Earth Scientists and Sustainable Development: Geocomputing, New Technologies, and the Humanities
Abstract
:1. Introduction
2. Geosphere-Anthroposphere Interlinked Dynamics
3. Technological Innovation and Geoenvironmental Data
4. Geocomputing and the Earth Scientist
4.1. Geocomputing and Expert Knowledge
4.2. Geocomputation and Technology
5. Data Imbalance at the Crossroads of Geocomputing, New Technologies and Historical Information
5.1. Data Imbalance
5.2. Earth Science and the Humanities
5.3. New Professionalism?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lade, S.J.; Steffen, W.; de Vries, W.; Carpenter, S.R.; Donges, J.F.; Gerten, D.; Hoff, H.; Newbold, T.; Richardson, K.; Rockström, J. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 2020, 3, 119–128. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 7 February 2021).
- Renn, J. The Evolution of Knowledge; Princeton University Press: Princeton, NJ, USA, 2020. [Google Scholar]
- Chakrabarty, D. The climate of history. Crit. Inq. 2009, 35, 197–222. [Google Scholar] [CrossRef]
- Giardino, J.R.; Houser, C. Introduction to the critical zone. In Developments in Earth Surface Processes; Giardino, J.R., Houser, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 19, pp. 1–13. [Google Scholar]
- Camuffo, D.; Bertolin, C.; Schenal, P. A novel proxy and the sea level rise in Venice, Italy, from 1350 to 2014. Clim. Chang. 2017, 143, 73–86. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs—Population Division. World Population Prospects 2019: Data Booklet; UNODA Occasional Papers No. 31; ST/ESA/SER.A/424; United Nations: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- European Commission—Joint Research Centre. Atlas of the Human Planet (2018) A World of Cities; EUR 29497 EN; European Commission: Luxembourg, 2018; ISBN 978-92-79-98185-2. [Google Scholar] [CrossRef]
- European Commission—Joint Research Centre. Atlas of the Human Planet 2019—A Compendium of Urbanization Dynamics in 239 Countries; EUR 30010; European Commission: Luxembourg, 2020; ISBN 978-92-76-17418-9. [Google Scholar] [CrossRef]
- Lewis, S.L.; Maslin, M.A. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Trischler, H. The Anthropocene: A Challenge for the History of Science, Technology, and the Environment. NTM Zeitschrift für Geschichte der Wissenschaften. Tech. Medizin 2016, 24, 309–335. [Google Scholar]
- Moore, J.W. Anthropocene or Capitalocene? Nature, History and the Crisis of Capitalism; Kairos: Oakland, CA, USA, 2016. [Google Scholar]
- Yusoff, K. A Billion Black Anthropocenes or None; University of Minnesota Press: Minneapolis, MN, USA, 2018. [Google Scholar]
- Crutzen, P.J.; Stoermer, E.F. The Anthropocene. Glob. Chang. Newsl. 2000, 41, 17–18. [Google Scholar]
- Zalasiewicz, J.; Waters, C.N.; Williams, M.; Summerhayes, C.P. The Anthropocene as a Geological Time Unit: A Guide to the Scientific Evidence and Current Debate; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Phillips, J.D. Sources of nonlinearity and complexity in geomorphic systems. Prog. Phys. Geogr. Earth Environ. 2003, 27, 1–23. [Google Scholar] [CrossRef]
- Scott, C.A.; Buechler, S.J. Iterative driver-response dynamics of human-environment interactions in the Arizona-Sonora borderlands. Ecosphere 2013, 4. [Google Scholar] [CrossRef]
- Ison, R. Governing the human–environment relationship: Systemic practice. Curr. Opin. Environ. Sustain. 2018, 33, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Edwards, P.N. “A Vast Machine”: Standards as Social Technology. Science 2004, 304, 827–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eco, U. A Theory of Semiotics; Indiana University Press: London, UK, 1976. [Google Scholar]
- Berger, P.L.; Luckmann, T. The Social Construction of Reality: A Treatise in the Sociology of Knowledge; Anchor Books: New York, NY, USA, 1966. [Google Scholar]
- Bourdieu, P. Social Space and Symbolic Power. Soc. Therory 1989, 7, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Lotman, J. On the semiosphere. Sign Syst. Stud. 2005, 33, 205–229. [Google Scholar] [CrossRef]
