Improving Best Management Practice Decisions in Mixed Land Use and/or Municipal Watersheds: Should Approaches Be Standardized?
Abstract
:1. Introduction
2. The BMP Decision-Making Process and the Critical Source Area
3. BMP Monitoring
4. Measuring Effects of BMPs
5. Monitoring Mixed-Use and Municipal Watersheds: A Standardized Approach
6. Synthesis and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novotny, V. Water Quality: Prevention, Identification and Management of Diffuse Pollution; Van Nostrand-Reinhold Publishers: New York, NY, USA, 1994. [Google Scholar]
- Dingman, S.L. Physical Hydrology; Waveland Press: Long Grove, IL, USA, 2008. [Google Scholar]
- Tim, U.S.; Jolly, R. Evaluating Agricultural Nonpoint-Source Pollution Using Integrated Geographic Information Systems and Hydrologic/Water Quality Model. J. Environ. Qual. 1994, 23, 25–35. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Kellner, E.; Zeiger, S.J. A Case-Study Application of the Experimental Watershed Study Design to Advance Adaptive Management of Contemporary Watersheds. Water 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- Frankenberger, J.R.; Brooks, E.S.; Walter, M.T.; Steenhuis, T.S. A GIS-based variable source area hydrology model. Hydrol. Process. 1999, 13, 805–822. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Carey, S.K.; McNamara, J.P.; Laudon, H.; Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 2017, 53, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Leopold, L.B. Hydrologic Research on Instrumented Watersheds; International Association of Scientific Hydrology: Wallingford, UK, 1970; pp. 135–150. [Google Scholar]
- Hewlett, J.D.; Lull, H.W.; Reinhart, K.G. In Defense of Experimental Watersheds. Water Resour. Res. 1969, 5, 306–316. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Zeiger, S.; Hubbart, J.A.; Anderson, S.H.; Stambaugh, M.C. Quantifying and modelling urban stream temperature: A central US watershed study. Hydrol. Process. 2015, 30, 503–514. [Google Scholar] [CrossRef]
- Kellner, E.; Hubbart, J.A. Advancing Understanding of the Surface Water Quality Regime of Contemporary Mixed-Land-Use Watersheds: An Application of the Experimental Watershed Method. Hydrology 2017, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Urban Stormwater Management in the United States; The National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Debo, T.N.; Reese, A. Municipal Stormwater Management, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Granato, G. Statistics for Stochastic Modeling of Volume Reduction, Hydrograph Extension, and Water-Quality Treatment by Structural Stormwater Runoff Best Management Practices (BMPs); United States Geological Survey: Reston, VA, USA, 2014.
- Dressing, S.A. Critical Source Area Identification and BMP Selection: Supplement to Watershed Planning Handbook; USEPA: Washington, DC, USA, 2018.
- Dmytriyev, S.D.; Freeman, R.E.; Hörisch, J. The Relationship between Stakeholder Theory and Corporate Social Responsibility: Differences, Similarities, and Implications for Social Issues in Management. J. Manag. Stud. 2021, 58, 1441–1470. [Google Scholar] [CrossRef]
- McGahan, A.M. Integrating Insights From the Resource-Based View of the Firm Into the New Stakeholder Theory. J. Manag. 2021, 47, 1734–1756. [Google Scholar] [CrossRef]
- Vashchenko, M. An external perspective on CSR: What matters and what does not? Bus. Ethic Eur. Rev. 2017, 26, 396–412. [Google Scholar] [CrossRef]
- Fischenich, J.C. The Application of Conceptual Models to Ecosystem Restoration; Engineer Research and Development Center: Vicksburg, MS, USA, 2008; p. 23. [Google Scholar]
- Murray, M.; Allan, J.D.; Bratton, J.; Ciborowski, J.; Steinman, A.; Stow, C. Conceptual Frameworks and Great Lakes Restoration and Protection. Available online: https://www.nwf.org/Home/Educational-Resources/Reports/2019/08-01-19-Great-Lakes-Conceptual-Frameworks (accessed on 26 October 2021).
