Soil Natural Recovery Process and Fagus orientalis Lipsky Seedling Growth after Timber Extraction by Wheeled Skidder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Data Collection
2.3. Data Analysis
3. Results
3.1. Soil Recovery
3.2. Morphology and Growth of Beech Seedlings after Logging
3.3. Architecture of Beech Seedlings after Logging
3.4. Seedling Quality Index (SQI)
3.5. Relationship between Characteristics of Beech Seedlings and Soil Properties
4. Discussion
4.1. Soil Recovery
4.2. Seedling Response
4.3. Relationship between the Soil Properties and Seedling Parameters
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cambi, M.; Certini, G.; Fabiano, F.; Foderi, C.; Laschi, A.; Picchio, R. Impact of wheeled and tracked tractors on soil physical properties in a mixed conifer stand. IForest 2015, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhou, S.; Tan, X. Nationwide Susceptibility Mapping of Landslides in Kenya Using the Fuzzy Analytic Hierarchy Process Model. Land 2020, 9, 535. [Google Scholar] [CrossRef]
- Perez, J.; Salazar, R.C.; Stokes, A. An open access database of plant species useful for controlling soil erosion and substrate mass movement. Ecol. Eng. 2017, 99, 530–534. [Google Scholar] [CrossRef]
- Li, H.; Ding, J.; Zhang, J.; Yang, Z.; Yang, B.; Zhu, Q.; Peng, C. Effects of Land Cover Changes on Net Primary Productivity in the Terrestrial Ecosystems of China from 2001 to 2012. Land 2020, 9, 480. [Google Scholar] [CrossRef]
- Meyer, C.; Lüscher, P.; Schulin, R. Recovery of forest soil from compaction in skid tracks planted with black alder (Alnus glutinosa (L.) Gaertn.). Soil Tillage Res. 2014, 143, 7–16. [Google Scholar] [CrossRef]
- Jourgholami, M.; Ghassemi, T.; Labelle, E.R. Soil physio-chemical and biological indicators to evaluate the restoration of compacted soil following reforestation. Ecol. Indic. 2019, 101, 102–110. [Google Scholar] [CrossRef]
- Horn, R.; Vossbrink, J.; Becker, S. Modern forestry vehicles and their impacts on soil physical properties. Soil Tillage Res. 2004, 79, 207–219. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Ampoorter, E.; Van Nevel, L.; De Vos, B.; Hermy, M.; Verheyen, K. Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. For. Ecol. Manag. 2010, 260, 1664–1676. [Google Scholar] [CrossRef] [Green Version]
- Marchi, E.; Picchio, R.; Mederski, P.S.; Vusić, D.; Perugini, M.; Venanzi, R. Impact of silvicultural treatment and forest operation on soil and regeneration in Mediterranean Turkey oak (Quercus cerris L.) coppice with standards. Ecol. Eng. 2016, 95, 475–484. [Google Scholar] [CrossRef]
- Picchio, R.; Mercurio, R.; Venanzi, R.; Gratani, L.; Giallonardo, T.; Lo Monaco, A.; Frattaroli, A.R. Strip Clear-Cutting Application and Logging Typologies for Renaturalization of Pine Afforestation—A Case Study. Forests 2018, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, L.; Wästerlund, I. Effects of slash reinforcement of strip roads on rutting and soil compaction on a moist fine-grained soil. For. Ecol. Manag. 2007, 252, 118–123. [Google Scholar] [CrossRef]
