Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services
Abstract
:1. Introduction
2. Methods
2.1. Formulating the Research Questions and Objectives
2.2. Searching the Extant Literature, Screening for Inclusion and Assessing the Quality of Primary Studies
2.3. Extracting Data
- Ecosystem services class:
- MCDM method:
- Participation:
- Biogeography:
- Waterbody type:
- Problem:
2.4. Analysing and Synthesizing Data
3. Results and Discussion
3.1. Overview
3.1.1. Ecosystem Services Class
3.1.2. MCDM Method
3.1.3. Participation
3.1.4. Biogeographic Realms
3.1.5. Waterbody Type
3.1.6. Problems
3.2. Relationships among Attributes
3.2.1. Provisioning FES
3.2.2. Regulating FES
3.2.3. Cultural FES
3.2.4. Supporting FES
3.2.5. Integrated FES and Participation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin-Ortega, J.; Ferrier, R.C.; Gordon, I.J.; Khan, S. Water Ecosystem Services: A Global Perspective; UNESCO Publishing: Paris, France, 2015. [Google Scholar]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- Ormerod, S.J.; Dobson, M.; Hildrew, A.G.; Townsend, C. Multiple stressors in freshwater ecosystems. Freshwater Biol. 2010, 55, 1–4. [Google Scholar] [CrossRef]
- Strayer, D.L.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef] [Green Version]
- United Nations. 2019. Available online: https://www.un.org/en/sections/issues-depth/water/ (accessed on 6 December 2020).
- UN General Assembly. Transforming our World: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 15 February 2021).
- The Economist Intelligence Unit Limited. Blue Peace Index 2019. Available online: https://bluepeaceindex.eiu.com/#/ (accessed on 8 December 2020).
- Pérez Zabaleta, A.; Gracia de Rentería, P.; Ballesteros, M.; Pérez Foguet, A.; Ezbakhe, F.; Guerra-Librero, A. Analysis of Renewal Investment Needs of the Urban Water Cycle in Spain; UNED: Madrid, Spain, 2020. [Google Scholar]
- Pérez Zabaleta, A.; Gracia de Rentería, P.; Escalera-Izquierdo, G. Circular economy as a tool to mitigate the effects of climate change on water resources: The case of Spain. DYNA 2020, 95, 611–614. [Google Scholar]
- Gaget, E.; Le Viol, I.; Pavón-Jordán, D.; Cazalis, V.; Kerbiriou, C.; Jiguet, F.; Abdou, W.A.I. Assessing the effectiveness of the Ramsar Convention in preserving wintering waterbirds in the Mediterranean. Biol. Conserv. 2020, 243, 108485. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Biggs, H.C.; Pollard, S.R. Strategic adaptive management in freshwater protected areas and their rivers. Biol. Conserv. 2011, 144, 1194–1203. [Google Scholar] [CrossRef]
- Suski, C.D.; Cooke, S.J. Conservation of aquatic resources through the use of freshwater protected areas: Opportunities and challenges. Biodivers. Conserv. 2007, 16, 2015–2029. [Google Scholar] [CrossRef]
- Chellaney, B. Water, Peace, and War: Confronting the Global Water Crisis; Rowman & Littlefield: Lanham, MD, USA, 2013. [Google Scholar]
- Marttunen, M.; Hämäläinen, R.P. The decision analysis interview approach in the collaborative management of a large regulated water course. Environ. Manag. 2008, 42, 1026. [Google Scholar] [CrossRef]
- De Castro-Pardo, M.; Urios, V. A critical review of multi-criteria decision making in protected areas. Econ. Agrar. Recurs. Nat.-Agricult. Resour. Econ. 2017, 16, 89–109. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.; Bettinger, P.; Boston, K.; Akbulut, R.; Ucar, Z.; Siry, J.; Merry, K.; Cieszewski, C. Optimisation in forest Management. Curr. For. Rep. 2016, 2, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Balteiro, L.; González-Pachón, J.; Romero, C. Measuring systems sustainability with multi-criteria methods: A critical review. Eur. J. Operat. Res. 2017, 258, 607–616. [Google Scholar] [CrossRef]
- Nordström, E.M.; Nieuwenhuis, M.; Başkent, E.Z.; Biber, P.; Black, K.; Borges, J.G.; Zoccatelli, D. Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios. Eur. J. For. Res. 2019, 138, 561–581. [Google Scholar] [CrossRef]
- Hajkowicz, S.; Collins, K. A review of multiple criteria analysis for water resource planning and management. Water Resour. Manag. 2007, 21, 1553–1566. [Google Scholar] [CrossRef]
- Herath, G. Multi-criteria decision making in water resources planning: What does the evidence show. Rev. Manag. Innov. Creat. 2010, 3, 38–55. [Google Scholar]
- Cai, X.; Lasdon, L.; Michelsen, A.M. Group decision making in water resources planning using multiple objective analysis. J. Water Resour. Plan. Manag. 2004, 130, 4–14. [Google Scholar] [CrossRef]
