Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Sources and Processing
2.3. Land Suitability Evaluation of Crops
2.3.1. Evaluation Indicators and Criteria
2.3.2. Evaluation Indicators Weight
2.3.3. Comprehensive Score of Land Suitability
2.4. Cultivated Land Use Layout Adjustment Model
3. Results and Discussion
3.1. Planting Suitability of Food Crops
3.1.1. Planting Suitability of Rice
3.1.2. Planting Suitability of Maize
3.1.3. Planting Suitability of Soybean
3.2. Optimized Layout of Food Crops
3.3. Adjustment Plan of CLUL
3.3.1. Distribution of CLULA Areas
3.3.2. Implementation Unit of CLULA
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grainger, A. National land use morphology: Patterns and possibilities. Geography 1995, 80, 235–245. [Google Scholar]
- Chen, R.S.; Ye, C.; Cai, Y.L.; Xing, X.S.; Chen, Q. The impact of rural out-migration on land use transition in China: Past, present and trend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y.; Tu, S.; Zhang, Y.; Jiang, Y. Development of land use transitions research in China. J. Geogr. Sci. 2020, 30, 1195–1214. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2017, 70, 94–105. [Google Scholar] [CrossRef]
- Qu, Y.; Long, H. A framework of multi-disciplinary comprehensive research on recessive farmland transition in China. Acta Geogr. Sin. 2018, 73, 1226–1241. [Google Scholar]
- Wang, K.; Lin, C.; Wu, C. Trends and planning choices after china’s urbanization rate reaching above 60%. City Plan. Rev. 2020, 44, 9–17. [Google Scholar]
- Jin, T. The adjustment of China’s grain cropping structure and its effect on the consumption of water and land resources. J. Nat. Resour. 2019, 34, 14–25. [Google Scholar]
- Zhang, Y.; Lei, G.; Zhang, H.; Lin, J. Spatiotemporal dynamics of land and water resources matching of cultivated land use based on micro scale in Naoli River Basin. Trans. Chin. Soc. Agric. Eng. 2019, 35, 185–194. [Google Scholar]
- Kazemi, H.; Akinci, H. A land use suitability model for rainfed farming by Multi-criteria Decision-making Analysis (MCDA) and Geographic Information System (GIS). Ecol. Eng. 2018, 116, 1–6. [Google Scholar] [CrossRef]
- Yin, D.; Li, X.; Li, G.; Zhang, J.; Yu, H. Spatio-Temporal Evolution of Land Use Transition and Its Eco-Environmental Effects: A Case Study of the Yellow River Basin, China. Land 2020, 9, 514. [Google Scholar] [CrossRef]
- Song, G.; Wang, Y.; Lei, G. Effect Mechanism Research of Influential Factors of Cultivated Land Use System Security of Black Soil Region in Songnen High Plain: A Case Study of Bayan County in Heilongjiang Province. J. Nat. Resour. 2014, 2, 13–26. [Google Scholar]
- Akpoti, K.; Kabo-Bah, A.T.; Zwart, S.J. Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Kihoro, J.; Bosco, N.J.; Murage, H. Suitability analysis for rice growing sites using a multicriteria evaluation and gis approach in great Mwea region, Kenya. Springerplus 2013, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Prakash, T.N. Land Suitability Analysis for Agricultural Crops: A Fuzzy Multicriteria Decision Making Approach; Science in Geoinformatics: Enschede, The Netherlands, 2003; pp. 6–13. [Google Scholar]
- Amiri, F.; Shariff, A.R.B.M. Application of geographic information systems in land use suitability evaluation for beekeeping: A case study of Vahregan watershed (Iran). Afr. J. Agric. Res. 2012, 7, 89–97. [Google Scholar]
- Shu, H.; Xiong, P. Reallocation planning of urban industrial land for structure optimization and emission reduction: A practical analysis of urban agglomeration in China’s Yangtze River Delta. Land Use Policy 2019, 81, 604–623. [Google Scholar] [CrossRef]
- Xu, W.; Zeng, Z.; Xu, Z.; Li, X.; Chen, X.; Li, X.; Xiao, R.; Liang, J.; Chen, G.; Lin, A.; et al. Public health benefits of optimizing urban industrial land layout—The case of Changsha, China. Environ. Pollut. 2020, 263, 114388. [Google Scholar] [CrossRef]