- Lotman, J. Culture as Collective Intellect and the Problems of Artificial Intelligence. Dramatic Structure: Poetic and Cognitive Semantics; O’Toole, L.M., Shukman, A., Eds.; Holdan Books: Oxford, UK, 1979; pp. 84–96. [Google Scholar]
- Eco, U. Opera Aperta: Forma e Indeterminazione nelle Poetiche Contemporanee; Bompiani: Milan, Italy, 1992. [Google Scholar]
- Damerow, P.; Lefèvre, W. Abstraction and Representation: Essays on the Cultural Evolution of Thinking; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Kuhn, T.S. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1962. [Google Scholar]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote. Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Dubois, G.; De Cort, M. Mapping 137Cs deposition: Data validation methods and data interpretation. J. Environ. Radioact. 2001, 53, 271–289. [Google Scholar] [CrossRef]
- Meusburger, K.; Evrard, O.; Alewell, C.; Borrelli, P.; Cinelli, G.; Ketterer, M.; Mabit, L.; Panagos, P.; Van Oost, K.; Ballabio, C. Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Zalasiewicz, J.; Zalasiewicz, M. Battle Scars: War Isn’t Just for the History Books. It is for Geology Ones, too. New Sci. 2015, 3014, 36–39. [Google Scholar] [CrossRef]
- Masco, J. Nuclear technoaesthetics: Sensory politics from trinity to the virtual bomb in Los Alamos. Am. Ethnol. 2004, 31, 349–373. [Google Scholar] [CrossRef]
- Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. Soil Pollution: A Hidden Reality; Food and Agriculture Organization: Rome, Italy, 2018; 142p. [Google Scholar]
- World Health Assembly 69. Health and the Environment: Draft Road Map for an Enhanced Global Response to the Adverse Health Effects of Air Pollution—Report by the Secretariat; World Health Organization: Geneva, Switzerland, 2016; Available online: https://apps.who.int/iris/handle/10665/252673 (accessed on 7 February 2021).
- Science Communication Unit—University of the West of England, Bristol. Science for Environment Policy In-Depth Report: Soil Contamination: Impacts on Human Health; European Commission DG Environment: Brussel, Belgium, 2013; Available online: http://ec.europa.eu/science-environment-policy (accessed on 7 February 2021).
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and Human Health: Current Status and Future Needs. Air Soil Water Res. 2020, 13. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Malm, A. Corona, War Communism in the Twenty-First Century Climate, Chronic Emergency; Verso: London, UK; New York, NY, USA, 2020. [Google Scholar]
- Cori, L.; Bianchi, F. COVID-19 and air pollution: Communicating the results of geographic correlation studies. Epidemiol. Prev. 2020, 44, 120–123. [Google Scholar] [CrossRef]
- Cook, J.; Oreskes, N.; Doran, P.T.; Anderegg, W.R.L.; Verheggen, B.; Maibach, E.W.; Carlton, J.S.; Lewandowsky, S.; Skuce, A.G.; Green, S.A.; et al. Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 2016, 11, 48002. [Google Scholar] [CrossRef]
- Friendly, M. The golden age of statistical graphics. Stat. Sci. 2008, 23, 502–535. [Google Scholar] [CrossRef]
- Edwards, P.N. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Latour, B. Why Has Critique Run out of Steam? From Matters of Fact to Matters of Concern. Crit. Inq. 2004, 20, 225–248. [Google Scholar] [CrossRef]
- Oreskes, N.; Conway, E.M. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming; Bloomsbury: London, UK, 2012. [Google Scholar]
- Kusch, M. Scientific Expertise in the Age of Post-Truth. TED Talk in Vienna. 2019. Available online: https://www.ted.com/talks/martin_kusch_scientific_expertise_in_the_age_of_post_truth (accessed on 19 November 2020).
- Omodeo, P.D. The Political and Intellectual Entanglements of Post-Truth: A review of Steve Fuller’s Post-Truth: Knowledge as Power Game. Public Seminar: In the Spirit of The New School for Social Research. 2019. Available online: http://www.publicseminar.org/2019/09/the-political-and-intellectual-entanglements-of-post-truth/ (accessed on 7 February 2021).
