Multi-Scale Features of Regional Poverty and the Impact of Geographic Capital: A Case Study of Yanbian Korean Autonomous Prefecture in Jilin Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Data Sources and Processing
2.3. Indicators for Assessment
2.3.1. Indicators for Spatial Difference
2.3.2. Indicators for Spatial Autocorrelation
2.3.3. Construction of the Variable Set for Geographic Capital
2.3.4. Test of Multi-Scale Impact of Geographic Capital on Regional Poverty
3. Results of Spatial Distribution Analysis
3.1. Spatial Distribution Patterns of Poverty at Different Scales
3.2. Spatial Distribution Differences of Poverty at Different Scales
3.3. Spatial Autocorrelation of Poverty at Township and Village Scales
3.3.1. Global Spatial Autocorrelation of Poverty
3.3.2. Local Spatial Autocorrelation of Poverty
4. Results of the Multi-Scale Impact of Geographical Capital on Regional Poverty at Township and Village Scales
4.1. Preliminary Assessment of Positive or Negative Impacts of Different Factors
4.2. Comparison of the Determinant Power of Different Factors
4.3. Spatial Heterogeneity of the Impact of Different Factors
5. Discussion
5.1. Features
5.2. Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Ohman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Policy: Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef]
- United Nations (UN). Shared Responsibility, Global Solidarity: Responding to the Socio-Economic Impacts of COVID-19. Working Papers 2020. Available online: https://www.un.org/sustainabledevelopment/poverty/ (accessed on 23 September 2021).
- The Word Bank. Decline of Global Extreme Poverty Continues but Has Slowed: World Bank. News 2018. Available online: https://www.worldbank.org/en/news/press-release/2018/09/19/decline-of-global-extreme-poverty-continues-but-has-slowed-world-bank (accessed on 20 May 2021).
- Liu, Y.; Liu, J.; Zhou, Y. Spatio-temporal patterns of rural poverty in China and targeted poverty alleviation strategies. J. Rural. Stud. 2017, 52, 66–75. [Google Scholar] [CrossRef]
- World Bank Group. Poverty and Shared Prosperity 2016; World Bank Publications: Washington, DC, USA, 2016. [Google Scholar]
- Li, Y.; Wu, W.; Song, C.; Liu, Y. Spatial-temporal pattern of world poverty reduction and key problems analysis. Bull. Chin. Acad. Sci. 2019, 34, 42–50. [Google Scholar]
- Minot, N.; Baulch, B. Spatial patterns of poverty in Vietnam and their implications for policy. Food Policy 2005, 30, 461–475. [Google Scholar] [CrossRef]
- Kam, S.P.; Hossain, M.; Bose, M.L.; Villano, L.S. Spatial patterns of rural poverty and their relationship with welfare-influencing factors in Bangladesh. Food Policy 2005, 30, 551–567. [Google Scholar] [CrossRef]
- Pabon, L.; Umapathi, N.; Waqavonovono, E. How geographically concentrated is poverty in Fiji? Asia Pac. Viewp. 2012, 53, 205–217. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Y.; Yao, Y.; Hong, Y.; Guan, Q.; Tu, W. Exploring the spatial differentiation of urbanization on two sides of the Hu Huanyong Line -based on nighttime light data and cellular automata. Appl. Geogr. 2019, 112, 102081. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Wang, X. Measurement and spatial analysis of poverty-stricken villages in China. Geogr. Res. 2016, 35, 2298–2308. [Google Scholar]
- Nurkse, R. Problems of Capital Formation in Underdeveloped Countries; The Commercial Press: Beijing, China, 1996. [Google Scholar]
