Short-Run Links in Ecological Footprint: A Dynamic Factor Analysis for the EU
Abstract
:1. Introduction
2. Literature
3. Data and Methods
3.1. Data
3.2. Model
- Group 1: —Denoting a strongly linked EFP. We interpret that this result is obtained by countries that share the short-run dynamics of EFP in Europe and we could expect them to exert influence on the neighboring countries.
- Group 2: —Denoting emissions with weak links. In this case, countries are not so influenced by the short-run dynamics of the EFP common pattern.
- Group 3: —Denoting an independent EFP pattern. This type of result implies that these countries are not linked with the European pattern of EFP.
4. Results
5. Robustness Checks
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Countries | Factor Loadings | AR Idiosyncratic Parameters | Residual Variance |
---|---|---|---|
France | 0.87 (7.87) *** | −0.45 (−2.97) *** | 0.26 (3.77) *** |
Belgium | 0.81 (7.11) *** | −0.27 (−1.76) ** | 0.34 (4.35) |
Austria | 0.7 (5.76) *** | −0.21 (−1.48) | 0.51 (4.82) |
Germany | 0.7 (5.34) *** | −0.04 (−0.29) | 0.57 (4.86) |
Denmark | 0.67 (5.63) *** | −0.26 (−1.89) * | 0.51 (4.87) |
UK | 0.67 (5.07) *** | −0.11 (−0.77) | 0.62 (4.94) |
Ireland | 0.62 (5.61) *** | −0.47 (−3.79) *** | 0.51 (4.91) |
Greece | 0.59 (4.45) *** | −0.19 (−1.37) | 0.7 (5.06) |
Cyprus | 0.41 (2.86) *** | 0.11 (0.8) | 0.83 (5.18) |
Bulgaria | 0.38 (2.68) *** | −0.09 (−0.68) | 0.87 (5.21) |
Romania | 0.38 (2.6) *** | 0.03 (0.24) | 0.87 (5.21) |
Hungary | 0.32 (2.64) *** | −0.38 (−3.07) *** | 0.77 (5.23) |
Italy | 0.29 (1.93) * | 0.28 (2.13) ** | 0.91 (5.23) |
Malta | 0.29 (2.15) ** | −0.2 (−1.49) | 0.89 (5.25) |
Poland | 0.27 (1.82) * | 0.07 (0.49) | 0.93 (5.25) |
Finland | 0.25 (1.78) * | −0.16 (−1.2) | 0.92 (5.26) |
1 | Dynamic panel Model offers an alternative measure for cross-country links to the obtained through conventional input-output models or other types of analysis. In this case, the econometric model employed measure parametrically an indicator that captures the dynamics of EFP from the growth rates of global hectares per capita by country. |
2 | Croatia, Estonia, Latvia, Lithuania, Slovakia, Slovenia and Czech Republic are omitted from our analysis due to the lack of availability data for the same sample period. |
3 | This methodology is frequently used for business cycle estimations but the interest in the analysis of the cycle has led to the use of its tools in environmental studies. These are the case of McKitrick and Wood, 2013[29], Doda, 2014[30], Delgado et al., 2018[31], De Lucas et al, 2021[32] and Cabezas et al., 2020[33]. These papers demonstrate the interest and suitability of the Dynamic Factor Model to understand the short-run behavior of environmental variables. |
References
- Recep, U.; Lin, D. Persistence of Policy Shocks to Ecological Footprint of the USA. Ecol. Indic. 2017, 80, 337–343. [Google Scholar] [CrossRef]
- Global Footprint Network. Ecological Footprint. 2021. Available online: http://data.footprintnetwork.org/ (accessed on 10 November 2021).
