The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Analyzed Parameters
2.4. Statistics
3. Results and Discussions
3.1. Soybean Yield in Relation to the Experimental Factors
3.1.1. Climate and Soybean Yield
3.1.2. Tillage and Soybean Yield
3.1.3. Fertilizers and Soybean Yield
3.1.4. Soybean Density and Yield
3.2. Soybean Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: A typology. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 85–114. [Google Scholar] [CrossRef]
- Pielke, R.A.; Adegoke, J.O.; Chase, T.N.; Marshall, C.H.; Matsui, T.; Niyogi, D. A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agric. For. Meteorol. 2007, 142, 234–254. [Google Scholar] [CrossRef]
- Rickards, L.; Howden, S.M. Transformational adaptation: Agriculture and climate change. Crop Pasture Sci. 2012, 63, 240–250. [Google Scholar] [CrossRef]
- Michler, J.D.; Baylis, K.; Arends-Kuenning, M.; Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econ. Manag. 2019, 93, 148–169. [Google Scholar] [CrossRef]
- Anwar, M.R.; Liu, D.L.; Macadam, I.; Kelly, G. Adapting agriculture to climate change: A review. Theor. Appl. Climatol. 2013, 113, 225–245. [Google Scholar] [CrossRef]
- Neset, T.S.; Wiréhn, L.; Opach, T.; Glaas, E.; Linnér, B.O. Evaluation of indicators for agricultural vulnerability to climate change: The case of Swedish agriculture. Ecol. Indic. 2019, 105, 571–580. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Muñoz-Rojas, M.; Jordán, A.; Anaya-Romero, M.; Phillips, J.D.; Laurence, J.; Zhang, Z.; Pereira, P.; Fleskens, L.; van der Ploeg, M.; et al. Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma 2020, 374, 114453. [Google Scholar] [CrossRef]
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, climate change and sustainability: The case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Rusu, T.; Bogdan, I.; Moraru, P.I.; Pop, A.I.; Duda, B.M.; Coste, C. 2015. Research results on conservative tillage systems in the last 50 years at USAMV Cluj-Napoca. ProEnvironment 2015, 8, 105–111. [Google Scholar]
- Pandey, D. Agricultural sustainability and climate change nexus. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Singh, P., Singh, R., Srivastava, V., Eds.; Springer: Singapore, 2020; pp. 77–97. [Google Scholar]
- Ghaley, B.B.; Rusu, T.; Sandén, T.; Spiegel, H.; Menta, C.; Visioli, G.; O’Sullivan, L.; Gattin, I.T.; Delgado, A.; Liebig, M.A.; et al. Assessment of benefits of conservation agriculture on soil functions in arable production systems in Europe. Sustainability 2018, 10, 794. [Google Scholar] [CrossRef] [Green Version]
- Moraru, P.I.; Rusu, T.; Guș, P.; Bogdan, I.; Pop, A.I. The role of minimum tillage in protecting environmental resources of the Transylvanian Plain, Romania. Rom. Agric. Res. 2015, 32, 127–135. [Google Scholar]
- Riedl, K.M.; Lee, J.H.; Renita, M.; Martin, S.K.; Schwartz, S.J.; Vodovotz, Y. Isoflavone profiles, phenol content, and antioxidant activity of soybean seeds as influenced by cultivar and growing location in Ohio. J. Sci. Food Agric. 2007, 87, 1197–1206. [Google Scholar] [CrossRef]
- Natarajan, S.; Luthria, D.; Bae, H.; Lakshman, D.; Mitra, A. Transgenic soybeans and soybean protein analysis: An overview. J. Agric. Food Chem. 2013, 61, 11736–11743. [Google Scholar] [CrossRef] [PubMed]
- Cheţan, C.; Rusu, T.; Cheţan, F.; Şimon, A. Research regarding the influence of the weed control treatments on production and qualitative indicators of the Soybean cultivated in minimum tillage system. Bull. UASVM Agric. 2016, 73, 170–175. [Google Scholar] [CrossRef] [Green Version]
- MADR. Ministry of Agriculture and Rural Development. 2020. Available online: https://www.madr.ro/culturi-de-camp/plante-tehnice/soia.html (accessed on 25 January 2021).
- IDH and IUCN NL. European Soy Monitor. Researched by B. Kuepper and M. Riemersma of Profundo. Coordinated by N. Sleurink of IDH, The Sustainable Trade Initiative and H. van den Hombergh of IUCN National Committee of the Netherlands. 2019. Available online: https://www.idhsustainabletrade.com/uploaded/2019/04/European-Soy-Monitor.pdf (accessed on 25 January 2021).
