22 September 2018; Nowak, G., Kubus, M., Sobisz, Z., Eds.; Polskie Towarzystwo Dendrologiczne: Szczecin, Poland, 2018; pp. 19–27. [Google Scholar]
- Popek, R.; Gawronska, H.; Gawronski, S.W. The level of particulate matter on foliage depends on the distance from the source of emission. Int. J. Phytoremediation 2015, 17, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Kuo, F.E.; Sullivan, W.C. Aggression and violence in the inner city: Effects of environment via mental fatigue. Environ. Behav. 2001, 33, 543–571. [Google Scholar] [CrossRef]
- Wells, N.M. At home with nature: Effects of “greenness” on children’s cognitive functioning. Environ. Behav. 2000, 32, 775–795. [Google Scholar] [CrossRef] [Green Version]
- Dadvand, P.; Nieuwenhuijsen, M.J.; Esnaola, M.; Forns, J.; Basagana, X.; Alvarez-Pedrerol, M.; Rivas, I.; López-Vicente, M.; De Castro Pascual, M.; Su, J.; et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl. Acad. Sci. USA 2015, 112, 7937–7942. [Google Scholar] [CrossRef] [Green Version]
- Łukaszkiewicz, J.; Fortuna-Antoszkiewicz, B.; Rosłon-Szeryńska, E.; Wiśniewski, P. Shaping of tree stands in large parks in Europe for the needs of optimal recreational bioclimate, biodiversity and ecological sustainability. Glob. J. Eng. Sci. Res. 2018, 5, 63–86. [Google Scholar] [CrossRef]
- Gaston, K.J.; Soga, M.; Duffy, J.P.; Garrett, J.K.; Gaston, S.; Cox, D.T. Personalised ecology. Trends Ecol. Evol. 2018, 33, 916–925. [Google Scholar] [CrossRef] [Green Version]
- Huizinga, J. Homo ludens. Zabawa jako źródło kultury; Wyd. Czytelnik: Warszawa, Poland, 1985. [Google Scholar]
- Ewing, R.; Schmid, T.; Killingsworth, R.; Zlot, A.; Raudenbush, S. Relationship between urban sprawl and physical activity, obesity, and morbidity. Am. J. Health Promot. 2003, 18, 47–57. [Google Scholar] [CrossRef]
- Canales, D.; Bouton, S.; Trimble, E.; Thayne, J.; Da Silva, L.; Shastry, S.; Knupfer, S.; Powell, M. Connected Urban Growth: Public-Private Collaborations for Transforming Urban Mobility; Coalition for Urban Transitions: London, UK; Washington, DC, USA, 2017; Available online: http://newclimateeconomy.net/content/cities-working-papers (accessed on 15 September 2018).
- Wacker, M.; Holick, M.F. Sunlight and vitamin D: A global perspective for health. Derm.-Endocrinol. 2013, 5, 51–108. [Google Scholar] [CrossRef] [Green Version]
- Łukaszkiewicz, J. Skin synthesis of vitamin D—pros and cons. Stand. Med. Pediatr. 2015, 12, 112–116. [Google Scholar]
- Webb, A.R.; Kline, L.; Holick, M.F. Influence of season and latitude on the cutaneous synthesis of vitamin D3: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metab. 1988, 67, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Rusińska, A.; Płudowski, P.; Walczak, M.; Borszewska-Kornacka, M.K.; Bossowski, A.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dobrzańska, A.; Franek, E.; Helwich, E.; et al. Vitamin D Supplementation Guidelines for General Population and Groups at Risk of Vitamin D Deficiency in Poland-Recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the Expert Panel With Participation of National Specialist Consultants and Representatives of Scientific Societies-2018 Update. Front. Endocrinol. 2018, 31, 246. [Google Scholar] [CrossRef]