- Yin, J.; Zhang, J. Research on the vicious circle of poverty and the economic development of the Three Gorges Reservoir region. Econ. Geogr. 2008, 4, 631–635. [Google Scholar]
- Sachs, J. The End of Poverty: Economic Possibilities for our Time; Penguin Press: New York, NY, USA, 2005. [Google Scholar]
- Gallup, J.L.; Sachs, J.D.; Mellinger, A.D. The geography of poverty and wealth. Sci. Am. 2001, 284, 70–75. [Google Scholar] [CrossRef]
- Ravallion, M.; Jalan, J. Spatial Poverty Traps? World Bank, Development Research Group: Washington, DC, USA, 1997. [Google Scholar]
- Jalan, J.; Ravallion, M. Geographic poverty traps? A micro model of consumption growth in rural China. J. Appl. Econom. 2002, 17, 329–346. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, Y. A geographic identification of multidimensional poverty in rural China under the framework of sustainable livelihoods analysis. Appl. Geogr. 2016, 73, 62–76. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, L.; Liu, Y. Land consolidation boosting poverty alleviation in China: Theory and practice. Land Use Policy 2019, 82, 339–348. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y. The geography of poverty: Review and research. J. Rural. Stud. 2019. [Google Scholar] [CrossRef]
- Kolenikov, S.; Shorrocks, A. A decomposition analysis of regional poverty in Russia. Rev. Dev. Econ. 2005, 9, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, Y.; Wang, Y.; Guo, Z.; Zheng, F. Geographical identification of spatial poverty at county scale. Acta Geogr. Sin. 2017, 72, 545–557. [Google Scholar]
- Barbier, E. Poverty, development, and environment. Environ. Dev. Econ. 2010, 15, 635–660. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, W.; Wang, P.; Wang, Y.; Cheng, J.; Ma, C. Local differentiation and alleviation of poverty in underdeveloped areas based on development geography. Acta Geogr. Sin. 2019, 74, 2108–2122. [Google Scholar]
- Ma, Z.; Chen, X.; Jia, Z.; Lv, P. Poor people, or poor area? A geostatistical test for spatial poverty traps. Geogr. Res. 2018, 37, 1997–2010. [Google Scholar]
- Zhang, L.; Dong, Y.; Han, S. An analysis of spatial poverty traps in western ethnic regions. Ethno-Natl. Stud. 2015, 001, 25–35. [Google Scholar]
- Olivia, S.; Gibson, J.; Rozelle, S.; Huang, J.; Deng, X. Mapping poverty in rural China: How much does the environment matter? Environ. Dev. Econ. 2011, 16, 129–153. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.; Mohanty, S.; Subramanian, S. Multilevel geographies of poverty in India. World Dev. 2016, 87, 349–359. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, X.; Chen, H. Multi-scale spatial patterns and influencing factors of rural poverty: A case study in the Liupan Mountain Region, Gansu Province, China. Chin. Geogr. Sci. 2018, 28, 296–312. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Xu, D.; Xie, F.; Liu, E.; Liu, S. The influence factors analysis of households’ poverty vulnerability in southwest ethnic areas of China based on the hierarchical linear model: A case study of Liangshan Yi autonomous prefecture. Appl. Geogr. 2016, 66, 144–152. [Google Scholar] [CrossRef]
- Ren, Z.; Ge, Y.; Wang, J.; Mao, J.; Zhang, Q. Understanding the inconsistent relationships between socioeconomic factors and poverty incidence across contiguous poverty-stricken regions in China: Multilevel modelling. Spat. Stat. 2017, 21, 406–420. [Google Scholar] [CrossRef]