- Mimi, Z.A.; Sawalhi, B.I. A decision tool for allocating the waters of the Jordan River Basin between all riparian parties. Water Resour. Manag. 2003, 17, 447–461. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Templier, M.; Paré, G. A framework for guiding and evaluating literature reviews. Commun. Assoc. Inform. Syst. 2015, 37, 112–137. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Zimmerman, H.J. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1978, 1, 45–55. [Google Scholar] [CrossRef]
- Saaty, T.L. Axiomatic foundation of the analytic hierarchy process. Manag. Sci. 1986, 32, 841–855. [Google Scholar] [CrossRef]
- Ortiz-Urbina, E.; González-Pachón, J.; Diaz-Balteiro, L. Decision-making in forestry: A review of the hybridisation of multiple criteria and group decision-making methods. Forests 2019, 10, 375. [Google Scholar] [CrossRef] [Green Version]
- Roy, B. Classement et choix en présence de points de vue multiples (La méthode de ELECTRE). Rev. Franc. Inform. Rech. Opération. 1968, 6, 57–75. [Google Scholar]
- Brans, J.P.; Vincke, P.; Mareschal, B. Howtoselect andhow torank projects: The PROMETHEE methods. Eur. J. Operat. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Mendoza, G.A.; Martins, H. Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. For. Ecol. Manag. 2006, 230, 1–22. [Google Scholar] [CrossRef]
- Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Trade-Offs; John Wiley and Sons: New York, NY, USA, 1976. [Google Scholar]
- Levin, S.A. Encyclopedia of Biodiversity, 2nd ed.; Reference Work; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- De la Fuente Fernández, S. Aplicaciones de la Chi-Cuadrado: Tablas de Contingencia. Homogeneidad, Dependencia e Independencia; UAM: Madrid, Spain, 2016. [Google Scholar]
- Ugoni, A.; Walker, B.F. The Chi square test: An introduction. COMSIG Rev. 1995, 4, 61. [Google Scholar] [PubMed]
- Ramsar Convention. Global Wetland Outlook: State of the World’s Wetlands and their Services to People; Ramsar Convention: Ramsar, Iran; Gland, Switzerland, 2018. [Google Scholar]
- De Castro-Pardo, M.; Azevedo, J.C. A Goal Programming Model to Guide Decision-Making Processes towards Conservation Consensuses. Sustainability 2021, 13, 1959. [Google Scholar] [CrossRef]
- Jaber, J.O.; Mohsen, M.S. Evaluation of non-conventional water resources supply in Jordan. Desalination 2001, 136, 83–92. [Google Scholar] [CrossRef]
- Chowdhury, A.; Jha, M.K.; Chowdary, V.M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ. Earth Sci. 2010, 59, 1209. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Mal, B.C. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour. Manag. 2011, 25, 1359–1386. [Google Scholar] [CrossRef]
- Machiwal, D.; Rangi, N.; Sharma, A. Integrated knowledge-and data-driven approaches for groundwater potential zoning using GIS and multi-criteria decision making techniques on hard-rock terrain of Ahar catchment, Rajasthan, India. Environ. Earth Sci. 2015, 73, 1871–1892. [Google Scholar] [CrossRef]
- Çelik, R. Evaluation of groundwater Potential by GIS-Based Multicriteria Decision Making as a Spatial Prediction Tool: Case Study in the Tigris river Batman-Hasankeyf Sub-Basin, Turkey. Water 2019, 11, 2630. [Google Scholar] [CrossRef] [Green Version]
- Rana, V.K.; Suryanarayana, T.M.V. GIS-based multi criteria decision making method to identify potential runoff storage zones within watershed. Ann. GIS 2020, 26, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Swetha, T.V.; Gopinath, G.; Thrivikramji, K.P.; Jesiya, N.P. Geospatial and MCDM tool mix for identification of potential groundwater prospects in a tropical river basin, Kerala. Environ. Earth Sci. 2017, 76, 428. [Google Scholar] [CrossRef]
- Prato, T. Adaptive management of large rivers with special reference to the Missouri river. J. Am. Water Resour. Assoc. 2003, 39, 935–946. [Google Scholar] [CrossRef]
- Hyde, K.M.; Maier, H.R.; Colby, C.B. Reliability-based approach to multicriteria decision analysis for water resources. J. Water Resour. Plan. Manag. 2004, 130, 429–438. [Google Scholar] [CrossRef]
- Arriaza, M.; Gómez-Limón, J.A.; Upton, M. Local water markets for irrigation in southern Spain: A multicriteria approach. Austr. J. Agricult. Resour. Econ. 2002, 46, 21–43. [Google Scholar] [CrossRef]
- López-Baldovin, M.J.; Gutiérrez-Martin, C.; Berbel, J. Multicriteria and multiperiod programming for scenario analysis in Guadalquivir river irrigated farming. J. Operat. Res. Soc. 2006, 57, 499–509. [Google Scholar] [CrossRef]