- Demir, M.; Makineci, E.; Yilmaz, E. Investigation of timber harvesting impacts on herbaceous cover, forest floor and surface soil properties on skid road in an oak (Quercus petrea L.) stand. Build. Environ. 2007, 42, 1194–1199. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A. Effects of skidder passes and slope on soil disturbance in two soil water contents. Croat. J. For. Eng. 2014, 35, 73–80. [Google Scholar]
- Solgi, A.; Naghdi, R.; Tsioras, P.A.; Nikooy, M. Soil compaction and porosity changes caused during the operation of timberjack 450c skidder in Northern Iran. Croat. J. For. Eng. 2015, 36, 217–225. [Google Scholar]
- Picchio, R.; Spina, R.; Calienno, L.; Venanzi, R.; Lo Monaco, A. Forest operations for implementing silvicultural treatments for multiple purposes. Ital. J. Agron. 2016, 11, 156–161. [Google Scholar]
- Tavankar, F.; Bonyad, A.E.; Nikooy, M.; Picchio, R.; Venanzi, R.; Calienno, L. Damages to soil and tree species by cable-skidding in caspian forests of Iran. For. Syst. 2017, 26, e009. [Google Scholar] [CrossRef] [Green Version]
- Jourgholami, M.; Labelle, E.R.; Feghhi, J. Efficacy of leaf litter mulch to mitigate runoff and sediment yield following mechanized operations in the Hyrcanian mixed forests. J. Soils Sediments 2019, 19, 2076–2088. [Google Scholar] [CrossRef]
- Nikooy, M.; Tavankar, F.; Naghdi, R.; Ghorbani, A.; Jourgholami, M.; Picchio, R. Soil impacts and residual stand damage from thinning operations. Int. J. For. Eng. 2020, 31, 1–12. [Google Scholar] [CrossRef]
- Huang, J.; Lacey, S.T.; Ryan, P.J. Impact of forest harvesting on the hydraulic properties of surface soil. Soil Sci. 1996, 161, 79–86. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Soil compaction and growth of woody plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Jamshidi, R.; Jaeger, D.; Raafatnia, N.; Tabari, M. Influence of two ground-based skidding systems on soil compaction under different slope and gradient conditions. Int. J. For. Eng. 2008, 19, 9–16. [Google Scholar] [CrossRef]
- Nikooy, M.; Ahrari, S.; Salehi, A.; Naghdi, R. Effects of rubber-tired skidder and farm tractor on physical properties of soil in plantation areas in the north of Iran. J. For. Sci. 2015, 61, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Cambi, M.; Grigolato, S.; Neri, F.; Picchio, R.; Marchi, E. Effects of forwarder operation on soil physical characteristics: A case study in the Italian alps. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2016, 37, 233–239. [Google Scholar]
- Botta, G.F.; Pozzolo, O.; Bomben, M.; Rosatto, H.; Rivero, D.; Ressia, M.; Tourn, M.; Soza, E.; Vazquez, J. Traffic alternatives for harvesting soybean (Glycine max L.): Effect on yields and soil under a direct sowing system. Soil Tillage Res. 2007, 96, 145–154. [Google Scholar] [CrossRef]
- Kim, J.K.; Onda, Y.; Kim, M.S.; Yang, D.Y. Plot-scale study of surface runoff on well-covered forest floors under different canopy species. Quat. Int. 2014, 344, 75–85. [Google Scholar] [CrossRef]