- Okwi, P.O.; Ndeng’e, G.; Kristjanson, P.; Arunga, M.; Notenbaert, A.; Omolo, A.; Henninger, N.; Benson, T.; Kariuki, P.; Owuor, J. Spatial determinants of poverty in rural Kenya. Proc. Natl. Acad. Sci. USA 2007, 104, 16769–16774. [Google Scholar] [CrossRef] [Green Version]
- Pijanowski, B.C.; Iverson, L.R.; Drew, C.A.; Bulley, H.N.N.; Rhemtulla, J.M.; Wimberly, M.C.; Bartsch, A.; Peng, J. Addressing the interplay of poverty and the ecology of landscapes: A Grand Challenge Topic for landscape ecologists? Landsc. Ecol. 2010, 25, 5–16. [Google Scholar] [CrossRef]
- Ramírez, J.M.; Díaz, Y.; Bedoya, J.G. Property tax revenues and multidimensional poverty reduction in Colombia: A spatial approach. World Dev. 2017, 94, 406–421. [Google Scholar] [CrossRef]
- Ward, J.; Kaczan, D. Challenging hydrological panaceas: Water poverty governance accounting for spatial scale in the Niger River Basin. J. Hydrol. 2014, 519, 2501–2514. [Google Scholar] [CrossRef]
- Tan, X.; Jiang, L.; Wang, Z.; An, Y.; Chen, M.; Ren, H. Rural poverty in China from the perspective of geography: Origin, progress and prospect. Prog. Geogr. 2020, 39, 913–923. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, Z.; Wu, S.; Huang, X.; Liu, J.; Sun, J.; Su, S.; Weng, M. Identifying the geographic indicators of poverty using geographically weighted regression: A case study from Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China. Soc. Indic. Res. 2018, 6, 1–24. [Google Scholar] [CrossRef]
- The State Council Information Office of the People’s Republic of China. Progress in Human Rights over the 40 Years of Reform and Opening up in China. 12 December 2018. Available online: http://www.scio.gov.cn/zfbps/ndhf/37884/Document/1643348/1643348.htm (accessed on 3 July 2020).
- Chen, J.; Shen, Y. From basic needs to balanced development: The policy and practical significance of transition to relative poverty standards in rural areas after 2020. J. Nanjing Agric. Univ. 2021, 21, 73–84. [Google Scholar]
- Zhou, Y.; Guo, Z.; Liu, Y. Comprehensive measurement of county poverty and anti-poverty targeting after 2020 in China. Acta Geogr. Sin. 2018, 73, 1478–1493. [Google Scholar]
- Wang, B.; Rosenberg, M.W.; Wang, S.; Yang, P.; Tian, J. Multilevel and spatially heterogeneous factors influencing poor households’ income in a frontier minority area in Northeast China. Complexity 2021, 2021, 14. [Google Scholar] [CrossRef]
- Chen, X.; Pei, Z.; Chen, A.L.; Wang, F.; Shen, K.; Zhou, Q.; Sun, L. Spatial distribution patterns and influencing factors of poverty - a case study on key country from national contiguous special poverty-stricken areas in China. Procedia Environ. Sci. 2015, 26, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Carlos, G. Rural poverty and ethnicity in China. Res. Econ. Inequal. 2017, 23, 221–247. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Liu, G.; Liu, Z. Jinji Dilixue Zhongde Shuliang Fangfa [Quantitative Methods in Economic Geography]; Meteorological Press: Beijing, China, 2012; pp. 130–134. [Google Scholar]
- Wu, P.; Li, T.; Li, W. Spatial differentiation and influencing factors analysis of rural poverty at county scale: A case study of Shanyang county in Shaanxi province, China. Geogr. Res. 2018, 37, 593–606. [Google Scholar]
- Wang, F. Quantitative Method and Application Based on GIS; Commercial Press: Beijing, China, 2009. [Google Scholar]