- Mysiak, J.; Giupponi, C.; Rosato, P. Towards the development of a decision support system for water resource management. Environ. Model. Softw. 2005, 20, 203–214. [Google Scholar] [CrossRef]
- Roozbahani, A.; Ebrahimi, E.; Banihabib, M.E. A framework for ground water management based on Bayesian network and MCDM techniques. Water Resour. Manag. 2018, 32, 4985–5005. [Google Scholar] [CrossRef]
- Zarghami, M.; Szidarovszky, F. Stochastic-fuzzy multi criteria decision making for robust Water Resource Management. Stochast. Environ. Res. Risk Assess. 2009, 23, 329–339. [Google Scholar] [CrossRef]
- Estalaki, S.M.; Kerachian, R.; Nikoo, M.R. Developing water quality management policies for the Chitgar urban Lake: Application of fuzzy social choice and evidential reasoning methods. Environ. Earth Sci. 2016, 75, 404. [Google Scholar] [CrossRef]
- Nayak, R.C.; Panda, R.K. Integrated management of a canal command in a River Delta using multiobjective techniques. Water Resour. Manag. 2001, 15, 383–401. [Google Scholar] [CrossRef]
- Karnib, A. An approach to elaborate priority preorders of water resources projects based on multi-criteria evaluation and fuzzy sets analysis. Water Resour. Manag. 2004, 18, 13–33. [Google Scholar] [CrossRef]
- McPhee, J.; Yeh, W.W.G. Multi-objective optimisation for sustainable groundwater management in semi-arid regions. J. Water Resour. Plan. Manag. 2004, 130, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Srdjevic, B.; Medeiros, Y.D.P.; Faria, A.S. An objective multi-criteria evaluation of water management scenarios. Water Resour. Manag. 2004, 18, 35–54. [Google Scholar] [CrossRef]
- Zarghaami, R. Integrated Water Resour. Manag. in Polrud Irrigation system. Water Resour. Manag. 2006, 20, 215–225. [Google Scholar] [CrossRef]
- Raju, K.S.; Vasan, A. Multi attribute utility theory for irrigation. Water Resour. Manag. 2007, 21, 717–728. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Riesgo, L. Alternative approaches to the construction of a composite indicator of agricultural sustainability: An application to irrigated agriculture in the Duero basin in Spain. J. Environ. Manag. 2009, 90, 3345–3362. [Google Scholar] [CrossRef]
- Opricovic, S. Fuzzy VIKOR with an application to water resources planning. Exp. Syst. Applicat. 2011, 38, 12983–12990. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, J.; Cai, Y.; Tan, Q. Equitable and reasonable freshwater allocation based on a multi-criteria decision making approach with hydrologically constrained bankruptcy rules. Ecol. Indicat. 2017, 73, 203–213. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerda, A.; Lombardo, L.; Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci. Total Environ. 2019, 658, 160–177. [Google Scholar] [CrossRef]
- Bera, K.; Banik, P. Multi-criteria decision analysis (MCDA) for surface water management plan, a case study of Kansachara sub-watershed, West Bengal, India. Water Supply 2019, 19, 2156–2162. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Lee, S.; Tiefenbacher, J.P.; Ngo, P.T.T. Novel Ensemble of MCDM-Artificial Intelligence Techniques for groundwater-Potential Mapping in Arid and Semi-Arid Regions (Iran). Remote Sens. 2020, 12, 490. [Google Scholar] [CrossRef] [Green Version]
- Daneshvar, F.; Nejadhashemi, A.P.; Adhikari, U.; Elahi, B.; Abouali, M.; Herman, M.R.; Rohn, B.G. Evaluating the significance of wetland restoration scenarios on phosphorus removal. J. Environ. Manag. 2017, 192, 184–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, R.; Goosen, H.; Verhoeven, M.L.; Verhoeven, J.T.; Omtzigt, A.Q.A.; Maltby, E. Decision support for integrated wetland management. Environ. Model. Softw. 2005, 20, 215–229. [Google Scholar] [CrossRef]
- Brouwer, R.; Ek, R.V. Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands. Ecol. Econ. 2004, 50, 1–21. [Google Scholar] [CrossRef]
- Levy, J.K. Multiple criteria decision making and decision support systems for flood risk management. Stochast. Environ. Res. Risk Assess. 2005, 19, 438–447. [Google Scholar] [CrossRef]
- Kenyon, W. Evaluating flood risk management options in Scotland: A participant-led multi-criteria approach. Ecol. Econ. 2007, 64, 70–81. [Google Scholar] [CrossRef]
- Levy, J.K.; Hartmann, J.; Li, K.W.; An, Y.; Asgary, A. Multi-criteria decision support systems for flood hazard mitigation and emergency response in urban watersheds 1. J. Am. Water Resour. Assoc. 2007, 43, 346–358. [Google Scholar] [CrossRef]
- Perrone, A.; Inam, A.; Albano, R.; Adamowski, J.; Sole, A. A participatory system dynamics modeling approach to facilitate collaborative flood risk management: A case study in the Bradano river (Italy). J. Hydrol. 2020, 580, 124354. [Google Scholar] [CrossRef]