- Zeng, L.; Li, J.; Zhou, Z.; Yu, Y. Optimizing land use patterns for the grain for Green Project based on the efficiency of ecosystem services under different objectives. Ecol. Indic. 2020, 114, 106347. [Google Scholar] [CrossRef]
- Wang, Y.; Song, G.; Zhang, H. The Research of Land Use Pattern Optimization on Country Level in Heilongjiang Province. Econ. Geogr. 2016, 36, 147–151. [Google Scholar]
- Lu, M.; Wei, L.; Ge, D.; Sun, D.; Zhang, Z.; Lu, Y. Spatial optimization of rural settlements based on the perspective of appropriateness–domination: A case of Xinyi City. Habitat Int. 2020, 98, 102148. [Google Scholar] [CrossRef]
- Liao, F.H.; Gordon, B.; DePhelps, C.; Saul, D.; Fan, C.; Feng, W. A Land-Based and Spatial Assessment of Local Food Capacity in Northern Idaho, USA. Land 2019, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Yin, G.; Xin, Y.; Xie, S.; Li, G.; Liu, S.; Wang, X. Recessive Transition Mechanism of Arable Land Use Based on the Perspective of Coupling Coordination of Input–Output: A Case Study of 31 Provinces in China. Land 2021, 10, 41. [Google Scholar] [CrossRef]
- Das, B.; Singh, A.; Panda, S.N.; Yasudal, H. Optimal land and water resources allocation policies for sustainable irrigated agriculture. Land Use Policy 2015, 42, 527–537. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Y.; Wu, J. Computers, Environment and Urban Systems Modeling and implementation of classification rule discovery by ant colony optimisation for spatial land-use suitability assessment. Comput. Environ. Urban Syst. 2011, 35, 308–319. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Liu, Y.; Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the Yanhe watershed. Land Use Policy 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Bojorquez-Tapia, L.A.; Diaz-Mondragon, S.; Ezcurra, E. GIS-based approach for participatory decision making and land suitability assessment. Int. J. Geogr. Inf. Sci. 2001, 15, 129–151. [Google Scholar] [CrossRef]
- Elsheikh, R.; Mohamed Shariff, A.R.B.; Amiri, F.; Ahmad, N.B.; Balasundram, S.K.; Soom, M.A.M. Agriculture Land Suitability Evaluator (ALSE): A decision and planning support tool for tropical and subtropical crops. Comput. Electron. Agric. 2013, 93, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 270–277. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Verdoodt, A.; Van, Y.; Delbecque, T.; Tran, N.; Ranst, E. Design of a GIS and multi-criteria based land evaluation procedure for sustainable land-use planning at the regional level. Agric. Ecosyst. Environ. 2015, 200, 1–11. [Google Scholar] [CrossRef]
- Zolekar, R.B.; Bhagat, V.S. Multi-criteria land suitability analysis for agriculture in hilly zone:Remote sensing and GIS approach. Comput. Electron. Agric. 2015, 118, 300–321. [Google Scholar] [CrossRef]
- Cay, T.; Uyan, M. Evaluation of reallocation criteria in land consolidation studies using the Analytic Hierarchy Process (AHP). Land Use Policy 2013, 30, 541–548. [Google Scholar] [CrossRef]
- Jayanthi, M.; Thirumurthy, S.; Samynathan, M.; Manimaran, K.; Duraisamy, M.; Muralidhar, M. Assessment of land and water ecosystems capability to support aquaculture expansion in climate-vulnerable regions using analytical hierarchy process based geospatial analysis. J. Environ. Manag. 2020, 270, 110952. [Google Scholar] [CrossRef]
- Vasu, D.; Srivastava, R.; Patil, N.G.; Tiwary, P.; Chandran, P.; Kumar Singh, S. A comparative assessment of land suitability evaluation methods for agricultural land use planning at village level. Land Use Policy 2018, 79, 146–163. [Google Scholar] [CrossRef]
- Reshmidevi, T.V.; Eldho, T.I.; Jana, R. A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Agric. Syst. 2009, 101, 101–109. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Y.; Wu, J.; Khan, S. Cellular automata-based spatial multi-criteria land suitability simulation for irrigated agriculture. Int. J. Geogr. Inf. Sci. 2011, 25, 131–148. [Google Scholar] [CrossRef]