- Luo, Q.; Fan, X.; Gao, G.; Yang, H. Spatial distribution of poverty village and influencing factors in Qinba Mountains. Econ. Geogr. 2016, 36, 126–132. [Google Scholar]
- Zhou, Y.; Guo, Y.; Liu, Y. Areal types and their development paths in rural China. Geogr. Res. 2019, 38, 467–481. [Google Scholar]
- Wen, Q.; Shi, L.; Ma, C.; Wang, Y. Spatial heterogeneity of multidimensional poverty at the village level: Loess Plateau. Acta Geogr. Sin. 2018, 73, 1850–1864. [Google Scholar]
- Yang, R.; Liu, Y.; Long, H.; Chen, C. Spatial-temporal characteristics of rural residential land use change and spatial directivity identification based on grid in the Bohai Rim in China. Geogr. Res. 2015, 34, 1077–1087. [Google Scholar]
- Liu, Y.; Li, J. Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China. Acta Geogr. Sin. 2017, 72, 161–173. [Google Scholar]
- Hou, M.; Deng, Y.; Yao, S. Spatial agglomeration pattern and driving factors of grain production in China since the reform and opening up. Land 2021, 10, 10. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, S.; Guo, M.; Tian, J.; Zhang, Y. Spatiotemporal differentiation of territorial space development intensity and its habitat quality response in Northeast China. Land 2021, 10, 573. [Google Scholar] [CrossRef]
- Wang, L.; Ke, X.; Abu Hatab, A. Trade-offs between economic benefits and ecosystem services value under Three Cropland Protection Scenarios for Wuhan city in China. Land 2020, 9, 117. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H. Land use transitions and their dynamic mechanism: The case of the Huang-Huai-Hai Plain. J. Geogr. Sci. 2016, 71, 666–679. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.; Charlton, M. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Wang, S.; Tian, J.; Wang, B.; Cheng, L.; Du, G. Regional characteristics and causes of rural poverty in Northeast China from the perspective of targeted poverty alleviation. Sci. Geogr. Sin. 2017, 37, 1449–1458. [Google Scholar]
- Anselin, L.; Florax, R.; Rey, S. Advances in Spatial Econometrics: Methodology, Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Zhou, Y.; Li, X.; Tong, C.; Huang, H. The geographical pattern and differentiational mechanism of rural poverty in China. Acta Geogr. Sin. 2021, 76, 903–920. [Google Scholar]
- Annim, S.K.; Mariwah, S.; Sebu, J. Spatial inequality and household poverty in Ghana. Econ. Syst. 2012, 36, 487–505. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, X. Geographical pattern and mechanism of poverty differentiation in plain areas: A case study of Lixin County, Anhui Province. Sci. Geogr. Sin. 2019, 39, 1592–1601. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, X.; Khongnawang, T.; Arshad, M.; Triantafilis, J. A Vis-NIR spectral library to predict clay in Australian cotton growing soil. Soil Sci. Soc. Am. J. 2018, 82, 1347–1357. [Google Scholar] [CrossRef]
- Zhao, D.; Li, N.; Zare, E.; Wang, J.; Triantafilis, J. Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data. Soil Tillage Res. 2020, 200, 104618. [Google Scholar] [CrossRef]
- Song, B.; Robinson, G.M.; Bardsley, D.K. Measuring multifunctional agricultural landscapes. Land 2020, 9, 260. [Google Scholar] [CrossRef]
Dimensions | Variables | Definition(s) |
---|---|---|
Natural Environment | Average altitude (AA) | Average elevation of a township/village (m). |
Topographic relief (TR) | Range from the lowest to the highest altitude point of the township/village (m). | |