- Baggerly, C.A.; Cuomo, R.E.; French, C.B.; Garland, C.F.; Gorham, E.D.; Grant, W.B.; Heaney, R.P.; Holick, M.F.; Hollis, B.W.; McDonnell, S.L.; et al. Sunlight and Vitamin D: Necessary for Public Health. J. Am. Coll. Nutr. 2015, 34, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Tylavsky, F.; Kröger, H.; Kärkkäinen, M.; Lyytikäinen, A.; Koistinen, A.; Mahonen, A.; Alen, M.; Halleen, J.; Väänänen, K.; et al. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low bone density in early pubertal and prepubertal Finnish girls. Am. J. Clin. Nutr. 2003, 78, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, R.; Sugimoto, T.; Kaji, H.; Fujii, Y.; Shiraki, M.; Inoue, D.; Endo, I.; Okano, T.; Hirota, T.; Kurahashi, I.; et al. Vitamin D insufficiency defined by serum 25-hydroxyvitamin D and parathyroid hormone before and after oral vitamin D(3) load in Japanese subjects. J. Bone Miner. Matab. 2011, 29, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Saliba, W.; Barnett, O.; Rennert, H.S.; Lavi, I.; Rennert, G. The relationship between serum 25(OH)D and parathyroid hormone levels. Am. J. Med. 2011, 124, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The D-batable parathyroid hormone plateau. Am. J. Med. 2011, 124, 1095–1096. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers and cardiovascular diseases. Am. J. Clin. Nutr. 2004, 80, 1678S–1688S. [Google Scholar] [CrossRef] [Green Version]
- Gröber, U.; Spitz, J.; Reichrath, J.; Kisters, K.; Holick, M.F. Vitamin D: Update 2013: From rickets prophylaxis to general preventive healthcare. Derm. -Endocrinol. 2013, 5, 331–347. [Google Scholar] [CrossRef]
- Muhairi, S.J.; Mehairi, A.E.; Khouri, A.A.; Naqbi, M.M.; Maskari, F.A.; Al Kaabi, J.; Al Dhaheri, A.S.; Nagelkerke, N.; Shah, S.M. Prevalence of vitamin D deficiency among healthy adolescents. Arch. Pediatr. Adolesc. Med. 2004, 158, 531–537. [Google Scholar]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Kmieć, P.; Żmijewski, M.; Waszak, P.; Sworczak, K.; Lizakowska-Kmieć, M. Vitamin D deficiency during winter months among an adult, predominantly urban, population in northern Poland. Endokrynol. Pol. 2014, 65, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pludowski, P.; Ducki, C.; Konstantynowicz, J. Vitamin D status in Poland. Pol. Arch. Med. Wewn. 2016, 126, 530–539. [Google Scholar] [CrossRef] [Green Version]
- Białek, S.; Łukaszkiewicz, J.; Zdun, O.; Nowicka, G. Stan zaopatrzenia w witaminę D w subpopulacji polskich studentów. Przemysł Farmaceutyczny 2020, 2, 46–51. [Google Scholar]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Kumar, R.; Rathi, H.; Haq, A.; Wimalawansa, S.J.; Sharma, A. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Virus Res. 2021, 292, 198235. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P.; Bikle, D.; Hewison, M.; Lazaretti-Castro, M.; Formenti, A.M.; Gupta, A.; Madhavan, M.V.; Nair, N.; Babalyan, V.; Hutchings, N.; et al. Mechanisms in Endocrinology: Vitamin D and COVID-19. Eur. J. Endocrinol. 2020, 183, R133–R147. [Google Scholar] [CrossRef] [PubMed]
- Alipio, M.M. Vitamin D Supplementation Could Possibly Improve Clinical Outcomes of Patients Infected with Coronavirus-2019 (COVID-2019). 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3571484 (accessed on 30 July 2021).
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemb, P.; Bergman, P.; Camargo, C.A.; Cavalier, E.; Cormier, C.; Courbebaisse, M.; Hollis, B.; Joulia, F.; Minisola, S.; Pilz, S.; et al. Vitamin D deficiency and the COVID-19 pandemic. J. Glob. Antimicrob. Resist. 2020, 22, 133–134. [Google Scholar] [CrossRef]
- Training Forest Enterprise Masaryk Forest Křtiny (Školní lesní podnik Masarykův les Křtiny). Available online: www.slpkrtiny.cz (accessed on 12 November 2020).
- TRAFx Products: Vehicle Counter, Trail Counter, Bike Counter. Available online: https://www.trafx.net/products (accessed on 31 August 2021).
- Turistické Mapy a Cyklomapy. Available online: https://mapy.cz/turisticka?x=16.6864763&y=49.2325896&z=15 (accessed on 18 October 2021).