- Chen, S.; Chen, X.; Xu, J. Impacts of climate change on corn and soybean yields in China. In Proceedings of the 2013 Annual Meeting, Washington, DC, USA, 4–6 August 2013; No 149739; Agricultural and Applied Economics Association: 2013. Available online: https://econpapers.repec.org/scripts/showcites.pf?h=repec:ags:aaea13:149739 (accessed on 26 September 2020).
- Kováč, L.; Jakubová, J.; Šariková, D. Effect of tillage system and soil conditioner application on soybean (Glycine max (L.) Merrill.) and its crop management economic indicators. Agriculture 2014, 60, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, R.I.; Siemens, J.C.; Bullock, D.G. Growth analysis of soybean under no-tillage and conventional tillage systems. Agron. J. 1999, 91, 928–933. [Google Scholar] [CrossRef]
- Chețan, C. Research on Weed Control in Soybean Cultivation under Conventional and Conservative Agriculture. Ph.D. Thesis, USAMV, Cluj-Napoca, Romania, 2015; p. 150. [Google Scholar]
- Landriscini, M.R.; Galantini, J.A.; Duval, M.E.; Capurro, J.E. Nitrogen balance in a plant-soil system under different cover crop-soybean cropping in Argentina. Appl. Soil Ecol. 2019, 133, 124–131. [Google Scholar] [CrossRef]
- Rusu, T.; Bogdan, I.; Chețan, F.; Szajdak, L.W.; Moraru, P.I.; Pop, A.I.; Șimon, A.; Deac, V. Influence of soil tillage system on soil moisture and temperature, maize and soybean production. ProEnvironment 2019, 12, 41–46. [Google Scholar]
- Moreira, S.G.; de Kiehl, C.J.; Prochnow, L.I.; Pauletti, V.; Martin-Neto, L.; de Resende, A.V. Soybean macronutrient availability and yield as affected by tillage system. Acta Sci. Agron. 2019, 42, e42973. [Google Scholar] [CrossRef] [Green Version]
- Yared, A.; Purcell, L.C.; Salmeron, M.; Naeve, S.; Casteel, S.N.; Kovács, P.; Archontoulis, S.; Licht, M.; Below, F.; Kandel, H.; et al. Assessing variation in US Soybean seed composition (protein and oil). Front. Plant Sci. 2019, 10, 298–311. [Google Scholar]
- Acharya, B.S.; Dodla, S.; Gaston, L.A.; Darapuneni, M.; Wang, J.J.; Sepat, S.; Bohara, H. Winter cover crops effect on soil moisture and soybean growth and yield under different tillage systems. Soil Tillage Res. 2019, 195, 104430. [Google Scholar] [CrossRef]
- Pokhrel, S.; Kingery, W.L.; Cox, M.S.; Shankle, M.W.; Shanmugam, S.G. Impact of cover crops and poultry litter on selected soil properties and yield in dryland Soybean production. Agronomy 2021, 11, 119. [Google Scholar] [CrossRef]
- Wulanningtyas, H.S.; Gong, Y.; Li, P.; Sakagami, N.; Nishiwaki, J.; Komatsuzaki, M. A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation. Soil Tillage Res. 2021, 205, 104749. [Google Scholar] [CrossRef]
- Mureșan, L.; Clapa, D.; Borsai, O.; Rusu, T.; Wang, T.T.Y.; Park, J.B. Potential impacts of soil tillage system on isoflavone concentration of Soybean as functional food ingredients. Land 2020, 9, 386. [Google Scholar] [CrossRef]
- Avila, A.M.H.; Farias, J.R.B.; Pinto, H.S.; Pilau, F.G. Climatic restrictions for maximizing soybean yields. In A Comprehensive Survey of International Soybean Research-Genetics, Physiology, Agronomy and Nitrogen Relationships; Board, J.E., Ed.; InTech: Rijeka, Croatia, Balkans, 2013; pp. 367–375. [Google Scholar]
- RSST; Florea, N.; Munteanu, I. Romanian System of Soil Taxonomy; Estfalia: Bucharest, Romania, 2012; p. 182. [Google Scholar]
- Ignea, M. 60 Years of Meteorological Observations for the Benefit of Agricultural Research at Scda Turda. Agricultura Transilvană; Ela Design SRL: Turda, Bucharest, Romania, 2017; no. 27, 15–21. [Google Scholar]
- Cheţan, F.; Mureşanu, F.; Malschi, D.; Cheţan, C.; Suciu, L. The influence of different tillage systems on the abundance of pests in soybean cultivation, in the conditions of the Transylvanian Plain. Annual session of scientific communications “Plant protection, interdisciplinary research in the service of sustainable development of agriculture and environmental protection”, ASAS Bucureşti. Rom. J. Plant Prot. 2019, 12, 23–30. [Google Scholar]
- Staging Soybean Growth. Available online: https://www.pioneer.com/us/agronomy/staging-soybean-growth.html (accessed on 25 January 2021).