Average slope (AS) | Average slope of a township/village (°). | |
Slope change (SC) | Range from the minimum to maximum slope of the township/village (°). | |
Average rainfall (AR) | Average annual rainfall of a township/village (mm). | |
Rainfall change (RC) | Range from the minimum to maximum of the township/village (mm). | |
Average temperature (AT) | Average annual temperature of a township/village (℃). | |
Transport Location | Distance to nearest national-level road (DNNR) | Distance from a township to the nearest national-level road (km). |
Distance to nearest provincial-level road (DNPR) | Distance from a township to the nearest provincial-level road (km). | |
Distance to nearest county-level road (DNCR) | Distance from a township/village to the nearest county-level road (km). | |
Distance to nearest township-level road (DNTR) | Distance from a township/village to the nearest township-level road (km). | |
Facility Accessibility | Distance to township center (DTC) | Distance from a village to the nearest township center (km). |
Road distance to county center (RDCC) | Distance from a township/village to the nearest county center (km). | |
Travel time to county center (TTCC) | Time needed to travel by car to the nearest county center from a township/village (minute). | |
Distance to Main River (DMR) | Distance from a township/village to the nearest main river (km). | |
Socioeconomic Development | Population size (PS) | Total population of a township/village. |
Population density (PD) | Population per square kilometer of the township. | |
Average arable land (AAL) | Arable land size per capita of a township/village (mu). | |
Urbanization rate (UR) | Proportion of urban population to the total population of a township. |
Scales | Value | ||
---|---|---|---|
County | G | 0.477 | |
Itheil | 0.342 | ||
Value | Contribution | ||
Iinter | 0.217 | 63.45% | |
Iintral | 0.125 | 36.55% | |
Iintral P-SCs | 0.049 | 39.20% | |
Iintral Non-P-SCs | 0.076 | 60.80% | |
Township | G | 0.572 | |
Itheil | 0.710 | ||
Value | Contribution | ||
Iinter | 0.140 | 19.72% | |
Iintral | 0.570 | 80.28% | |
Iintral severe poverty | 0.204 | 35.79% | |
Iintral high poverty | 0.074 | 12.98% | |
Iintral moderate poverty | 0.224 | 39.30% | |
Iintral mild poverty | 0.068 | 11.93% | |
Village | G | 0.618 | |
GP-SCs | 0.473 | ||
GNon-P-SCs | 0.556 | ||
GR-PVs | 0.509 | ||
GNon-R-PVs | 0.642 |
Scales | Weighting Matrix | Moran’s I | z-Statistic | p-Value |
---|---|---|---|---|
Township | Principle of queen contiguity | 0.272 | 3.843 | <0.01 |
Principle of threshold distance | 0.234 | 3.938 | <0.01 | |
Village | Principle of threshold distance | 0.456 | 71.865 | <0.01 |
At the Township Scale (OLS) | At the Village Scale (OLS) | At the Village Scale (SLM) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coef. | S.E. | T-test | Variable | Coef. | S.E. | T-test | Coef. | S.E. | T-test | |
DNNR | 0.47 | 0.10 | 4.55 *** | AA | 0.30 | 0.04 | 6.87 *** | 0.08 | 0.04 | 2.14 ** | |
DNPR | −0.28 | 0.10 | −2.64 ** | TR | −0.11 | 0.05 | −2.07 ** | −0.13 | 0.04 | −3.07 *** | |
PS | 0.56 | 0.11 | 5.01 *** | AS | 0.14 | 0.05 | 2.80 *** | 0.12 | 0.04 | 2.93 *** | |
UR | −0.26 | 0.11 | −2.29 ** | AR | 0.32 | 0.05 | 7.11 *** | 0.14 | 0.04 | 3.65 *** | |
AT | 0.10 | 0.05 | 2.28 ** | −0.04 | 0.04 | −1.14 | |||||
DNCR | −0.14 | 0.04 | −3.40 *** | −0.04 | 0.03 | −1.24 | |||||