- Rohde, S.; Hostmann, M.; Peter, A.; Ewald, K.C. Room for rivers: An integrative search strategy for floodplain restoration. Landsc. Urban Plan. 2006, 78, 50–70. [Google Scholar] [CrossRef]
- Randhir, T.; Shriver, D.M. Deliberative valuation without prices: A multiattribute prioritization for watershed ecosystem management. Ecol. Econ. 2009, 68, 3042–3051. [Google Scholar] [CrossRef]
- Gross, C.; Hagy, J.D., III. Attributes of successful actions to restore lakes and estuaries degraded by nutrient pollution. J. Environ. Manag. 2017, 187, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Arondel, C.; Girardin, P. Sorting cropping systems on the basis of their impact on groundwater quality. Eur. J. Operat. Res. 2000, 127, 467–482. [Google Scholar] [CrossRef]
- Chuntian, C.; Chau, K.W. Three-person multi-objective conflict decision in reservoir flood control. Eur. J. Operat. Res. 2002, 142, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Ning, L.M.; Hu, W.B. Application of analytic hierarchy process to assessing the ecological vulnerability of wetlands in the Jianghan Plain. Chin. Geogr. Sci. 2003, 13, 272–276. [Google Scholar] [CrossRef]
- Bana e Costa, C.A.; Da Silva, P.A.; Correia, F.N. Multicriteria evaluation of flood control measures: The case of Ribeira do Livramento. Water Resour. Manag. 2004, 18, 263–283. [Google Scholar] [CrossRef] [Green Version]
- Herath, G. Incorporating community objectives in improved wetland management: The use of the analytic hierarchy process. J. Environ. Manag. 2004, 70, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Olenick, K.L.; Wilkins, N.; Conner, J.R. Increasing off-site water yield and grassland bird habitat in Texas through brush treatment practices. Ecol. Econ. 2004, 49, 469–484. [Google Scholar] [CrossRef]
- Tzionas, P.; Ioannidou, I.A.; Paraskevopoulos, S. A hierarchical fuzzy decision support system for the environmental rehabilitation of Lake Koronia, Greece. Environ. Manag. 2004, 34, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Almasri, M.N.; Kaluarachchi, J.J. Multi-criteria decision analysis for the optimal management of nitrate contamination of aquifers. J. Environ. Manag. 2005, 74, 365–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.S.; Chang, S.P. Interactive fuzzy optimization for an economic and environmental balance in a river system. Water Res. 2005, 39, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Elshorbagy, A. Multicriterion decision analysis approach to assess the utility of watershed modeling for management decisions. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Frazier, P.; Kumar, L.; Macgregor, C.; BLAK, N. Catchment-wide wetland assessment and prioritization using the multi-criteria decision-making method TOPSIS. Environ. Manag. 2006, 38, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Li, R. Dynamic assessment on regional eco-environmental quality using AHP-statistics model—A case study of Chaohu Lake Basin. Chin. Geogr. Sci. 2007, 17, 341–348. [Google Scholar] [CrossRef]
- Qin, X.S.; Huang, G.H.; Chakma, A.; Nie, X.H. A MCDM-based expert system for climate-change impact assessment and adaptation planning. A case study for the Georgia Basin, Canada. Exp. Syst. Applicat. 2008, 34, 2164–2179. [Google Scholar] [CrossRef]
- Olu-Owolabi, B.I.; Agunbiade, F.O.; Oseghe, E.O.; Adebowale, K.O. Fuzzy logic modeling of contamination degree of Ni and V metal species in sediments from the crude oil prospecting area of the Ondo coast, Nigeria. Human Ecol. Risk Assess. Int. J. 2012, 18, 902–918. [Google Scholar] [CrossRef]
- Sun, Y.G.; Zhao, D.Z.; Zhang, F.S.; Wei, B.Q.; Chu, J.L.; Su, X. Spatiotemporal dynamic fuzzy evaluation of wetland environmental pollution risk in Dayang Estuary of Liaoning Province, Northeast China based on remote sensing. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2012, 23, 3180–3186. [Google Scholar]
- Wu, J.; Wu, J.; Wang, X.; Zhong, M. Securing water for wetland conservation: A comparative analysis of policy options to protect a national reserve in China. J. Environ. Manag. 2012, 94, 102–111. [Google Scholar] [CrossRef]
- Sener, E.; Davraz, A. Assessment of GRO vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir lake basin (Isparta, Turkey). Hydrogeol. J. 2013, 21, 701–714. [Google Scholar] [CrossRef]
- Lee, G.; Jun, K.S.; Chung, E.S. Robust spatial flood vulnerability assessment for Han river using fuzzy TOPSIS with α-cut level set. Exp. Syst. Applicat. 2014, 41, 644–654. [Google Scholar] [CrossRef]