- Jourgholami, M. Effects of soil compaction on growth variables in Cappadocian maple (Acer cappadocicum) seedlings. J. For. Res. 2018, 29, 601–610. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Nikooy, M.; Pignatti, G.; Venanzi, R.; Lo Monaco, A. Morphology, Growth and Architecture Response of Beech (Fagus orientalis Lipsky) and Maple Tree (Acer velutinum Boiss.) Seedlings to Soil Compaction Stress Caused by Mechanized Logging Operations. Forests 2019, 10, 771. [Google Scholar] [CrossRef] [Green Version]
- DeArmond, D.; Emmert, F.; Lima, A.J.N.; Higuchi, N. Impacts of soil compaction persist 30 years after logging operations in the Amazon Basin. Soil Tillage Res. 2019, 189, 207–216. [Google Scholar] [CrossRef]
- Mohieddinne, H.; Brasseur, B.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Kobaissi, A.; Horen, H. Physical recovery of forest soil after compaction by heavy machines, revealed by penetration resistance over multiple decades. For. Ecol. Manag. 2019, 449, 117472. [Google Scholar] [CrossRef]
- Ebeling, C.; Lang, F.; Gaertig, T. Structural recovery in three selected forest soils after compaction by forest machines in Lower Saxony, Germany. For. Ecol. Manag. 2016, 359, 74–82. [Google Scholar] [CrossRef]
- Von Wilpert, K.; Schaffer, J. Ecological effects of soil compaction and initial recovery dynamics: A preliminary study. Eur. J. For. Res. 2006, 125, 129–138. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A.; Labelle, E.R.; Zenner, E.K. Influence of ground-based skidding on physical and chemical properties of forest soils and their effects on maple seedling growth. Eur. J. For. Res. 2016, 135, 949–962. [Google Scholar] [CrossRef]
- Jourgholami, M.; Fathi, K.; Labelle, E.R. Effects of litter and straw mulch amendments on compacted soil properties and Caucasian alder (Alnus subcordata) growth. New For. 2020, 51, 349–365. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Venanzi, R.; Marchi, E. Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khoramizadeh, A.; Zenner, E.K. Effects of soil compaction on seedling morphology, growth, and architecture of chestnut-leaved oak (Quercus castaneifolia). iForest Biogeosci. For. 2016, 10, 145. [Google Scholar] [CrossRef]
- Labelle, E.R.; Kammermeier, M. Above- and belowground growth response of Picea abies seedlings exposed to varying levels of soil relative bulk density. Eur. J. For. Res. 2019, 138, 705–722. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.K.; White, W.; Ingles, O.G. Geotechnical Engineering; Pitman: Boston, MA, USA, 1983. [Google Scholar]