- Chang, Y.C.; Ko, T.T. An interactive dynamic multi-objective programming model to support better land use planning. Land Use Policy 2014, 36, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Guzman, L.A.; Escobar, F.; Pea, J.; Cardona, R. A cellular automata-based land-use model as an integrated spatial decision support system for urban planning in developing cities: The case of the bogotá region. Land Use Policy 2020, 92, 104445. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Chen, B. Optimization of national food production layout based on comparative advantage index. Energy Procedia 2019, 158, 3846–3852. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Chen, H.; Chen, Z.; Li, M. An agent-based learning-embedded model (ABM-learning) for urban land use planning: A case study of residential land growth simulation in Shenzhen, China. Land Use Policy 2020, 95, 104620. [Google Scholar] [CrossRef]
- Tongur, V.; Ertunc, E.; Uyan, M. Use of the Migrating Birds Optimization (MBO) Algorithm in solving land distribution problem. Land Use Policy 2020, 94, 104550. [Google Scholar] [CrossRef]
- Uyan, M.; Tongur, V.; Ertunc, E. Comparison of different optimization based land reallocation models. Comput. Electron. Agric. 2020, 173, 105449. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, R.; Men, C.; Guo, L. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT. J. Hydrol. 2018, 560, 86–96. [Google Scholar] [CrossRef]
- He, Y.; Yao, Y.; Chen, Y.; Ongaro, L. Regional Land Suitability Assessment for Tree Crops Using Remote Sensing and GIS. In Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM) IEEE, Changsha, China, 19–20 February 2011; pp. 354–363. [Google Scholar]
- Mu, Y. Developing a Suitability Index for Residential Land Use: A Case Study in Dianchi Drainage Area; University of Waterloo: Waterloo, ON, Canada, 2006. [Google Scholar]
- AbdelRahman, M.A.E.; Natarajan, A.; Hegde, R. Assessment of land suitability and capability by integrating remote sensing and GIS for agriculture in Chamarajanagar district, Karnataka, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 125–141. [Google Scholar] [CrossRef] [Green Version]
- FAO. A framework for land evaluation. FAO Soil Bull. 1976, 32, 27–36. [Google Scholar]
- FAO. Guidelines: Land evaluation for rainfed agriculture. FAO Soil Bull. 1983, 52, 237. [Google Scholar]
- FAO. Guidelines: Land evaluation for irrigated agriculture. FAO Soil Bull. 1985, 55, 231. [Google Scholar]
- FAO. Land evaluation: Towards a revised framework. Electron. Publ. Policy Support Branch. 2007, 124, 107. [Google Scholar]
- Liu, Y.; Jiao, L.; Liu, Y.; He, J. A self-adapting fuzzy inference system for the evaluation of agricultural land. Environ. Model. Softw. 2013, 40, 226–234. [Google Scholar] [CrossRef]
- Ferretti, V.; Montibeller, G. Key challenges and meta-choices in designing and applying multi-criteria spatial decision support systems. Decis. Support Syst. 2016, 84, 41–52. [Google Scholar] [CrossRef]
- Fischer, G.; Shah, M.; van Velthuizen, H. Agro-ecological zones assessments. In Land Use, Land Cover and Soil Sciences; EOLSS Publishers: Oxford, UK, 2006. [Google Scholar]
- Ren, Y.; Huang, J.; Xue, Y. Thematic Evaluation of Cultivated Land Quality in Maize Superiority Areas in Northeast China; China Agriculture Press: Beijing, China, 2017. [Google Scholar]
- National Agro-Tech Extension and Service Center. Thematic Evaluation of Cultivated Land Quality in Rice Superiority Areas in Northeast China; China Agriculture Press: Beijing, China, 2017. [Google Scholar]
- Liu, D. Study on Evaluation Index System of Climate Suitability of Main Crops. Heilongjiang Agric. Sci. 1991, 4, 9–14. [Google Scholar]
- Sun, Y.; Shen, S. Research Progress in Application of Crop Growth Models. Chin. J. Agrometeorol. 2019, 40, 444–459. [Google Scholar]