- Ulucak, R.; Apergis, N. Does convergence really matter for the environment? An application based on club convergence and on the ecological footprint concept for the EU countries. Environ. Sci. Policy 2018, 80, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, S.; Okumus, I. Stochastic and club convergence of ecological footprint: An empirical analysis for different income group of countries. Ecol. Indic. 2020, 121, 107–123. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Weng-Wai, C.; Sheau-Ting, L.; Mohammed, A.H. Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecol. Indic. 2015, 48, 315–323. [Google Scholar] [CrossRef]
- Solarin, S.A. Convergence in CO2 emissions, carbon footprint and ecological footprint: Evidence from OECD countries. Environ. Sci. Pollut. Res. 2019, 26, 6167–6181. [Google Scholar] [CrossRef] [PubMed]
- Stern, D.I.; The Environmental Kuznets Curve: A Primer. CCEP Working Paper 1404. 2014. Available online: https://ccep.crawford.anu.edu.au/ (accessed on 1 October 2021).
- Bello, M.O.; Solarin, S.A.; Yen, Y.Y. The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: The role of hydropower in an emerging economy. J. Environ. Manag. 2018, 219, 218–230. [Google Scholar] [CrossRef]
- Solarin, S.A.; Al-Mulali, U. Influence of foreign direct investment on indicators of environmental degradation. Environ. Sci. Pollut. Res. 2018, 25, 24845–24859. [Google Scholar] [CrossRef]
- Bilgili, F.; Ulucak, R. Is there deterministic, stochastic, and/or club convergence in ecological footprint indicator among G20 countries? Environ. Sci. Pollut. Res. 2018, 25, 35404–35419. [Google Scholar] [CrossRef]
- Yilanci, V.; Pata, U.K. Convergence of per capita ecological footprint among the ASEAN-5 countries: Evidence from a non-linear panel unit root test. Ecol. Indic. 2020, 113, 106178. [Google Scholar] [CrossRef]
- Sarkodie, S.A. Environmental performance, biocapacity, carbon & ecological footprint of nations: Drivers, trends and mitigation options. Sci. Total. Environ. 2020, 751, 141912. [Google Scholar] [CrossRef] [PubMed]
- Solarin, S.A.; Tiwari, A.K.; Bello, M.O. A multi-country convergence analysis of ecological footprint and its components. Sustain. Cities Soc. 2019, 46, 101422. [Google Scholar] [CrossRef]
- Ulucak, R.; Kassouri, Y.; Ilkay, S.; Altıntaş, H.; Garang, A.P.M. Does convergence contribute to reshaping sustainable development policies? Insights from Sub-Saharan Africa. Ecol. Indic. 2020, 112, 106140. [Google Scholar] [CrossRef]
- Haider, S.; Akram, V.; Ali, J. Does biomass material footprint converge? Evidence from club convergence analysis. Environ. Sci. Pollut. Res. 2021, 28, 27362–27375. [Google Scholar] [CrossRef] [PubMed]
- Caglar, A.E.; Balsalobre-Lorente, D.; Akin, C.S. Analysing the ecological footprint in EU-5 countries under a scenario of carbon neutrality: Evidence from newly developed sharp and smooth structural breaks in unit root testing. J. Environ. Manag. 2021, 295, 113155. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Liu, J. Spatial and Temporal Evaluation of Ecological Footprint Intensity of Jiangsu Province at the County-Level Scale. Int. J. Environ. Res. Public Health 2020, 17, 7833. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Ormeño-Candelario, V.; Sanchez-Loor, D. Global ecological footprint and spatial dependence between countries. J. Environ. Manag. 2020, 272, 111069. [Google Scholar] [CrossRef] [PubMed]
- Nathaniel, S.; Nwodo, O.; Sharma, G.; Shah, M. Renewable energy, urbanization, and ecological footprint linkage in CIVETS. Environ. Sci. Pollut. Res. 2020, 27, 19616–19629. [Google Scholar] [CrossRef] [PubMed]
- Wu, D. Spatially and temporally varying relationships between ecological footprint and influencing factors in China’s provinces Using Geographically Weighted Regression (GWR). J. Clean. Prod. 2020, 261, 121089. [Google Scholar] [CrossRef]
- Guo, J.; Ren, J.; Huang, X.; He, G.; Shi, Y.; Zhou, H. The Dynamic Evolution of the Ecological Footprint and Ecological Capacity of Qinghai Province. Sustainability 2020, 12, 3065. [Google Scholar] [CrossRef] [Green Version]
- Harvey, A.; Trimbur, T. Trend Estimation and the Hodrick-Prescott Filter. J. Jpn. Stat. Soc. 2008, 38, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Dubois, É.; Michaux, E. Grocer 1.72: An econometric toolbox for Scilab 2019. 2019. Available online: http://dubois.ensae.net/grocer.html (accessed on 12 October 2021).