- Bracmort, K.S.; Arabi, M.; Frankenberger, J.R.; Engel, B.A.; Arnold, J.G. Modeling long-term water quality impact of structural BMPs. Trans. ASABE 2006, 49, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Chesapeake Bay Program. Strengthening Verification of Best Management Practices Implemented in the Chesapeake Bay Watershed: A Basinwide Framework; Chesapeake Bay Program: Annapolis, MD, USA, 2014. [Google Scholar]
- Mulla, D.J.; Birr, A.S. Evaluating the Effectiveness of Agricultural Management Practices at Reducing Nutrient Losses to Surface Waters. 2005. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/2006_8_25_msbasin_symposia_ia_session14.pdf (accessed on 26 October 2021).
- Rao, N.S.; Easton, Z.M.; Schneiderman, E.M.; Zion, M.S.; Lee, D.R.; Steenhuis, T.S. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. J. Environ. Manag. 2009, 90, 1385–1395. [Google Scholar] [CrossRef]
- Simpson, T.; Weammert, S. Developing Best Management Practice Definitions and Effectiveness Estimates for Nitrogen, Phosphorus and Sediment. In The Chesapeake Bay Watershed; University of Maryland Mid-Atlantic: College Park, MD, USA, 2009. [Google Scholar]
- Smith, A.J.; Thomas, R.L.; Nolan, J.K.; Velinsky, D.J.; Klein, S.; Duffy, B.T. Regional nutrient thresholds in wadeable streams of New York State protective of aquatic life. Ecol. Indic. 2013, 29, 455–467. [Google Scholar] [CrossRef]
- Brueggen-Boman, T.R.; Choi, S.-E.; Bouldin, J.L. Response of Water-Quality Indicators to the Implementation of Best-Management Practices in the Upper Strawberry River Watershed, Arkansas. Southeast. Nat. 2015, 14, 697–713. [Google Scholar] [CrossRef]
- Chun, J.A.; Cooke, R.A.; Kang, M.S.; Choi, M.; Timlin, D.; Park, S.W. Runoff Losses of Suspended Sediment, Nitrogen, and Phosphorus from a Small Watershed in Korea. J. Environ. Qual. 2010, 39, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gitau, M.W.; Gburek, W.J.; Bishop, P.L. Use of the SWAT Model to Quantify Water Quality Effects of Agricultural BMPs at the Farm-Scale Level. Trans. ASABE 2008, 51, 1925–1936. [Google Scholar] [CrossRef]
- Tomer, M.D.; Locke, M.A. The challenge of documenting water quality benefits of conservation practices: A review of USDA-ARS’s conservation effects assessment project watershed studies. Water Sci. Technol. 2011, 64, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Kroll, S.A.; Oakland, H.C. A Review of Studies Documenting the Effects of Agricultural Best Management Practices on Physiochemical and Biological Measures of Stream Ecosystem Integrity. Nat. Areas J. 2019, 39, 58. [Google Scholar] [CrossRef]
- Wang, J.; Goff, W.A. Application and Effectiveness of Forestry Best Management Practices in West Virginia. North. J. Appl. For. 2008, 25, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Weigel, B.M.; Lyons, J.; Paine, L.K.; Dodson, S.I.; Undersander, D.J. Using Stream Macroinvertebrates to Compare Riparian Land Use Practices on Cattle Farms in Southwestern Wisconsin. J. Freshw. Ecol. 2000, 15, 93–106. [Google Scholar] [CrossRef]
- Yates, A.G.; Bailey, R.C.; Schwindt, J.A. Effectiveness of best management practices in improving stream ecosystem quality. Hydrobiologia 2007, 583, 331–344. [Google Scholar] [CrossRef]
- Harman, W.; Starr, M.; Carter, K.; Tweedy, M.; Clemmons, K.; Suggs, K.; Miller, C. A Function-Based Framework for Stream Assessment & Restoration Projects; US Environmental Protection Agency: Washington, DC, USA, 2012.