- Malekmohammadi, B.; Blouchi, L.R. Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system. Ecol. Indicat. 2014, 41, 133–144. [Google Scholar] [CrossRef]
- Chatterjee, K.; Bandyopadhyay, A.; Ghosh, A.; Kar, S. Assessment of environmental factors causing wetland degradation, using Fuzzy Analytic Network Process: A case study on Keoladeo National Park, India. Ecol. Model. 2015, 316, 1–13. [Google Scholar] [CrossRef]
- McVittie, A.; Norton, L.; Martin-Ortega, J.; Siameti, I.; Glenk, K.; Aalders, I. Operationalizing an ecosystem services-based approach using Bayesian Belief Networks: An application to riparian buffer strips. Ecol. Econ. 2015, 110, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Meraj, G.; Romshoo, S.A.; Yousuf, A.R.; Altaf, S.; Altaf, F. Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat. Hazards 2015, 77, 153–175. [Google Scholar] [CrossRef]
- Shafiee, M.; Saffarian, S.; Zaredar, N. Risk assessment of human activities on protected areas: A case study. Human Ecol. Risk Assess. Int. J. 2015, 21, 1462–1478. [Google Scholar] [CrossRef]
- Walker, D.; Jakovljević, D.; Savić, D.; Radovanović, M. Multi-criterion water quality analysis of the Danube River in Serbia: A visualisation approach. Water Res. 2015, 79, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Abd-El Monsef, H.; Hassan, M.A.; Shata, S. Using spatial data analysis for delineating existing mangroves stands and siting suitable locations for mangroves plantation. Comp. Electron. Agricult. 2017, 141, 310–326. [Google Scholar] [CrossRef]
- Duodu, G.O.; Ogogo, K.N.; Mummullage, S.; Harden, F.; Goonetilleke, A.; Ayoko, G.A. Source apportionment and risk assessment of PAHs in Brisbane RIV sediment, Australia. Ecol. Indicat. 2017, 73, 784–799. [Google Scholar] [CrossRef]
- Man, W.D.; Liu, M.Y.; Wang, Z.M.; Mao, H.; Tian, Y.L.; Jia, M.M.; Ren, C.Y. Dynamics of habitat suitability for waterfowls from 1990 to 2015 in the ecological function zone of Sanjiang Plain, Northeast China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2017, 28, 4083. [Google Scholar]
- Malekmohammadi, B.; Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indicat. 2017, 82, 293–303. [Google Scholar] [CrossRef]
- Rather, M.A.; Kumar, J.S.; Farooq, M.; Rashid, H. Assessing the influence of watershed characteristics on soil erosion susceptibility of Jhelum basin in Kashmir Himalayas. Arab. J. Geosci. 2017, 10, 59. [Google Scholar] [CrossRef]
- Golbarg, F.; Nabi Bidhendi, G.; Hoveidi, H. Environ. Manag. of oil pipelines risks in the wetland areas by Delphi and MCDM techniques: Case of Shadegan international wetland, Iran. Pollution 2018, 4, 195–210. [Google Scholar]
- Maleki, S.; Soffianian, A.R.; Koupaei, S.S.; Pourmanafi, S.; Saatchi, S. Wetland restoration prioritizing, a tool to reduce negative effects of drought; An application of multicriteria-spatial decision support system (MC-SDSS). Ecol. Eng. 2018, 112, 132–139. [Google Scholar] [CrossRef]
- Rahdari, V.; Soffianian, A.R.; Pourmanafi, S.; Ghaiumi, M.H.; Mosadeghi, R.; Amiri, F. A multi-objective approach for land conservation capability evaluation using multi-criterion evaluation models. Appl. Ecol. Environ. Res. 2018, 16, 1353–1367. [Google Scholar] [CrossRef]
- Arabameri, A.; Cerda, A.; Rodrigo-Comino, J.; Pradhan, B.; Sohrabi, M.; Blaschke, T.; Tien Bui, D. Proposing a novel predictive technique for gully erosion susceptibility mapping in arid and semi-arid regions (Iran). Remote Sens. 2019, 11, 2577. [Google Scholar] [CrossRef] [Green Version]
- Bid, S.; Siddique, G. Human risk assessment of Panchet dam in India using TOPSIS and WASPAS multi-criteria decision-making (MCDM) methods. Heliyon 2019, 5, e01956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza Fraga, M.; da Silva, D.D.; Elesbon, A.A.A.; Guedes, H.A.S. Methodological proposal for the allocation of water quality monitoring stations using strategic decision analysis. Environ. Monit. Assess. 2019, 191, 776. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Das, A. Urban expansion induced vulnerability assessment of East Kolkata wetland using Fuzzy MCDM method. Remote Sens. Applicat. Soc. Environ. 2019, 13, 191–203. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Singh, V.P.; He, Y.; Bai, X. An improved index for water quality evaluation in an estuary region: A case study in the Eastern Pearl River Delta, China. Water Policy 2019, 21, 310–325. [Google Scholar] [CrossRef]
- Roy, R.; Majumder, M. Assessment of water quality trends in Loktak Lake, Manipur, India. Environ. Earth Sci. 2019, 78, 383. [Google Scholar] [CrossRef]