- Picchio, R.; Neri, F.; Petrini, E.; Verani, S.; Marchi, E.; Certini, G. Machinery-induced soil compaction in thinning two pine stands in central Italy. For. Ecol. Manag. 2012, 285, 38–43. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A.; Zenner, E.K.; Tsioras, P.A.; Nikooy, M. Soil disturbance caused by ground-based skidding at different soil moisture conditions in Northern Iran. Int. J. For. Eng. 2016, 27, 169–178. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Salehi, A.; Ghorbanzadeh, N.; Kahneh, E. Earthworm biomass and abundance, soil chemical and physical properties under different poplar plantations in the north of Iran. J. For. Sci. 2013, 59, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Venanzi, R.; Picchio, R.; Piovesan, G. Silvicultural and logging impact on soil characteristics in Chestnut (Castanea sativa Mill.) Mediterranean coppice. Ecol. Eng. 2016, 92, 82–89. [Google Scholar] [CrossRef]
- Ezzati, S.; Najafi, A.; Rab, M.A.; Zenner, E.K. Recovery of soil bulk density, porosity and rutting from ground skidding over a 20-year period after timber harvesting in Iran. Silva Fenn. 2012, 46, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Jaafari, A.; Najafi, A.; Zenner, E.K. Ground-based skidder traffic changes chemical soil properties in a mountainous Oriental beech (Fagus orientalis Lipsky) forest in Iran. J. Terramech. 2014, 55, 39–46. [Google Scholar] [CrossRef]
- Webb, A.A.; Dragovich, D.; Jamshidi, R. Temporary increases in suspended sediment yields following selective eucalypt forest harvesting. For. Ecol. Manag. 2012, 283, 96–105. [Google Scholar] [CrossRef]
- Rab, M.A. Recovery of soil physical properties from compaction and soil profile disturbance caused by logging of native forest in Victorian Central Highlands, Australia. For. Ecol. Manag. 2004, 191, 329–340. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Jafari, M.; Shabanian, N.; Venanzi, R.; Tavankar, F.; Picchio, R. Soil recovery assessment after timber harvesting based on the sustainable forest operation (SFO) perspective in iranian temperate forests. Sustainability 2020, 12, 2874. [Google Scholar] [CrossRef] [Green Version]
- Alameda, D.; Villar, R. Moderate soil compaction: Implications on growth and architecture in seedlings of 17 woody plant species. Soil Tillage Res. 2009, 103, 325–331. [Google Scholar] [CrossRef]
- Day, S.D.; Bassuk, N.L. A review of the effects of soil compaction and amelioration treatments on landscape trees. J. Arboric. 1994, 20, 9–17. [Google Scholar]
- Bassett, I.E.; Simcock, R.C.; Mitchell, N.D. Consequences of soil compaction for seedling establishment: Implications for natural regeneration and restoration. Austral. Ecol. 2005, 30, 827–833. [Google Scholar] [CrossRef]
- Ampoorter, E.; De Schrijver, A.; De Frenne, P.; Hermy, M.; Verheyen, K. Experimental assessment of ecological restoration options for compacted forest soils. Ecol. Eng. 2011, 37, 1734–1746. [Google Scholar] [CrossRef]
- Self, A.; Ezell, A.W.; Rowe, D.; Schultz, E.B.; Hodges, J.D. Effects of mechanical site preparation on growth of oaks planted on former agricultural fields. Forests 2012, 3, 22–32. [Google Scholar] [CrossRef]
- Cambi, M.; Giannetti, F.; Bottalico, F.; Travaglini, D.; Nordfjell, T.; Chirici, G.; Marchi, E. Estimating machine impact on strip roads via close-range photogrammetry and soil parameters: A case study in central Italy. IForest 2018, 11, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Ponder, F.; Fleming, R.L.; Berch, S.; Busse, M.D.; Elioff, J.D.; Hazlett, P.W.; Kabzems, R.D.; Kranabetter, J.M.; Morris, D.M.; Page-Dumroese, D.; et al. Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons. For. Ecol. Manag. 2012, 278, 35–54. [Google Scholar] [CrossRef]