- Nichols, J.; Hubbart, J.A.; Poulton, B.C. Using macroinvertebrate assemblages and multiple stressors to infer urban stream system condition: A case study in the central US. Urban Ecosyst. 2016, 19, 679–704. [Google Scholar] [CrossRef]
- Doughty, C.R. Freshwater biomonitoring and benthic macroinvertebrates, edited by D. M. Rosenberg and V. H. Resh, Chapman and Hall, New York, 1993. ix + 488pp. Price: £39.95. ISBN 0412 02251 6. Aquat. Conserv. Mar. Freshw. Ecosyst. 1994, 4, 92. [Google Scholar] [CrossRef]
- Sowa, S.P.; Herbert, M.; Mysorekar, S.; Annis, G.M.; Hall, K.; Nejadhashemi, A.P.; Woznicki, S.A.; Wang, L.; Doran, P.J. How much conservation is enough? Defining implementation goals for healthy fish communities in agricultural rivers. J. Great Lakes Res. 2016, 42, 1302–1321. [Google Scholar] [CrossRef]
- Furse, M.; Hering, D.; Moog, O.; Verdonschot, P.; Johnson, R.K.; Brabec, K.; Gritzalis, K.; Buffagni, A.; Pinto, P.; Friberg, N.; et al. The STAR project: Context, objectives and approaches. Hydrobiologia 2006, 566, 3–29. [Google Scholar] [CrossRef]
- Hering, D.; Johnson, R.K.; Kramm, S.; Schmutz, S.; Szoszkiewicz, K.; Verdonschot, P.F.M. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: A comparative metric-based analysis of organism response to stress. Freshw. Biol. 2006, 51, 1757–1785. [Google Scholar] [CrossRef]
- Potapova, M.; Charles, D. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshw. Biol. 2003, 48, 1311–1328. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.J.; Peterson, C.G.; Kirschtel, D.B.; King, C.C.; Tuchman, N.C. Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams1. J. Phycol. 1991, 27, 59–69. [Google Scholar] [CrossRef]
- Yagow, G.; Wilson, B.; Srivastava, P.; Obropta, C.C. Use of biological indicators in TMDL assessment and implementation. Trans. ASABE 2006, 49, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- Waite, I.R. Agricultural disturbance response models for invertebrate and algal metrics from streams at two spatial scales within the U.S. Hydrobiologia 2014, 726, 285–303. [Google Scholar] [CrossRef]
- Roni, P. Monitoring Stream and Watershed Restoration in SearchWorks Catalog; American Fisheries Society: Bethesda, MD, USA, 2005. [Google Scholar]
- Woolsey, S.; Capelli, F.; Gonser, T.; Hoehn, E.; Hostmann, M.; Junker, B.; Paetzold, A.; Roulier, C.; Schweizer, S.; Tiegs, S.D.; et al. A strategy to assess river restoration success. Freshw. Biol. 2007, 52, 752–769. [Google Scholar] [CrossRef]
- Diebel, M.; Maxted, J.T.; Robertson, D.; Han, S.; Zanden, J.V. Landscape Planning for Agricultural Nonpoint Source Pollution Reduction III: Assessing Phosphorus and Sediment Reduction Potential. Environ. Manag. 2009, 43, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Diebel, M.; Maxted, J.T.; Nowak, P.J.; Zanden, J.V. Landscape Planning for Agricultural Nonpoint Source Pollution Reduction I: A Geographical Allocation Framework. Environ. Manag. 2008, 42, 789–802. [Google Scholar] [CrossRef]
- Easton, Z.M.; Walter, M.T.; Steenhuis, T.S. Combined Monitoring and Modeling Indicate the Most Effective Agricultural Best Management Practices. J. Environ. Qual. 2008, 37, 1798–1809. [Google Scholar] [CrossRef]
- Chesapeake Bay Program Office. Chesapeake Assessment and Scenario Tool (CAST); Version 2017b; Chesapeake Bay Program Office: Annapolis, MD, USA, 2017. [Google Scholar]
- Maxted, J.T.; Diebel, M.; Zanden, J.V. Landscape Planning for Agricultural Non–Point Source Pollution Reduction. II. Balancing Watershed Size, Number of Watersheds, and Implementation Effort. Environ. Manag. 2008, 43, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belt, K.; Groffman, P.; Newbold, D.; Hession, C.; Noe, G.; Okay, J.; Southerland, M.; Speiran, G.; Staver, K.; Hairston-Strang, A.; et al. Recommendations of the Expert Panel to Reassess Removal Rates for Riparian Forest and Grass Buffers Best Management Practices; Chesapeake Bay Program: Annapolis, MD, USA, 2014. [Google Scholar]
- Staver, K.; White, C.; Meisinger, J.; Salon, P.; Thomason, W. Cover Crops Practices for Use in Phase 6.0 of the Chesapeake Bay Program. Watershed Model; Chesapeake Bay Program: Annapolis, MD, USA, 2017. [Google Scholar]