- Xu, X.; Sheng, D.; Li, G.; Chen, X.; Wang, X.; Xiao, C.; Hu, C. Comprehensive Assessment of the Water Ecological Security of the Xiangjiang River Basin Based on Physico-chemistry and Organisms Indices. Appl. Ecol. Environ. Res 2019, 17, 4547–4574. [Google Scholar] [CrossRef]
- Akay, H.; Koçyiğit, M.B. Flash flood potential prioritization of sub-basins in an ungauged basin in Turkey using traditional multi-criteria decision-making methods. Soft Comp. 2020, 24, 14251–14263. [Google Scholar] [CrossRef]
- Alamanos, A.; Papaioannou, G. A GIS Multi-Criteria Analysis Tool for a Low-Cost, Preliminary Evaluation of wetland Effectiveness for Nutrient Buffering at Watershed Scale: The Case Study of Grand River, Ontario, Canada. Water 2020, 12, 3134. [Google Scholar] [CrossRef]
- Arabameri, A.; Tiefenbacher, J.P.; Blaschke, T.; Pradhan, B.; Tien Bui, D. Morphometric analysis for soil erosion susceptibility mapping using novel gis-based ensemble model. Remote Sens. 2020, 12, 874. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, R.K.; Chatterjee, N.D.; Das, K. Sub-basin prioritization for assessment of soil erosion susceptibility in Kangsabati, a plateau basin: A comparison between MCDM and SWAT models. Sci. Total Environ. 2020, 734, 139474. [Google Scholar] [CrossRef] [PubMed]
- Ghaleno, M.R.D.; Meshram, S.G.; Alvandi, E. Pragmatic approach for prioritization of flood and sedimentation hazard potential of watersheds. Soft Comput. 2020, 24, 15701–15714. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, A. Wetland conversion risk assessment of East Kolkata Wetland: A Ramsar site using random forest and support vector machine model. J. Clean. Prod. 2020, 275, 123475. [Google Scholar] [CrossRef]
- Popović, M.J.; Gušavac, B.Š.A.; Katić, A.S. Multiattribute Methods as a Means for Solving Ecological Problems in Water Resources—Lake Pollution. In Advances in Operational Research in the Balkans; Springer: Cham, Switzeland, 2020; pp. 77–94. [Google Scholar]
- Sarkar, K.; Majumder, M. Application of AHP-based water quality index for quality monitoring of peri-urban watershed. Environ. Dev. Sustain. 2020, 23, 1780–1798. [Google Scholar] [CrossRef]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Sun, R.; Gong, Z.; Gao, G.; Shah, A.A. Comparative analysis of Multi-Criteria Decision-Making methods for flood disaster risk in the Yangtze River Delta. Int. J. Dis. Risk Reduct. 2020, 51, 101768. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y. The cloud model based stochastic multi-criteria decision making technology for river health assessment under multiple uncertainties. J. Hydrol. 2020, 581, 124437. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, C.L.; Gu, L.W.; Zhang, Y. The evaluation of tourism destination competitiveness by TOPSIS & information entropy–A case in the Yangtze river Delta of China. Tour. Manag. 2011, 32, 443–451. [Google Scholar]
- Tang, C.; Zheng, Q.; Ng, P. A Study on the Coordinative Green Development of Tourist Experience and Commercialization of Tourism at Cultural Heritage Sites. Sustainability 2019, 11, 4732. [Google Scholar] [CrossRef] [Green Version]
- Aiping, Z.; Linsheng, Z.; Yong, X.; Lijuan, D.; Bin, Z. Identifying and mapping wetland-based ecotourism areas in the First Meander of the Yellow River: Incorporating tourist preferences. J. Resour. Ecol. 2015, 6, 21–29. [Google Scholar] [CrossRef]
- Biglarfadafan, M.; Danehkar, A.; Pourebrahim, S.; Shabani, A.A.; Moeinaddini, M. Application of strategic fuzzy assessment for environmental planning; case of bird watch zoning in wetlands. Open J. Geol. 2016, 6, 1380. [Google Scholar] [CrossRef] [Green Version]
- Erfani, M.; Afrougheh, S.; Ardakani, T.; Sadeghi, A. Tourism positioning using decision support system (case study: Chahnime—Zabol, Iran). Environ. Earth Sci. 2015, 74, 3135–3144. [Google Scholar] [CrossRef]
- Balist, J.; Heydarzadeh, H.; Salehi, E. Modeling, evaluation, and zoning of Marivan county ecotourism potential using fuzzy logic, FAHP, and TOPSIS. Geogr. Pannon. 2019, 23, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Maghsoudi, M.; Moradi, A.; Moradipour, F.; Nezammahalleh, M.A. Geotourism Development in World Heritage of the Lut Desert. Geoheritage 2019, 11, 501–516. [Google Scholar] [CrossRef]
- Qureshi, M.E.; Harrison, S.R. A decision support process to compare Riparian revegetation options in Scheu Creek catchment in North Queensland. J. Environ. Manag. 2001, 62, 101–112. [Google Scholar] [CrossRef]