- Mósena, M.; Dillenburg, L.R. Early growth of Brazilian pine (Araucaria angustifolia [Bertol.] Kuntze) in response to soil compaction and drought. Plant. Soil 2004, 258, 293–306. [Google Scholar] [CrossRef]
- Godefroid, S.; Koedam, N. Interspecific variation in soil compaction sensitivity among forest floor species. Biol. Conserv. 2004, 119, 207–217. [Google Scholar] [CrossRef]
- Waltert, B.; Wiemken, V.; Rusterholz, H.-P.; Boller, T.; Baur, B. Disturbance of forest by trampling: Effects on mycorrhizal roots of seedlings and mature trees of Fagus sylvatica. Plant. Soil 2002, 243, 143–154. [Google Scholar] [CrossRef]
- Brunet, J.; Fritz, Ö.; Richnau, G. Biodiversity in European beech forests-a review with recommendations for sustainable forest management. Ecol. Bull. 2010, 53, 77–94. [Google Scholar]
Age Class of Skid Trail | Replication | District (No. of Compartment) | Skid Trail Length (m) | Skid Trail Density (m ha−1) | Average Elevation (a.s.l. m) | Soil Texture |
---|---|---|---|---|---|---|
SKT10 | 1st | Nav (C. 147) | 1053 | 24.5 | 1550 | Clay loam |
2nd | Nav (C. 237) | 1210 | 29.5 | 1250 | Clay loam | |
3rd | Nav (C. 237) | 1210 | 29.5 | 1250 | Clay loam | |
SKT20 | 1st | Lomir (C. 116) | 1119 | 26.1 | 1300 | Loam |
2nd | Lomir (C. 117) | 1236 | 25.7 | 1350 | Clay loam | |
3rd | Nav (C. 134) | 1140 | 23.4 | 1150 | Loam | |
SKT30 | 1st | Lomir (C. 118) | 1270 | 27.0 | 1350 | Loam |
2nd | Nav (C. 250) | 1245 | 25.5 | 1500 | Loam | |
3rd | Nav (C. 250) | 1245 | 25.5 | 1500 | Clay loam |
Skid Trail | BD (g cm−3) | TP (%) | MP (%) | MIP (%) | PR (MPa) | MC (%) | OC (%) | TN (%) | pH |
---|---|---|---|---|---|---|---|---|---|
Age | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
Slope | 0.000 ** | 0.000 ** | 0.046 * | 0.126 N.S | 0.041 * | 0.246 N.S | 0.035 * | 0.446 N.S | 0.463 N.S |
Age × slope | 0.041 * | 0.044 * | 0.085 N.S | 0.028 * | 0.162 N.S | 0.540 N.S | 0.540 N.S | 0.231 N.S | 0.608 N.S |
Age of Skid Trail | SKT10 | SKT20 | SKT30 | UND | |
---|---|---|---|---|---|
Soil Properties | Slope Class | Value (Mean ± SD) | |||
BD (g cm−3) | LS | 1.16 ± 0.04 a B | 1.08 ± 0.06 b B | 1.01 ± 0.05 c A | 0.93 ± 0.05 d A |
HS | 1.25 ± 0.05 a A | 1.15 ± 0.04 b A | 1.09 ± 0.04 c A | 0.90 ± 0.03 d A | |
TP (%) | LS | 56.2 ± 1.8 c A | 59.2 ± 1.5 b A | 61.9 ± 1.2 b A | 64.9 ± 1.0 a A |
HS | 52.8 ± 1.7 c B | 56.6 ± 1.1 b B | 58.9 ± 1.0 b A | 66.0 ± 1.9 a A | |
MP (%) | LS | 34.2 ± 1.5 b A | 37.1 ± 1.4 b A | 43.5 ± 1.7 a A | 46.5 ± 2.1 a A |
HS | 29.3 ± 1.9 d B | 35.1 ± 1.1 c A | 39.0 ± 1.9 b A | 46.1 ± 1.6 a A | |
MIP (%) | LS | 22.0 ± 1.0 d A | 22.1 ± 0.8 c A | 18.4 ± 1.0 b A | 18.4 ± 2.1 a A |
HS | 23.5 ± 1.0 c A | 21.5 ± 1.1 b A | 19.9 ± 1.3 b A | 19.9 ± 1.5 a A | |
PR (MPa) | LS | 0.43 ± 0.05 a B | 0.36 ± 0.06 b A | 0.30 ± 0.04 c A | 0.27 ± 0.05 c A |