- Hou, Y.; Zhang, Y.; Wang, L.; Lv, H.; Song, Y. Climate Suitability Model for Spring Maize in Northeast China. Chin. J. Agrometeorol. 2013, 24, 3207–3212. [Google Scholar]
- Chen, Y.; Li, X.; Liu, X.; Li, S. Coupling Geosimulation and Optimization (GeoSOS) for Zoning and Alerting of Agricultural Conservation Areas. Acta Geogr. Sin. 2010, 65, 1137–1145. [Google Scholar]
- Chen, Y.; Li, X.; Liu, X.; Liu, Y. An agent-based model for optimal land allocation (AgentLA) with a contiguity constraint. Int. J. Geogr. Inf. Sci. 2010, 24, 1269–1288. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar]
Factors | Indicators | Soybean | Maize | Rice |
---|---|---|---|---|
Criteria and Weights (a-b, c, d, w) | ||||
Climatic factors | Daily mean temperature during the growth period* (°C) | 20−23, 15, 25, 0.0941 | 20−23, 16, 28, 0.0797 | 22−24, 16, 28, 0.0678 |
Precipitation during the growth period* (mm) | 450−500, 270, 680, 0.1078 | 450−500, 220, 630, 0.1448 | -, -, -, 0.1231 | |
≥10 °C accumulated temperature* (°C) | >2500, 2000, -, 0.2467 | >2800, 2300, -, 0.2630 | >2600, 2300, -, 0.2237 | |
Terrain factors | Slope* (%) | 0-8, -, 30, 0.0419 | 0-8, -, 30, 0.0295 | 0-2, -, 8, 0.1827 |
landform type* | -, -, -, 0.0839 | -, -, -, 0.0886 | -, -, -, 0.0609 | |
Soil factors | Soil texture* | -, -, -, 0.0613 | -, -, -, 0.0727 | -, -, -, 0.0121 |
Soil thickness * (cm) | >50, -, -, 0.0568 | > 50, -, -, 0.0340 | >100, -, -, 0.0383 | |
Organic matter (g/kg) | -, -, -, 0.0305 | -, -, -, 0.0340 | -, -, -, 0.0121 | |
Available potassium (mg/kg) | -, -, -, 0.0146 | -, -, -, 0.0139 | -, -, -, 0.0050 | |
Available phosphorus (mg/kg) | -, -, -, 0.0146 | -, -, -, 0.0139 | -, -, -, 0.0050 | |
pH* | 6.0−6.5, 5.2, 7.5, 0.1101 | 5.0−7.0, 5.2, 8.0, 0.1076 | 5.5−6.0, 5.2, 8.2, 0.0258 | |
Management factors | Irrigation potential | -, -, -, 0.0386 | -, -, -, 0.0259 | -, -, -, 0.0841 |
Drainage capacity | -, -, -, 0.0551 | -, -, -, 0.0445 | -, -, -, 0.0841 | |
Farming convenience | -, -, -, 0.0092 | -, -, -, 0.0075 | -, -, -, 0.0146 | |
Field shape regularity | -, -, -, 0.0183 | -, -, -, 0.0201 | -, -, -, 0.0319 | |
Shelterbelt density | -, -, -, 0.0165 | -, -, -, 0.0201 | -, -, -, 0.0290 |
Target Layer | Consistency Ratio | Factor Layer | Consistency Ratio |
---|---|---|---|
Planting Suitability of Rice | 0.0304 | Climatic factors | 0.0088 |
Terrain factors | 0.0000 | ||
Soil factors | 0.0299 | ||
Management factors | 0.0214 | ||
Planting Suitability of Maize | 0.0579 | Climatic factors | 0.0088 |
Terrain factors | 0.0000 | ||
Soil factors | 0.0348 | ||
Management factors | 0.0308 | ||
Planting Suitability of Soybean | 0.0172 | Climatic factors | 0.0176 |
Terrain factors | 0.0000 | ||
Soil factors | 0.0594 | ||
Management factors | 0.0292 |
Suitability | Classification | N | S4 | S3 | S2 | S1 |
score | 0 | (0,75] | (75,80] | (80,85] | (85,100] | |
Rice | Area (km2) | 6798.41 | 694.89 | 475.09 | 286.37 | 52.66 |
Proportion (%) | 81.84 | 8.36 | 5.72 | 3.45 | 0.63 | |
Soybean | Area (km2) | 1051.28 | 62.13 | 1375.34 | 4671.95 | 1146.73 |
Proportion (%) | 12.65 | 0.75 | 16.56 | 56.24 | 13.80 | |
Maize | Area (km2) | 0.02 | 1572.16 | 3317.53 | 3318.62 | 99.10 |
Proportion (%) | 0.00 | 18.93 | 39.93 | 39.95 | 1.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, G.; Zhang, H. Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China. Land 2021, 10, 107. https://doi.org/10.3390/land10020107
Song G, Zhang H. Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China. Land. 2021; 10(2):107. https://doi.org/10.3390/land10020107
Chicago/Turabian StyleSong, Ge, and Hongmei Zhang. 2021. "Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China" Land 10, no. 2: 107. https://doi.org/10.3390/land10020107
APA StyleSong, G., & Zhang, H. (2021). Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China. Land, 10(2), 107. https://doi.org/10.3390/land10020107