- Eliasson, Å.; Rinaldi, F.M.; Linde, N. Multicriteria decision aid in supporting decisions related to groundwater protection. Environ. Manag. 2003, 32, 589–601. [Google Scholar] [CrossRef]
- Choulak, M.; Marage, D.; Gisbert, M.; Paris, M.; Meinard, Y. A meta-decision-analysis approach to structure operational and legitimate environmental policies–With an application to wetland prioritization. Sci. Total Environ. 2019, 655, 384–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, V.Y.C.; Lin, J.C.L.; Tzeng, G.H. Assessment and improvement of wetlands environmental protection plans for achieving sustainable development. Environ. Res. 2019, 169, 280–296. [Google Scholar] [CrossRef] [PubMed]
- Saha, T.K.; Pal, S. Exploring physical wetland vulnerability of Atreyee river basin in India and Bangladesh using logistic regression and fuzzy logic approaches. Ecol. Indicat. 2019, 98, 251–265. [Google Scholar] [CrossRef]
- Talukdar, S.; Pal, S.; Chakraborty, A.; Mahato, S. Damming effects on trophic and habitat state of riparian wetlands and their spatial relationship. Ecol. Indicat. 2020, 118, 106757. [Google Scholar] [CrossRef]
- Buruso, F.H. Habitat suitability analysis for hippopotamus (H. amphibious) using GIS and remote sensing in Lake Tana and its environs, Ethiopia. Environ. Syst. Res. 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.J.; Dan, X.Q.; Liu, S.H.; Huang, Y.; Shu, Y.; Cao, H.; Wu, Z.B. Protection value evaluation of national wetlands parks in Hunan province, China. J. Appl. Ecol. 2017, 28, 239–249. [Google Scholar]
- Jafari Shalamzari, M.; Zhang, W.; Gholami, A.; Zhang, Z. Runoff Harvesting Site Suitability Analysis for Wildlife in Sub-Desert Regions. Water 2019, 11, 1944. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Wang, Z.; Liu, D.; Li, L.; Ren, C.; Tang, X.; Liu, C. Assessment of habitat suitability for waterbirds in the West Songnen Plain, China, using remote sensing and GIS. Ecol. Eng. 2012, 55, 94–100. [Google Scholar] [CrossRef]
- Kozlov, A.; Kozlova, M.; Skorik, N. A simple harmonic model for FAPAR temporal dynamics in the wetlands of the Volga-Akhtuba floodplain. Remote Sens. 2016, 8, 762. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Dosskey, M.G.; Kang, Y. Choosing between alternative placement strategies for conservation buffers using Borda count. Landsc. Urban Plan. 2016, 153, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Sun, T.; Zhang, H.; Shao, D. Suitable habitat mapping in the Yangtze River Estuary influenced by land reclamations. Ecol. Eng. 2016, 97, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Huang, J.; Huang, Q.; Gao, J.; Wang, S.; Guo, Y. Assessing Aquatic Ecological Health for Lake Poyang, China: Part I Index Development. Water 2018, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Gregory, R.; Wellman, K. Bringing stakeholder values into environmental policy choices: A community-based estuary case study. Ecol. Econ. 2001, 39, 37–52. [Google Scholar] [CrossRef]
- Azarnivand, A.; Hashemi-Madani, F.S.; Banihabib, M.E. Extended fuzzy analytic hierarchy process approach in water and Environ. Manag. (case study: Lake Urmia Basin, Iran). Environ. Earth Sci. 2015, 73, 13–26. [Google Scholar] [CrossRef]
- Derak, M.; Cortina, J.; Taiqui, L. Integration of stakeholder choices and multi-criteria analysis to support land use planning in semiarid areas. Land Use Policy 2017, 64, 414–428. [Google Scholar] [CrossRef] [Green Version]
- Weng, S.Q.; Huang, G.H.; Li, Y.P. An integrated scenario-based multi-criteria decision support system for Water Resource Management and planning–A case study in the Haihe River Basin. Exp. Syst. Applicat. 2010, 37, 8242–8254. [Google Scholar] [CrossRef]
- Dowlatabadi, N.; Banihabib, M.E.; Roozbahani, A.; Randhir, T.O. Enhanced GMCR model for resolving conflicts in a transboundary wetland. Sci. Total Environ. 2020, 744, 140816. [Google Scholar] [CrossRef] [PubMed]
- Väntänen, A.; Marttunen, M. Public involvement in multi-objective water level regulation development projects—evaluating the applicability of public involvement methods. Environ. Impact Assess. Rev. 2005, 25, 281–304. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Cui, W. Fuzzy neural networks enhanced evaluation of wetland surface water quality. Int. J. Comp. Applicat. Technol. 2012, 44, 235–240. [Google Scholar] [CrossRef]
- Wolf, A.T.; Kramer, A.; Carius, A.; Dabelko, G.D. Managing Water Conflict and Cooperation, State of the World 2005: Redefining Global Security; The Worldwatch Institute: Washington, DC, USA, 2005; pp. 80–95. [Google Scholar]