- Pereira, P.; Brevik, E.; Trevisani, S. Mapping the environment. Sci. Total. Environ. 2018, 610–611, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Daya, S.B.S.; Cheng, Q.; Agterberg, F. Handbook of Mathematical Geosciences (Fifty Years of IAMG); Springer International Publishing: New York, NY, USA, 2018; pp. 28–914. [Google Scholar]
- Williams, R.S., Jr.; Carter, W.D. ERTS-1, a New Window on Our Planet; Professional Paper 929; U.S. Geological Survey: Washington, DC, USA, 1976; 362p.
- Goetz, A.F.H.; Rock, B.N.; Rowan, L.C. Remote sensing for exploration: An overview. Econ. Geol. 1983, 78, 573–590. [Google Scholar] [CrossRef]
- Musa, Z.N.; Popescu, I.; Mynett, A. A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation. Hydrol. Earth Syst. Sci. 2015, 19, 3755–3769. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Sultan, M.; Wahr, J.; Yan, E. The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth-Sci. Rev. 2014, 136, 289–300. [Google Scholar] [CrossRef]
- Liang, W.; Li, J.; Xu, X.; Zhang, S.; Zhao, Y. A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering 2020, 6, 860–878. [Google Scholar] [CrossRef]
- Lissak, C.; Bartsch, A.; De Michele, M.; Gomez, C.; Maquaire, O.; Raucoules, D.; Roulland, T. Remote Sensing for Assessing Landslides and Associated Hazards. Surv. Geophys. 2020, 41, 1391–1435. [Google Scholar] [CrossRef]
- Piégay, H.; Arnaud, F.; Belletti, B.; Bertrand, M.; Bizzi, S.; Carbonneau, P.; Dufour, S.; Liébault, F.; Ruiz-Villanueva, V.; Slater, L. Remotely sensed rivers in the Anthropocene: State of the art and prospects. Earth Surf. Process. Landforms 2020, 45, 157–188. [Google Scholar] [CrossRef]
- Young, A.; Guza, R.; Matsumoto, H.; Merrifield, M.; O’Reilly, W.; Swirad, Z. Three years of weekly observations of coastal cliff erosion by waves and rainfall. Geomorphology 2021, 375, 107545. [Google Scholar] [CrossRef]
- Glenn, N.F.; Streutker, D.R.; Chadwick, D.J.; Thackray, G.D.; Dorsch, S.J. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 2006, 73, 131–148. [Google Scholar] [CrossRef]
- Trevisani, S.; Rocca, M. MAD: Robust image texture analysis for applications in high resolution geomorphometry. Comput. Geosci. 2015, 81, 78–92. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Teatini, P.; Tosi, L.; Strozzi, T.; Carbognin, L.; Cecconi, G.; Rosselli, R.; Libardo, S. Resolving land subsidence within the Venice Lagoon by persistent scatterer SAR interferometry. Phys. Chem. Earth Parts A/B/C 2012, 40–41, 72–79. [Google Scholar] [CrossRef]
- Valerio, E.; Tizzani, P.; Carminati, E.; Doglioni, C.; Pepe, S.; Petricca, P.; De Luca, C.; Bignami, C.; Solaro, G.; Castaldo, R.; et al. Ground Deformation and Source Geometry of the 30 October 2016 Mw 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling. Remote. Sens. 2018, 10, 1901. [Google Scholar] [CrossRef] [Green Version]
- Romero-Ruiz, A.; Linde, N.; Keller, T.; Or, D. A Review of Geophysical Methods for Soil Structure Characterization. Rev. Geophys. 2018, 56, 672–697. [Google Scholar] [CrossRef] [Green Version]
- Day-Lewis, F.D.; Slater, L.D.; Robinson, J.; Johnson, C.D.; Terry, N.; Werkema, D. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites. J. Environ. Manag. 2017, 204, 709–720. [Google Scholar] [CrossRef]
- Boaga, J. The use of FDEM in hydrogeophysics: A review. J. Appl. Geophys. 2017, 139, 36–46. [Google Scholar] [CrossRef]
- Larose, E.; Carrière, S.; Voisin, C.; Bottelin, P.; Baillet, L.; Guéguen, P.; Walter, F.; Jongmans, D.; Guillier, B.; Garambois, S.; et al. Environmental seismology: What can we learn on earth surface processes with ambient noise? J. Appl. Geophys. 2015, 116, 62–74. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N.; Chen, Z.; Wu, L.; Li, X.; Zhang, L.; Di, L.; Gong, J.; Li, D. Geospatial sensor web: A cyber-physical infrastructure for geoscience research and application. Earth-Sci. Rev. 2018, 185, 684–703. [Google Scholar] [CrossRef]