- Fialová, J.; Kupec, P.; Hlavácková, P.; Šafarik, D.; Mikat, T.; Kala, L. Visitor monitoring of selected trails in ŠLP Křtiny. In Public Recreation and Landscape Protection-with Man Hand in Hand, 1st ed.; Fialová, J., Pernicová, D., Eds.; Vydavatelství Mendelovy univerzity v Brně: Brno, Czech Republic, 2014; pp. 340–343. ISBN 978-80-7375-952. [Google Scholar]
- Bamwesigye, D.; Hlavackova, P.; Sujova, A.; Fialova, J.; Kupec, P. Willingness to pay for forest existence value and sustainability. Sustainability 2020, 12, 891. [Google Scholar] [CrossRef] [Green Version]
- Bamwesigye, D. Total economic valuation approach of nature: Forests. In Public Recreation and Landscape Protection-with Sense Hand in Hand; Mendelova univerzita v Brně: Brno, Czech Republic, 2020; p. 524. ISBN 978-80-7509-779-8. [Google Scholar]
- Doli, A.; Bamwesigye, D.; Hlaváčková, P.; Fialová, J.; Kupec, P.; Asamoah, O. Forest Park Visitors Opinions and Willingness to Pay for Sustainable Development of the Germia Forest and Recreational Park. Sustainability 2021, 13, 3160. [Google Scholar] [CrossRef]
- Bamwesigye, D.; Hlavackova, P.; Sujova, A.; Fialova, J.; Kupec, P. Know Thy Forest Value: Willingness to Pay for Forest Existence Values in Uganda. In Public Recreation and Landscape Protection-with Sense Hand in Hand; Mendelova univerzita v Brně: Brno, Czech Republic, 2020; p. 256. ISBN 978-80-7509-779-8. [Google Scholar]
- Hlaváčková, P.; Slováčková, H.; Březina, D.; Michal, J. Comparison of results of visitor arrival monitoring using regression analysis. J. For. Sci. 2018, 64, 303–312. [Google Scholar]
- Weinbrenner, H.; Breithut, J.; Hebermehl, W.; Kaufmann, A.; Klinger, T.; Palm, T.; Wirth, K. “The Forest Has Become Our New Living Room”—The Critical Importance of Urban Forests During the COVID-19 Pandemic. Front. For. Glob. Chang. 2021, 4, 68. [Google Scholar] [CrossRef]
- Roviello, V.; Roviello, G.N. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ. Chem. Lett. 2020, 15, 699–710. [Google Scholar] [CrossRef]
- Muro, A.; Feliu-Soler, A.; Canals, J.; Parrado, E.; Sanz, A. Psychological benefits of Forest Bathing during the COVID-19 pandemic: A pilot study in a Mediterranean forest close to urban area. J. For. Res. 2021, 99, 6516. [Google Scholar] [CrossRef]
- Golar, G.; Malik, A.; Hasriani, M.; Achmad, H.; Nurudin, N.; Lukman, L. The social-economic impact of COVID-19 pandemic: Implications for potential forest degradation. Heliyon 2020, 6, e05354. [Google Scholar] [CrossRef]
- Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G.N. Forest-bathing and physical activity as weapons against COVID-19: A review. Environ. Chem. Lett. 2021, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pichlerová, M.; Önkal, D.; Bartlett, A.; Výbošťok, J.; Pichler, V. Variability in Forest Visit Numbers in Different Regions and Population Segments before and during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 3469. [Google Scholar] [CrossRef]
Year | Mean | Median | S.D. | Minimum | Maximum |
---|---|---|---|---|---|
2015 | 266.3 | 247.0 | 146.0 | 41.00 | 753.0 |
2016 | 264.0 | 235.0 | 166.5 | 45.00 | 1312.0 |
2017 | 271.1 | 239.5 | 164.2 | 35.00 | 1088.0 |
2018 | 253.9 | 212.0 | 173.7 | 44.00 | 723.0 |
2021 | 286.0 | 259.5 | 150.6 | 40.00 | 873.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamwesigye, D.; Fialová, J.; Kupec, P.; Łukaszkiewicz, J.; Fortuna-Antoszkiewicz, B. Forest Recreational Services in the Face of COVID-19 Pandemic Stress. Land 2021, 10, 1347. https://doi.org/10.3390/land10121347
Bamwesigye D, Fialová J, Kupec P, Łukaszkiewicz J, Fortuna-Antoszkiewicz B. Forest Recreational Services in the Face of COVID-19 Pandemic Stress. Land. 2021; 10(12):1347. https://doi.org/10.3390/land10121347
Chicago/Turabian StyleBamwesigye, Dastan, Jitka Fialová, Petr Kupec, Jan Łukaszkiewicz, and Beata Fortuna-Antoszkiewicz. 2021. "Forest Recreational Services in the Face of COVID-19 Pandemic Stress" Land 10, no. 12: 1347. https://doi.org/10.3390/land10121347
APA StyleBamwesigye, D., Fialová, J., Kupec, P., Łukaszkiewicz, J., & Fortuna-Antoszkiewicz, B. (2021). Forest Recreational Services in the Face of COVID-19 Pandemic Stress. Land, 10(12), 1347. https://doi.org/10.3390/land10121347