- Thomason, W.; Duiker, S.; Ganoe, K.; Gates, D.; McCollum, B.; Reiter, M. Conservation Tillage Practices for Use in Phase 6.0 of the Chesapeake Bay Program. Watershed Model; Chesapeake Bay Program: Annapolis, MD, USA, 2016. [Google Scholar]
- Sharpley, A.N.; Daniel, T.C.; Edwards, D.R. Phosphorus Movement in the Landscape. J. Prod. Agric. 1993, 6, 492–500. [Google Scholar] [CrossRef]
- Lintern, A.; McPhillips, L.; Winfrey, B.; Duncan, J.; Grady, C. Best Management Practices for Diffuse Nutrient Pollution: Wicked Problems Across Urban and Agricultural Watersheds. Environ. Sci. Technol. 2020, 54, 9159–9174. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water Quality Improvement through Bioretention Media: Nitrogen and Phosphorus Removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef]
- He, S.; Xu, Y.J. Three Decadal Inputs of Nitrogen and Phosphorus from Four Major Coastal Rivers to the Summer Hypoxic Zone of the Northern Gulf of Mexico. Water Air Soil Pollut. 2015, 226, 1–18. [Google Scholar] [CrossRef]
- Line, D.E.; Harman, W.A.; Jennings, G.D.; Thompson, E.J.; Osmond, D.L. Nonpoint-Source Pollutant Load Reductions Associated with Livestock Exclusion. J. Environ. Qual. 2000, 29, 1882–1890. [Google Scholar] [CrossRef] [Green Version]
- Miltner, R.J. Measuring the Contribution of Agricultural Conservation Practices to Observed Trends and Recent Condition in Water Quality Indicators in Ohio, USA. J. Environ. Qual. 2015, 44, 1821–1831. [Google Scholar] [CrossRef] [Green Version]
- Santhi, C.; Arnold, J.G.; White, M.; Di Luzio, M.; Kannan, N.; Norfleet, L.; Atwood, J.; Kellogg, R.; Wang, X.; Williams, J.R.; et al. Effects of Agricultural Conservation Practices on N Loads in the Mississippi-Atchafalaya River Basin. J. Environ. Qual. 2014, 43, 1903–1915. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, P.J.A.; Sharpley, A.N.; Withers, P.J.A.; Bergström, L.; Johnson, L.T.; Doody, D.G. Implementing agricultural phosphorus science and management to combat eutrophication. AMBIO 2015, 44, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, Q.D.; Schmalz, B.; Fohrer, N. The impact of agricultural Best Management Practices on water quality in a North German lowland catchment. Environ. Monit. Assess. 2011, 183, 351–379. [Google Scholar] [CrossRef] [PubMed]
- Thomas, Z.P. The Effects on Water Quality of Restricting Cattle Access to a Georgia Piedmont Stream. Master’s Thesis, University of Georgia, Athens, GA, USA, 2002. [Google Scholar]
- Beegle, D.B.; Carton, O.T.; Bailey, J.S. Nutrient Management Planning: Justification, Theory, Practice. J. Environ. Qual. 2000, 29, 72–79. [Google Scholar] [CrossRef]
- Artita, K.S.; Kaini, P.; Nicklow, J.W. Examining the Possibilities: Generating Alternative Watershed-Scale BMP Designs with Evolutionary Algorithms. Water Resour. Manag. 2013, 27, 3849–3863. [Google Scholar] [CrossRef]
- Strauss, P.; Leone, A.; Ripa, M.N.; Turpin, N.; Lescot, J.-M.; Laplana, R. Using critical source areas for targeting cost-effective best management practices to mitigate phosphorus and sediment transfer at the watershed scale. Soil Use Manag. 2007, 23, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Hassett, B.; Palmer, M.; Bernhardt, E.; Smith, S.; Carr, J.; Hart, D. Restoring Watersheds Project by Project: Trends in Chesapeake Bay Tributary Restoration. Front. Ecol. Environ. 2005, 3, 259–267. [Google Scholar] [CrossRef]
- Smiley, P.C.; Shields, F.D.; Knight, S.S. Designing Impact Assessments for Evaluating Ecological Effects of Agricultural Conservation Practices on Streams1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 867–878. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Link, T.E.; Gravelle, J.A.; Elliot, W.J. Timber Harvest Impacts on Water Yield in the Continental/Maritime Hydroclimatic Region of the United States. For. Sci. 2007, 53, 169–180. [Google Scholar]
- Horne, J.P.; Hubbart, J.A. A Spatially Distributed Investigation of Stream Water Temperature in a Contemporary Mixed-Land-Use Watershed. Water 2020, 12, 1756. [Google Scholar] [CrossRef]
- EWG New EWG Database Details $30 Billion Spent on U.S. Farm Conservation Programs. Available online: https://www.ewg.org/release/new-ewg-database-details-30-billion-spent-us-farm-conservation-programs (accessed on 25 February 2021).