- Renn, J.; Hyman, M.D. Toward an Epistemic Web: The Globalization of Knowledge in History; Edition Open Access: Berlin, Germany, 2012; pp. 821–838. [Google Scholar]
- Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [Google Scholar] [CrossRef]
- Hicks, A.; Barclay, J.; Chilvers, J.; Armijos, M.T.; Oven, K.; Simmons, P.; Haklay, M. Global Mapping of Citizen Science Projects for Disaster Risk Reduction. Front. Earth Sci. 2019, 7. [Google Scholar] [CrossRef]
- Vohland, K.; Land-Zandstra, A.; Ceccaroni, L.; Lemmens, R.; Perelló, J.; Ponti, M.; Samson, R.; Wagenknecht, K. The Science of Citizen Science; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Mathieu, P.; Aubrecht, C. Earth Observation Open Science and Innovation; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Morozov, E. The Net Delusion: How Not to Liberate the World; Penguin: London, UK, 2012. [Google Scholar]
- Bunz, M. The Silent Revolution: How Digitalization Transforms Knowledge, Work, Journalism and Politics Without Making Too Much Noise; Palgrave Macmillan: New York, NY, USA, 2014. [Google Scholar]
- Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power; Profile Books: London, UK, 2019. [Google Scholar]
- Kanevsky, M.; Maignan, M. Analysis and Modelling of Spatial Environmental; Data EPFL Press: Basel, Switzerland, 2004. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Demicco, R.V.; Klir, G.S. Fuzzy Logic in Geology; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Anderson, M.; Woessner, W.; Hunt, R. Applied Groundwater, Simulation of Flow and Advective Transport Modeling, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015; 630p. [Google Scholar]
- Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou, D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha, M.D.; Muñoz-Marí, J.; et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Pearl, J.; MacKenzie, D. The Book of Why: The New Science of Cause and Effect; Basic Books: New York, NY, USA, 2018. [Google Scholar]
- Omodeo, P.D.; Regier, J. Celestial Physics. Cambridge History of Philosophy of the Scientific Revolution; Jalobeanu, D., Miller, D.M., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Pedersen, O. A Survey of the Almagest; Springer: New York, NY, USA; Dordrecht, The Netherlands, 2011. [Google Scholar]
- Juste, D.; van Dalen, B.; Hasse, D.N.; Burnett, C. Ptolemy’s Science of the Stars in the Middle Ages; Brepols: Turnhout, Belgium, 2020. [Google Scholar]
- Powell, S. “Review” of The Book of Why by Pearl and Mackenzie. J. Multidiscip. Eval. 2018, 14, 47–54. [Google Scholar]
- Heilbroner, R.L. The Worldly Philosophers: The Lives, Times, and Ideas of the Great Economic Thinkers; Touchstone: New York, NY, USA, 1999. [Google Scholar]
- Taleb, N.M. The Black Swan: The Impact of the Highly Improbable; Penguin Books: London, UK, 2010. [Google Scholar]
- Piketty, T. Capital et Idéologie; Éditions du Seuil: Paris, France, 2019. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Rossetto, R.; De Filippis, G.; Borsi, I.; Foglia, L.; Cannata, M.; Criollo, R.; Vázquez-Suñé, E. Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management. Environ. Model. Softw. 2018, 107, 210–230. [Google Scholar] [CrossRef]
- Herzfeld, U.C. Inverse theory in the earth sciences—An introductory overview with emphasis on gandin’s method of optimum interpolation. Math. Geol. 1996, 28, 137–160. [Google Scholar] [CrossRef]
- Maronna, R. Principal Components and Orthogonal Regression Based on Robust Scales. Technometrics 2005, 47, 264–273. [Google Scholar] [CrossRef]
- Guidoboni, E. Ground changes in Italy caused by earthquakes: The contribution of historical data (XII–XVIII centuries). Disasters 1987, 11, 188–194. [Google Scholar] [CrossRef]