- Bai, J.; Ng, S. Determining the Number of Factors in Approximate Factor Models. Econometrica 2002, 70, 191–221. [Google Scholar] [CrossRef] [Green Version]
- Harding, D.; Pagan, A. Dissecting the cycle: A methodological investigation. J. Monetary Econ. 2002, 49, 365–381. [Google Scholar] [CrossRef]
- Bai, J.; Ng, S. Determining the Number of Primitive Shocks in Factor Models. J. Bus. Econ. Stat. 2007, 25, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Bueno, J.L.C.; Santos, S.D.L.; Rodríguez, M.J.D.; Ayuso, I. Testing for structural breaks in factor loadings: An application to international business cycle. Econ. Model. 2011, 28, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Newey, W.K.; West, K.D. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 1987, 55, 703. [Google Scholar] [CrossRef]
- McKitrick, R.; Wood, J. Co-fluctuation patterns of per capita carbon dioxide emissions: The role of energy markets. Energy Econ. 2013, 39, 1–12. [Google Scholar] [CrossRef]
- Doda, B. Evidence on business cycles and emissions. J. Macroecon. 2014, 40, 214–227. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Rodríguez, M.J.; Ares, A.C.; Santos, S.D.L. Cyclical fluctuation patterns and decoupling: Towards common EU-28 environmental performance. J. Clean. Prod. 2018, 175, 696–706. [Google Scholar] [CrossRef]
- De Lucas-Santos, S.; Delgado-Rodríguez, M.J.; Cabezas-Ares, A. Cyclical convergence in per capita carbon dioxide emission in US states: A dynamic unobserved component approach. Energy 2020, 217, 119349. [Google Scholar] [CrossRef]
- Cabezas-Ares, A.; Delgado-Rodríguez, M.; Lucas-Santos, S. The Dynamics of Cyclical Convergence and Decoupling in the Environmental Performance of Spanish Regions. Sustainability 2020, 12, 8569. [Google Scholar] [CrossRef]
Study | Variable | Methodology | Sample | Results |
---|---|---|---|---|
Solarin 2019 [6] | CO2 emissions, Carbon Footprint pc and EFP pc | Stochastic convergence | 27 OCDE Countries | Sigma convergence |
Bilgili & Ulucak 2018 [10] | EFP | A bootstrap-based panel KPSS test | G-20 Countries | Stochastic and deterministic C. |
Ulucak &Apergis 2018 [3] | EFP | Club-clustering approach | EU Countries | Convergence clubs |
Solarin et al., 2019 [13] | EFP and its six components | Club-convergence approach | 92 countries | Convergence clubs |
Yilanci & Pata 2020 [11] | EFP | TAR panel unit root test | 5 ASEAN countries | Absolute convergence |
Ulucak et al., 2020 [14] | EFP and its sub-components | Log t regression | 33 Sub-Saharan countries | Convergence clubs |
Erdogan & Okumus 2020 [4] | EFP | Stochastic and club convergence approach | 89 countries | Convergence clubs |
Haider et al., 2021 [15] | Biomass material Footprint | Phillips–Sul approach | 172 Countries | No convergence |