TTCC | 0.23 | 0.04 | 5.22 *** | 0.07 | 0.04 | 1.79 * | |||||
PS | 0.36 | 0.03 | 11.68 *** | 0.30 | 0.03 | 11.71 *** | |||||
R2 | 0.45 | R2 | 0.35 | W-Y | 0.72 | 0.04 | 19.38 *** | ||||
Adjusted R2 | 0.42 | Adjusted R2 | 0.34 | R2 | 0.58 | ||||||
LogL | −73.29 | LogL | −945.88 | LogL | −813.79 | ||||||
AIC | 156.58 | AIC | 1909.76 | AIC | 1645.59 | ||||||
SC | 167.53 | SC | 1951.74 | SC | 1687.57 |
Township | Village | |||
---|---|---|---|---|
Test | MI/DF | Statistical value | MI/DF | Statistical value |
Moran’s I (error) | 0.04 | 1.06 | 0.30 | 19.19 *** |
Lagrange multiplier (lag) | 1 | 1.85 | 1 | 345.52 *** |
Robust LM (lag) | 1 | 3.05 * | 1 | 33.39 *** |
Lagrange multiplier (error) | 1 | 0.29 | 1 | 329.57*** |
Robust LM (error) | 1 | 1.49 | 1 | 17.44 *** |
Lagrange multiplier (SARMA) | 2 | 3.34 | 2 | 362.96 *** |
Scale | Variable | YKAP | P-SCs | Non-P-SCs | R-PVs | Non-R-PVs | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PD,U | Rank | PD,U | Rank | PD,U | Rank | PD,U | Rank | PD,U | Rank | ||
Township | DNNR | 0.1753 | 2 | 0.0510 | 4 | 0.0278 | 4 | ||||
DNPR | 0.1290 | 3 | 0.0806 | 3 | 0.0606 | 3 | |||||
PS | 0.2560 | 1 | 0.5103 | 1 | 0.2306 | 1 | |||||
UR | 0.0791 | 4 | 0.1205 | 2 | 0.1443 | 2 | |||||
Village | AA | 0.0209 | 6 | 0.0380 | 3 | 0.0460 | 2 | 0.0602 | 3 | 0.0197 | 6 |
TR | 0.0592 | 4 | 0.0013 | 6 | 0.0257 | 4 | 0.0179 | 6 | 0.0724 | 2 | |
AS | 0.0722 | 3 | 0.0099 | 5 | 0.0160 | 5 | 0.0360 | 4 | 0.0718 | 3 | |
AR | 0.0771 | 2 | 0.0506 | 2 | 0.0374 | 3 | 0.0706 | 2 | 0.0782 | 1 | |
TDCC | 0.0339 | 5 | 0.0289 | 4 | 0.0054 | 6 | 0.0292 | 5 | 0.0394 | 5 | |
PS | 0.1121 | 1 | 0.2965 | 1 | 0.1177 | 1 | 0.3226 | 1 | 0.0423 | 4 |
Scale | Variable | Min. | Mean | Max. | Q1 | Q2 | Q3 |
---|---|---|---|---|---|---|---|
Township | DNNR | 0.17 | 0.47 | 0.72 | 0.38 | 0.49 | 0.56 |
DNPR | −0.52 | −0.26 | 0.23 | −0.32 | −0.30 | −0.23 | |
PS | 0.29 | 0.50 | 0.79 | 0.43 | 0.51 | 0.55 | |
UR | −0.41 | −0.21 | −0.15 | −0.23 | −0.21 | −0.19 | |
Village | AA | −0.34 | 0.10 | 0.76 | −0.08 | −0.01 | 0.19 |
TR | −0.48 | −0.08 | 0.17 | −0.16 | −0.06 | 0.01 | |
AS | −0.16 | 0.06 | 0.61 | 0.00 | 0.01 | 0.06 | |
AR | −1.06 | 0.13 | 1.67 | −0.07 | 0.07 | 0.50 | |
TDCC | −0.46 | 0.09 | 0.41 | 0.03 | 0.07 | 0.21 | |
PS | 0.05 | 0.27 | 1.48 | 0.07 | 0.13 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Tian, J.; Yang, P.; He, B. Multi-Scale Features of Regional Poverty and the Impact of Geographic Capital: A Case Study of Yanbian Korean Autonomous Prefecture in Jilin Province, China. Land 2021, 10, 1406. https://doi.org/10.3390/land10121406
Wang B, Tian J, Yang P, He B. Multi-Scale Features of Regional Poverty and the Impact of Geographic Capital: A Case Study of Yanbian Korean Autonomous Prefecture in Jilin Province, China. Land. 2021; 10(12):1406. https://doi.org/10.3390/land10121406
Chicago/Turabian StyleWang, Binyan, Junfeng Tian, Peifeng Yang, and Baojie He. 2021. "Multi-Scale Features of Regional Poverty and the Impact of Geographic Capital: A Case Study of Yanbian Korean Autonomous Prefecture in Jilin Province, China" Land 10, no. 12: 1406. https://doi.org/10.3390/land10121406
APA StyleWang, B., Tian, J., Yang, P., & He, B. (2021). Multi-Scale Features of Regional Poverty and the Impact of Geographic Capital: A Case Study of Yanbian Korean Autonomous Prefecture in Jilin Province, China. Land, 10(12), 1406. https://doi.org/10.3390/land10121406