- ANOVA. PoliFact and Duncan’s Test PC Program for Variant Analyses Made for Completely Randomized Polifactorial Experiences; USAMV: Cluj-Napoca, Romania, 2015. [Google Scholar]
- Reis, L.; Silva, C.M.S.e.; Bezerra, B.; Mutti, P.; Spyrides, M.H.; Silva, P.; Magalhães, T.; Ferreira, R.; Rodrigues, D.; Andrade, L. Influence of climate variability on soybean yield in MATOPIBA Brazil. Atmosphere 2020, 11, 1130. [Google Scholar] [CrossRef]
- Penalba, O.C.; Bettolli, M.L.; Vargas, W.M. The impact of climate variability on soybean yields in Argentina. Multivariate regression. Meteorol. Appl. 2007, 14, 3–14. [Google Scholar] [CrossRef]
- Ahumada, H.; Cornejo, M. Are Soybean Yields Getting a Free Ride From Climate Change? Evidence From Argentine Time Series. Available online: https://www.preprints.org/manuscript/201811.0387/v1 (accessed on 15 February 2021). [CrossRef] [Green Version]
- Zheng, H.; Chen, L.; Han, X. Response of soybean yield to daytime temperature change during seed filling: A long-term field study in Northeast China. Plant Prod. Sci. 2009, 12, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Kumagay, E.; Yamada, T.; Hasegawa, T. Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus. Food Energy Secur. 2020, e186. [Google Scholar] [CrossRef]
- Choi, D.H.; Ban, H.Y.; Seo, B.S.; Lee, K.J.; Lee, B.W. Phenology and seed yield performance of determinate soybean cultivars grown at elevated temperatures in a temperate region. PLoS ONE 2016, 11, e0165977. [Google Scholar] [CrossRef]
- Llano, M.P.; Vargas, W. Climate characteristics and their relationship with soybean and maize yields in Argentina, Brazil and United States. Int. J. Climatol. 2016, 36, 1471–1483. [Google Scholar] [CrossRef]
- Haskett, J.D.; Pachepsky, Y.A.; Acock, B. Effect of climate and atmospheric change on soybean water stress: A study of Iowa. Ecol. Model. 2000, 135, 265–277. [Google Scholar] [CrossRef]
- Gawęda, D.; Nowak, A.; Haliniarz, M.; Woźniak, A. Yield and economic effectiveness of soybean grown under different cropping systems. Int. J. Plant Prod. 2020, 14, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, F.; Sogut, T. The effect of tillage and plant density on yield and yield components of soybean [Glycine max (L.) Merrill] grown under main and double-cropping soybean. Int. Sci. J. Mech. Agric. 2016, 62, 19–23. [Google Scholar]
- Wood, C.W.; Torbert, H.A.; Weaver, D.B. Nitrogen fertilizer effects on soybean growth, yield, and seed composition. J. Prod. Agric. 1993, 6, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Carciochi, W.D.; Schwalbert, R.; Andrade, F.H.; Corassa, G.M.; Carter, P.; Gaspar, A.P.; Schmidt, J.; Ciampitti, I.A. Soybean seed yield response to plant density by yield environment in North America. Agron. J. 2019, 111, 1923–1932. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Hossain, M.; Anwar, P.; Juraimi, A.S. Plant density influence on yield and nutritional quality of Soybean seed. Asian J. Plant Sci. 2011, 10, 125–132. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Balbinot, A.A.; Werner, F.; Zucareli, C.; Franchini, J.C.; Debiasi, H. Plant density and mineral nitrogen fertilization influencing yield, yield components and concentration of oil and protein in soybean grains. Bragantia 2016, 75, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Schutte, M.; Nleya, T. Row spacing and seeding rate effects on soybean seed yield. Soybean Biomass Yield Product. 2018. Available online: https://www.intechopen.com/books/soybean-biomass-yield-and-productivity/row-spacing-and-seeding-rate-effects-on-soybean-seed-yield (accessed on 25 January 2021). [CrossRef] [Green Version]