HS | 0.49 ± 0.07 a A | 0.37 ± 0.05 b A | 0.33 ± 0.08 c A | 0.25 ± 0.04 d A | |
MC (%) | LS | 40.1 ± 1.0 b A | 41.6 ± 1.5 b A | 43.4 ± 1.5 a A | 44.3 ± 1.6 a A |
HS | 39.7 ± 1.0 c A | 41.4 ± 1.0 b A | 43.0 ± 1.0 a A | 43.9 ± 1.8 a A | |
OC (%) | LS | 2.70 ± 0.08 c A | 3.02 ± 0.08 b A | 3.80 ± 0.06 a A | 3.90 ± 0.09 a A |
HS | 2.58 ± 0.06 c B | 2.86 ± 0.08 b B | 3.78 ± 0.07 a A | 3.84 ± 0.08 a A | |
TN (%) | LS | 0.26 ± 0.05 c A | 0.38 ± 0.06 b A | 0.47 ± 0.05 a A | 0.51 ± 0.05 a A |
HS | 0.24 ± 0.05 c A | 0.35 ± 0.04 b A | 0.45 ± 0.05 a A | 0.50 ± 0.06 a A | |
pH | LS | 5.60 ± 0.09 b A | 5.62 ± 0.08 b A | 5.83 ± 0.09 a A | 5.90 ± 0.09 a A |
HS | 5.63 ± 0.08 b A | 5.65 ± 0.06 b A | 5.85 ± 0.07 a A | 5.92 ± 0.09 a A |
Skid Trail | SH | SL | SDM | MRL | MRD | LRL | RPD | SDB | RDB | TDB |
---|---|---|---|---|---|---|---|---|---|---|
Age | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
Slope | 0.048 * | 0.042 * | 0.046 * | 0.035 * | 0.045 * | 0.039 * | 0.026 * | 0.039 * | 0.047 * | 0.012 * |
Age × slope | 0.369 N.S | 0.388 N.S | 0.402 N.S | 0.402 N.S | 0.470 N.S | 0.592 N.S | 0.470 N.S | 0.406 N.S | 0.390 N.S | 0.495 N.S |
Age of Skid Trail | SKT10 | SKT20 | SKT30 | UNCO | |
---|---|---|---|---|---|
Seedling Morphology and Growth | Slope Class | Value (Mean ± SD) | |||
SH (cm) | LS | 50.3 ± 1.2 b A | 52.2 ± 1.1 b A | 54.8 ± 1.4 a A | 55.4 ± 1.6 a A |
HS | 46.6 ± 1.0 c B | 50.5 ± 1.0 b A | 54.0 ± 1.1 a A | 55.7 ± 1.2 a A | |
SL (cm) | LS | 47.0 ± 1.8 b A | 48.5 ± 2.0 b A | 50.7 ± 1.6 a A | 51.6 ± 2.3 a A |
HS | 43.2 ± 2.0 c B | 46.3 ± 1.4 b A | 50.0 ± 1.3 a A | 51.9 ± 1.9 a A | |
SDM (mm) | LS | 3.55 ± 0.17 c A | 4.02 ± 0.15 b A | 4.80 ± 0.24 a A | 4.86 ± 0.30 a A |
HS | 3.02 ± 0.11 c B | 3.91 ± 0.18 b A | 4.67 ± 0.15 a A | 4.70 ± 0.25 a A | |
MRL (cm) | LS | 31.5 ± 1.9 c A | 37.1 ± 2.5 b A | 45.4 ± 2.2 a A | 46.6 ± 2.4 a A |
HS | 27.2 ± 2.2 c B | 31.5 ± 2.1 b B | 45.4 ± 1.5 a A | 46.7 ± 2.0 a A | |
MRD (mm) | LS | 3.85 ± 0.10 c A | 4.18 ± 0.14 b A | 4.55 ± 0.10 a A | 4.57 ± 0.14 a A |
HS | 3.71 ± 0.15 c B | 4.16 ± 0.10 b A | 4.60 ± 0.11 a A | 4.64 ± 0.17 a A | |
LRL (cm) | LS | 39.4 ± 2.7 c A | 47.6 ± 2.9 b A | 55.1 ± 3.7 a A | 55.4 ± 3.4 a A |
HS | 36.2 ± 2.1 c B | 43.1 ± 3.2 b B | 53.7 ± 3.6 a A | 54.1 ± 3.7 a A | |
RPD (cm) | LS | 23.1 ± 2.2 c A | 27.7 ± 2.6 b A | 32.1 ± 2.8 a A | 33.4 ± 3.1 a A |
HS | 20.1 ± 2.0 c B | 24.0 ± 2.5 b B | 31.9 ± 1.8 a A | 33.2 ± 3.4 a A | |
SDB (g) | LS | 15.8 ± 2.4 c A | 21.6 ± 3.1 b A | 32.7 ± 2.0 a A | 33.5 ± 2.2 a A |
HS | 11.1 ± 1.5 c B | 17.2 ± 1.6 b B | 30.5 ± 2.0 a A | 31.1 ± 2.6 a A | |
RDB (g) | LS | 10.1 ± 1.0 c A | 14.4 ± 1.0 b A | 20.4 ± 1.6 a A | 21.6 ± 2.4 a A |
HS | 7.0 ± 0.9 c B | 13.0 ± 1.1 b A | 20.1 ± 1.1 a A | 21.1 ± 2.0 a A | |
TDB (g) | LS | 25.9 ± 1.6 c A | 36.0 ± 2.0 b A | 53.1 ± 2.0 a A | 55.1 ± 2.2 a A |
HS | 17.1 ± 1.2 c B | 30.0 ± 1.2 b B | 50.6 ± 1.9 a A | 52.2 ± 2.2 a A |
Skid Trail | RLM | RMR | SMR | RRS | RPL |
---|---|---|---|---|---|
Age | 0.000 ** | 0.296 N.S | 0.000 ** | 0.000 ** | 0.040 * |