- Petersen, F.; Hubbart, J.A. Advancing Understanding of Land Use and Physicochemical Impacts on Fecal Contamination in Mixed-Land-Use Watersheds. Water 2020, 12, 1094. [Google Scholar] [CrossRef]
- Kellner, E.; Hubbart, J.A. Application of the Experimental Watershed Approach to Advance Urban Watershed Precipitation/Discharge Understanding. Urban Ecosyst. 2017, 20, 799–810. [Google Scholar] [CrossRef]
- Sunde, M.; He, H.S.; Hubbart, J.A.; Scroggins, C. Forecasting streamflow response to increased imperviousness in an urbanizing Midwestern watershed using a coupled modeling approach. Appl. Geogr. 2016, 72, 14–25. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Hubbart, J.A. Nested-Scale Nutrient Flux in a Mixed-Land-Use Urbanizing Watershed: Nested-Scale Nutrient Flux in a Mixed-Land-Use Urbanizing Watershed. Hydrol. Process. 2016, 30, 1475–1490. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Hubbart, J.A. Quantifying Flow Interval–Pollutant Loading Relationships in a Rapidly Urbanizing Mixed-Land-Use Watershed of the Central USA. Environ. Earth Sci. 2017, 76, 484. [Google Scholar] [CrossRef]
- NRCS Nine Step Conservation Planning Process|NRCS. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/eqip/?cid=nrcs144p2_015695 (accessed on 29 October 2021).
- Wang, G.; Mang, S.; Cai, H.; Liu, S.; Zhang, Z.; Wang, L.; Innes, J.L. Integrated Watershed Management: Evolution, Development and Emerging Trends. J. For. Res. 2016, 27, 967–994. [Google Scholar] [CrossRef] [Green Version]
- Hubbart, J.A.; Stephan, K.; Petersen, F.; Heck, Z.; Horne, J.; Meade, B.J. Challenges for the Island of Barbuda: A Distinct Cultural and Ecological Island Ecosystem at the Precipice of Change. Challenges 2020, 11, 12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubbart, J.A. Improving Best Management Practice Decisions in Mixed Land Use and/or Municipal Watersheds: Should Approaches Be Standardized? Land 2021, 10, 1402. https://doi.org/10.3390/land10121402
Hubbart JA. Improving Best Management Practice Decisions in Mixed Land Use and/or Municipal Watersheds: Should Approaches Be Standardized? Land. 2021; 10(12):1402. https://doi.org/10.3390/land10121402
Chicago/Turabian StyleHubbart, Jason A. 2021. "Improving Best Management Practice Decisions in Mixed Land Use and/or Municipal Watersheds: Should Approaches Be Standardized?" Land 10, no. 12: 1402. https://doi.org/10.3390/land10121402
APA StyleHubbart, J. A. (2021). Improving Best Management Practice Decisions in Mixed Land Use and/or Municipal Watersheds: Should Approaches Be Standardized? Land, 10(12), 1402. https://doi.org/10.3390/land10121402