- Piper, E.L.; Boote, K.I. Temperature and cultivar effects on soybean seed oil and protein concentrations. J. Am. Oil Chem. Soc. 1999, 76, 1233–1241. [Google Scholar] [CrossRef]
Year/Months | Temperature—Monthly Average (°C) | Annual Average | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | ||
2017 | −6.7 | 1.5 | 8.4 | 9.9 | 15.7 | 20.7 | 20.3 | 22.3 | 15.8 | 11.6 | 4.9 | 1.0 | 10.5 |
2018 | 0.2 | −0.3 | 3.3 | 15.3 | 18.7 | 19.4 | 20.4 | 22.3 | 16.7 | 12.7 | 6 | −0.9 | 11.2 |
2019 | −2.2 | 1.7 | 7.3 | 11.3 | 13.6 | 21.8 | 20.4 | 22.1 | 17.1 | 13.5 | 8.9 | 0.8 | 11.4 |
Average 63 years | −3.3 | −0.7 | 4.4 | 10.0 | 15.0 | 18.0 | 19.8 | 19.5 | 15.1 | 9.8 | 4.0 | −1.3 | 9.2 |
Year/Months | Rainfall—Monthly Amount (mm) | Annual Amount | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | ||
2017 | 2.6 | 19.2 | 46.1 | 65.2 | 65.4 | 30.6 | 110.2 | 36.1 | 56.2 | 49.2 | 30.8 | 20.7 | 532.3 |
2018 | 16.7 | 33.4 | 40.9 | 26.2 | 56.8 | 98.3 | 85.7 | 38.2 | 29.8 | 26.8 | 29.6 | 58.3 | 540.7 |
2019 | 46 | 14.7 | 12.3 | 62.6 | 152.4 | 68.8 | 35 | 63.8 | 19.4 | 25.6 | 28.4 | 14.2 | 543.2 |
Average 63 years | 21.8 | 19.8 | 24.1 | 46.2 | 69.6 | 83.9 | 77.1 | 56.1 | 42.2 | 35.5 | 28.5 | 27.3 | 531.4 |
Experimental Factors | A Year | B Soil Tillage System | C Fertilization | D Seeding Rate |
---|---|---|---|---|
Gradations of factor | a1, 2017 a2, 2018 a3, 2019 | b1, CS (conventional system with moldboard ploughing + preparation of the germinal bed + sowing and fertilization) b2, RT (reduced tillage with chisel cultivator + preparation of the germinal bed + sowing and fertilization) | c1 = UF (unfertilized) c2, one rate of fertilization upon sowing with N40 + P40 (40 kg ha−1 of N and 40 kg ha−1 of P) * c3, two rates of fertilization: First upon sowing, with N40 + P40 and the second at V3-V5 phenophase ** with N46 (46 kg ha−1 of N) *** | d1, 45 germinating grains m−2 d2, 55 germinating grains m−2 d3, 65 germinating grains m−2 |
Factors | Yield (kg ha−1) | Protein (g kg−1 DM) | Fat (g kg−1 DM) | Fiber (g kg−1 DM) |
---|---|---|---|---|
Year | ||||
2017 | 2838 c * | 36.53 a | 31.10 b | 7.77 a |
2018 | 2149 a | 37.95 b | 28.02 a | 7.69 a |
2019 | 2283 b | 37.76 b | 28.47 a | 7.71 a |
Tillage | ||||
CS | 2440 a | 37.38 a | 28.30 a | 7.63 a |
RT | 2407 a | 37.44 a | 30.10 a | 7.82 a |
Fertilization | ||||
UF | 2197 a | 37.08 a | 29.21 a | 7.74 a |
One single rate of fertilization: N40 + P40 upon sowing | 2442 b | 37.50 b | 29.26 a | 7.78 a |
Two rates of fertilization: N40 + P40 upon sowing + N46 at V3 stage | 2632 c | 37.70 c | 29.13 a | 7.66 a |
Seeding rate (SR) | ||||
45 gg m−2 | 2085 a | 36.91 a | 29.05 a | 7.45 a |
55 gg m−2 | 2422 b | 37.65 b | 29.95 a | 7.91 c |
65 gg m−2 | 2764 c | 37.73 c | 28.60 a | 7.69 b |