Slope | 0.041 * | 0.304 N.S | 0.318 N.S | 0.301 N.S | 0.101 N.S |
Age × slope | 0.258 N.S | 0.508 N.S | 0.250 N.S | 0.196 N.S | 0.166 N.S |
Variable | BD (g cm−3) | PR (MPa) | MC (%) | OC (%) | TN (%) | pH |
---|---|---|---|---|---|---|
Low slope: <15% | ||||||
SH (cm) | 0.095 N.S | 0.090 N.S | 0.012 N.S | 0.010 N.S | 0.011 N.S | 0.011 N.S |
SL (cm) | 0.050 N.S | 0.108 N.S | 0.010 N.S | 0.013 N.S | 0.012 N.S | 0.010 N.S |
SDM (mm) | 0.436 ** | 0.054 N.S | 0.016 N.S | 0.045 N.S | 0.040 N.S | 0.010 N.S |
MRL (cm) | 0.750 ** | 0.633 ** | 0.201 * | 0.240 * | 0.210 * | 0.180 * |
MRD (mm) | 0.321 * | 0.038 N.S | 0.244 * | 0.015 N.S | 0.014 N.S | 0.032 N.S |
LRL (cm) | 0.758 ** | 0.561 ** | 0.455 ** | 0.263 * | 0.284 * | 0.206 * |
RPD (cm) | 0.766 ** | 0.773 ** | 0.530 * | 0.761 ** | 0.417 * | 0.009 N.S |
SDB (g) | 0.664 ** | 0.030 N.S | 0.062 N.S | 0.023 N.S | 0.015 N.S | 0.031 N.S |
RDB (g) | 0.811 ** | 0.532 ** | 0.302 ** | 0.252 * | 0.203 * | 0.188 * |
TDB (g) | 0.701 ** | 0.325 ** | 0.214 * | 0.135 N.S | 0.106 N.S | 0.092 N.S |
Steep slope: ≥15% | ||||||
SH (cm) | 0.202 * | 0.063 N.S | 0.012 N.S | 0.010 N.S | 0.012 N.S | 0.010 N.S |
SL (cm) | 0.240 * | 0.092 N.S | 0.192 * | 0.011 N.S | 0.012 N.S | 0.001 N.S |
SDM (mm) | 0.281 * | 0.038 N.S | 0.055 N.S | 0.053 N.S | 0.044 N.S | 0.010 N.S |
MRL (cm) | 0.844 ** | 0.763 ** | 0.242 * | 0.376 * | 0.219 * | 0.189 * |
MRD (mm) | 0.205 * | 0.042 N.S | 0.246 * | 0.045 N.S | 0.013 N.S | 0.033 N.S |
LRL (cm) | 0.890 ** | 0.709 ** | 0.463 ** | 0.290 * | 0.301 * | 0.214 * |
RPD (cm) | 0.844 ** | 0.884 ** | 0.630 ** | 0.803 ** | 0.439 * | 0.011 N.S |
SDB (g) | 0.766 ** | 0.062 N.S | 0.008 N.S | 0.039 N.S | 0.015 N.S | 0.040 N.S |
RDB (g) | 0.866 ** | 0.706 ** | 0.411 ** | 0.274 * | 0.205 * | 0.193 * |
TDB (g) | 0.759 ** | 0.403 ** | 0.200 * | 0.109 N.S | 0.097 N.S | 0.101 N.S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavankar, F.; Picchio, R.; Nikooy, M.; Jourgholami, M.; Naghdi, R.; Latterini, F.; Venanzi, R. Soil Natural Recovery Process and Fagus orientalis Lipsky Seedling Growth after Timber Extraction by Wheeled Skidder. Land 2021, 10, 113. https://doi.org/10.3390/land10020113
Tavankar F, Picchio R, Nikooy M, Jourgholami M, Naghdi R, Latterini F, Venanzi R. Soil Natural Recovery Process and Fagus orientalis Lipsky Seedling Growth after Timber Extraction by Wheeled Skidder. Land. 2021; 10(2):113. https://doi.org/10.3390/land10020113
Chicago/Turabian StyleTavankar, Farzam, Rodolfo Picchio, Mehrdad Nikooy, Meghdad Jourgholami, Ramin Naghdi, Francesco Latterini, and Rachele Venanzi. 2021. "Soil Natural Recovery Process and Fagus orientalis Lipsky Seedling Growth after Timber Extraction by Wheeled Skidder" Land 10, no. 2: 113. https://doi.org/10.3390/land10020113
APA StyleTavankar, F., Picchio, R., Nikooy, M., Jourgholami, M., Naghdi, R., Latterini, F., & Venanzi, R. (2021). Soil Natural Recovery Process and Fagus orientalis Lipsky Seedling Growth after Timber Extraction by Wheeled Skidder. Land, 10(2), 113. https://doi.org/10.3390/land10020113