- Guidoboni, E.; Comastri, A.; Boschi, E. The “exceptional” earthquake of 3 January 1117 in the Verona area (northern Italy): A critical time review and detection of two lost earthquakes (lower Germany and Tuscany). J. Geophys. Res. Solid Earth 2005, 110, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Trimble, S.W. The use of historical data and artifacts in geomorphology. Prog. Phys. Geogr. Earth Environ. 2008, 32, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Ibsen, M.; Brunsden, D. The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 1996, 15, 241–258. [Google Scholar] [CrossRef]
- Bíl, M.; Krejčí, O.; Dolák, L.; Krejčí, V.; Martínek, J.; Svoboda, J. A chronology of landsliding based on archaeological and documentary data: Pavlovské vrchy Hills, Western Carpathian Flysch Belt. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Rosi, M.; Principe, C.; Vecci, R. The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J. Volcanol. Geotherm. Res. 1993, 58, 151–182. [Google Scholar] [CrossRef]
- Camuffo, D.; Bertolin, C.; Barriendos, M.; Dominguez-Castro, F.; Cocheo, C.; Enzi, S.; Sghedoni, M.; Della Valle, A.; Garnier, E.; Alcoforado, M.; et al. 500-Year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Clim. Chang. 2010, 101, 169–199. [Google Scholar] [CrossRef]
- Camuffo, D.; Bertolin, C.; Craievich, A.; Granziero, R.; Enzi, S. When the Lagoon was frozen over in Venice from A.D. 604 to 2012: Evidence from written documentary sources, visual arts and instrumental readings. Méditer. Rev. Géogr. Pays Méditerr. Varia 2017, 1–68. Available online: https://journals.openedition.org/mediterranee/7983 (accessed on 23 November 2020).
- Castelli, B. On the Measurement of Running Water; Blackman, D.R., Ed.; Translator; Olschki: Florence, Italy, 2007. [Google Scholar]
- Omodeo, P.D.; Trevisani, S.; Babu, S. Benedetto Castelli’s Considerations on the Lagoon of Venice: Mathematical Ex-pertise and Hydro-Geomorphological Transformations in Seventeenth-Century Venice. Earth Sci. Hist. 2020, 39, 420–446. [Google Scholar] [CrossRef]
- Mukerji, C. Impossible Engineering: Technology and Territoriality on the Canal du Midi; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Zamani, M.; Tejedor, A.; Vogl, M.; Kräutli, F.; Valleriani, M.; Kantz, H. Evolution and transformation of early modern cosmological knowledge: A network study. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Hanley, N.; Barbier, E.B. Pricing Nature: Cost–Benefit Analysis and Environmental Policy; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2009. [Google Scholar]
- Kareiva, P.; Tallis, H.; Ricketts, T.H.; Daily, G.C.; Polasky, S. ; Theory and Practice of Mapping Ecosystem Services; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Schröter, M.; Bonn, A.; Klotz, S.; Seppelt, R.; Baessler, C. Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Fisher, M. 2009 Capitalist Realism: Is There No Alternatives; Zero Books: Winchester, UK, 2009. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trevisani, S.; Omodeo, P.D. Earth Scientists and Sustainable Development: Geocomputing, New Technologies, and the Humanities. Land 2021, 10, 294. https://doi.org/10.3390/land10030294
Trevisani S, Omodeo PD. Earth Scientists and Sustainable Development: Geocomputing, New Technologies, and the Humanities. Land. 2021; 10(3):294. https://doi.org/10.3390/land10030294
Chicago/Turabian StyleTrevisani, Sebastiano, and Pietro Daniel Omodeo. 2021. "Earth Scientists and Sustainable Development: Geocomputing, New Technologies, and the Humanities" Land 10, no. 3: 294. https://doi.org/10.3390/land10030294
APA StyleTrevisani, S., & Omodeo, P. D. (2021). Earth Scientists and Sustainable Development: Geocomputing, New Technologies, and the Humanities. Land, 10(3), 294. https://doi.org/10.3390/land10030294