No. | Factors Combination * | Yield (kg ha−1) | Duncan Classification ** |
---|---|---|---|
1 | d1 b2 c1 | 1865.67 | A |
2 | d1 b1 c1 | 2028.83 | B |
3 | d1 b2 c2 | 2065.50 | BC |
4 | d1 b1 c2 | 2118.00 | BCD |
5 | d2 b2 c1 | 2144.67 | BCD |
6 | d1 b1 c3 | 2211.67 | CD |
7 | d1 b2 c3 | 2217.17 | D |
8 | d2 b1 c1 | 2227.83 | D |
9 | d2 b2 c2 | 2434.83 | E |
10 | d3 b2 c1 | 2450.00 | E |
11 | d3 b1 c1 | 2467.33 | E |
12 | d2 b1 c2 | 2491.00 | EF |
13 | d2 b2 c3 | 2611.83 | FG |
14 | d2 b1 c3 | 2624.00 | FG |
15 | d3 b1 c2 | 2725.83 | GH |
16 | d3 b2 c2 | 2816.83 | H |
17 | d3 b2 c3 | 3059.67 | I |
18 | d3 b1 c3 | 3066.33 | I |
No. | Factors Combination * | Fat (g kg−1 DM) | Duncan Classification ** |
---|---|---|---|
1 | d1b1c1 | 24.53 | A |
2 | d2b1c3 | 26.67 | AB |
3 | d3b2c2 | 27.08 | ABC |
4 | d3b1c1 | 27.58 | ABCD |
5 | d1b1c2 | 27.61 | ABCD |
6 | d3b1c2 | 27.74 | ABCD |
7 | d2b1c2 | 27.86 | ABCDE |
8 | d2b1c1 | 28.18 | ABCDE |
9 | d2b2c3 | 28.21 | ABCDE |
10 | d3b2c3 | 29.14 | BCDE |
11 | d2b2c1 | 29.56 | BCDE |
12 | d3b2c1 | 29.78 | BCDE |
13 | d1b1c1 | 29.8 | BCDE |
14 | d3b1c3 | 30.24 | BCDEF |
15 | d1b2c3 | 30.61 | CDEF |
16 | d1b2c1 | 31.11 | DEF |
17 | d1b2c2 | 31.57 | EF |
18 | d2b2c2 | 33.78 | F |
No. | Factors Combination * | Protein (g kg−1 DM) | Duncan Classification ** |
---|---|---|---|
1 | d2b2c1 | 35.4 | A |
2 | d1b1c2 | 36.17 | B |
3 | d2b2c3 | 36.52 | C |
4 | d3b2c1 | 36.69 | D |
5 | d2b1c3 | 36.9 | E |
6 | d1b1c1 | 37.05 | F |
7 | d2b1c2 | 37.12 | F |
8 | d3b2c2 | 37.27 | G |
9 | d1b2c3 | 37.43 | H |
10 | d3b1c1 | 37.6 | I |
11 | d2b1c1 | 37.62 | I |
12 | d3b1c2 | 37.68 | I |
13 | d2b2c2 | 37.88 | J |
14 | d1b2c1 | 38.14 | K |
15 | d1b1c3 | 38.21 | K |
16 | d3b1c3 | 38.41 | L |
17 | d3b2c3 | 38.72 | M |
18 | d1b2c2 | 38.9 | N |
No. | Factors Combination * | Fiber (g kg−1 DM) | Duncan Classification ** |
---|---|---|---|
1 | d2b1c3 | 6.88 | A |
2 | d2b2c3 | 7.15 | AB |
3 | d2b1c1 | 7.24 | AB |
4 | d3b1c2 | 7.32 | BC |
5 | d3b2c2 | 7.48 | BCD |
6 | d3b1c1 | 7.69 | CDE |
7 | d3b2c1 | 7.71 | DE |
8 | d2b2c2 | 7.72 | DE |
9 | d1b1c2 | 7.76 | DE |
10 | d2b1c2 | 7.82 | DE |
11 | d3b1c3 | 7.85 | DE |
12 | d1b1c1 | 7.85 | DE |
13 | d1b2c3 | 7.86 | DE |
14 | d2b2c1 | 7.9 | E |
15 | d1b2c1 | 7.93 | E |
16 | d1b2c2 | 7.99 | E |
17 | d3b2c3 | 8.03 | E |
18 | d1b1c3 | 8.09 | E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chețan, F.; Chețan, C.; Bogdan, I.; Pop, A.I.; Moraru, P.I.; Rusu, T. The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions. Land 2021, 10, 200. https://doi.org/10.3390/land10020200
Chețan F, Chețan C, Bogdan I, Pop AI, Moraru PI, Rusu T. The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions. Land. 2021; 10(2):200. https://doi.org/10.3390/land10020200
Chicago/Turabian StyleChețan, Felicia, Cornel Chețan, Ileana Bogdan, Adrian Ioan Pop, Paula Ioana Moraru, and Teodor Rusu. 2021. "The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions" Land 10, no. 2: 200. https://doi.org/10.3390/land10020200
APA StyleChețan, F., Chețan, C., Bogdan, I., Pop, A. I., Moraru, P. I., & Rusu, T. (2021). The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions. Land, 10(2), 200. https://doi.org/10.3390/land10020200