Sarkodie 2021 [12] | EFP, Biocapacity, Carbon F., and Ecological Status | Cross-country time series techniques | 245 Countries | Long-run convergence |
Wu 2020 [20] | EFP | GWR and OLS models | Provinces of China | Main driving forces of EFP evolution |
Wu & Liu 2020 [17] | EFP Intensity | Global Moran´s Index and LISA | Jiangsu’s counties | Spatial distribution |
Nathaniel et al., 2020 [19] | EFP | AMG estimation and panel co-integration | CIVETS countries | Relation economic variables |
Guo et al., 2020 [21] | EFP and Ecological Capacity | Grey GM (1,1) prediction model | Quinghai Province (China) | Forecasting EFP |
Caglar et al., 2021 [16] | EFP and its six components | SOR unit root test | France, Germany, Italy, Spain and UK | No convergence |
Zambrano-Monserrate et al., 2020 [18] | EFP and Biocapacity | Dynamic spatial Durbin model | 158 countries | Spatial effects |
Countries | Trimming | 90% | 95% | 99% | Break Date | Breaks | |
---|---|---|---|---|---|---|---|
France | 20% | 5.6 | 7.9 | 16.2 | 0.9 | 1972 | |
Belgium | 20% | 4.9 | 7 | 15.8 | 3.3 | 1985 | |
Austria | 20% | 5.2 | 7 | 12.5 | 1 | 1972 | |
Germany | 20% | 5.2 | 6.9 | 10.6 | 1.2 | 1974 | |
Denmark | 20% | 4.9 | 7.2 | 14 | 1.7 | 1992 | |
UK | 30% | 3.5 | 4.9 | 10.1 | 1.3 | 1989 | |
Ireland | 30% | 3.3 | 4.7 | 8.8 | 0.4 | 1978 | |
Greece | 20% | 5.1 | 7 | 12.8 | 1 | 1996 | |
Cyprus | 20% | 5.7 | 7.7 | 13.5 | 1 | 1979 | |
Bulgaria | 20% | 4.9 | 6.7 | 15.7 | 2.1 | 1988 | |
Romania | 20% | 5.2 | 7.9 | 14.8 | 5.6 | 1989 * | Temporal break |
Hungary | 20% | 5.1 | 7.3 | 15.9 | 8.8 | 1989 ** | Temporal break |
Italy | 20% | 5 | 7.3 | 15.2 | 0.6 | 1972 | |
Malta | 20% | 5.2 | 7.4 | 17.1 | 0.7 | 1978 | |
Poland | 20% | 5.1 | 6.9 | 10.6 | 0.8 | 1980 | |
Finland | 20% | 2.2 | 3.4 | 5.5 | 3.2 | 1980 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Rodríguez, M.J.; Lucas-Santos, S.d.; Cabezas-Ares, A. Short-Run Links in Ecological Footprint: A Dynamic Factor Analysis for the EU. Land 2021, 10, 1372. https://doi.org/10.3390/land10121372
Delgado-Rodríguez MJ, Lucas-Santos Sd, Cabezas-Ares A. Short-Run Links in Ecological Footprint: A Dynamic Factor Analysis for the EU. Land. 2021; 10(12):1372. https://doi.org/10.3390/land10121372
Chicago/Turabian StyleDelgado-Rodríguez, María Jesús, Sonia de Lucas-Santos, and Alfredo Cabezas-Ares. 2021. "Short-Run Links in Ecological Footprint: A Dynamic Factor Analysis for the EU" Land 10, no. 12: 1372. https://doi.org/10.3390/land10121372
APA StyleDelgado-Rodríguez, M. J., Lucas-Santos, S. d., & Cabezas-Ares, A. (2021). Short-Run Links in Ecological Footprint: A Dynamic Factor Analysis for the EU. Land, 10(12), 1372. https://doi.org/10.3390/land10121372