- de Castro-Pardo, M.; Pérez-Rodríguez, F.; Martín-Martín, J.M.; Azevedo, J.C. Planning for Democracy in Protected Rural Areas: Application of a Voting Method in a Spanish-Portuguese Reserve. Land 2019, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Nordström, E.M.; Eriksson, L.O.; Öhman, K. Integrating multiple criteria decision analysis in participatory forest planning: Experience from a case study in northern Sweden. For. Policy Econ. 2010, 12, 562–574. [Google Scholar] [CrossRef] [Green Version]
- Alamanos, A.; Mylopoulos, N.; Loukas, A.; Gaitanaros, D. An integrated multicriteria analysis tool for evaluating water resource management strategies. Water 2018, 10, 1795. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-criteria analysis framework for potential flood prone areas mapping. Water Resour. Manag. 2015, 29, 399–418. [Google Scholar] [CrossRef]
- De Marchi, B.; Funtowicz, S.O.; Lo Cascio, S.; Munda, G. Combining participative and institutional approaches with multicriteria evaluation. An empirical study for water issues in Troina, Sicily. Ecol. Econ. 2000, 34, 267–282. [Google Scholar] [CrossRef]
- Srinivasa Raju, K.; Duckstein, L.; Arondel, C. Multi-criteria analyses for sustainable water resources planning: A case study of Spain. Water Resour. Manag. 2000, 14, 435–456. [Google Scholar] [CrossRef]
- Hämäläinen, R.; Kettunen, E.; Marttunen, M.; Ehtamo, H. Evaluating a framework for multi-stakeholder decision support in water resource management. Group Decis. Negot. 2001, 10, 331–353. [Google Scholar] [CrossRef]
- Pavlikakis, G.E.; Tsihrintzis, V.A. Integrating humans in ecosystem management using multi-criteria decision making. J. Am. Water Resour. Assoc. 2003, 39, 277–288. [Google Scholar] [CrossRef]
- Mustajoki, J.; Hämäläinen, R.P.; Marttunen, M. Participatory multicriteria decision analysis with Web-HIPRE: A case of lake regulation policy. Environ. Model. Softw. 2004, 19, 537–547. [Google Scholar] [CrossRef]
- Raju, K.S.; Duckstein, L. Integrated application of cluster and multicriterion analysis for ranking water resources planning strategies: A case study in Spain. J. Hydroinform. 2004, 6, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Wattage, P.; Mardle, S. Stakeholder preferences towards conservation versus development for a wetland in Sri Lanka. J. Environ. Manag. 2005, 77, 122–132. [Google Scholar] [CrossRef]
- Messner, F.; Zwiner, O.; Karkuschke, M. Participation in multi-criteria decision support for the resolution of a water allocation problem in the Spree River Basin. Land Use Policy 2006, 23, 63–75. [Google Scholar] [CrossRef]
- Wang, L.; Meng, W.; Guo, H.; Zhang, Z.; Liu, Y.; Fan, Y. An interval fuzzy multiobjective watershed management model for the Lake Qionghai Watershed, China. Water Resour. Manag. 2006, 20, 701–721. [Google Scholar] [CrossRef]
- Goosen, H.; Janssen, R.; Vermaat, J.E. Decision support for participatory wetland decision-making. Ecol. Eng. 2007, 30, 187–199. [Google Scholar] [CrossRef]
- Marchamalo, M.; Romero, C. Participatory decision-making in land use planning: An application in Costa Rica. Ecol. Econ. 2007, 63, 740–748. [Google Scholar] [CrossRef]
- Srdjevic, B. Linking analytic hierarchy process and social choice methods to support group decision making in water management. Decis. Supp. Syst. 2007, 42, 2261–2273. [Google Scholar] [CrossRef]
- Hajkowicz, S.; Higgins, A. A comparison of multiple criteria analysis techniques for water resource management. Eur. J. Operat. Res. 2008, 184, 255–265. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Pinte, D.; Tilmant, A.; Frances, I.; Pulido-Bosch, A.; Vanclooster, M. Multi-objective, multiple participant decision support for water management in the Andarax catchment, Almeria. Environ. Geol. 2008, 54, 479–489. [Google Scholar] [CrossRef]
- Chung, E.S.; Lee, K.S. Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques. J. Environ. Manag. 2009, 90, 1502–1511. [Google Scholar] [CrossRef]
- Ryu, J.H.; Palmer, R.N.; Jeong, S.; Lee, J.H.; Kim, Y.O. Sustainable Water Resour. Manag. in a Conflict Resolution Framework 1. J. Am. Water Resour. Assoc. 2009, 45, 485–499. [Google Scholar] [CrossRef]
- Calizaya, A.; Meixner, O.; Bengtsson, L.; Berndtsson, R. Multi-criteria decision analysis (MCDA) for integrated Water Resour. Manag. (IWRM) in the Lake Poopo Basin, Bolivia. Water Resour. Manag. 2010, 24, 2267–2289. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lien, H.P.; Tzeng, G.H. Measures and evaluation for environment watershed plans using a novel hybrid MCDM model. Exp. Syst. Applicat. 2010, 37, 926–938. [Google Scholar] [CrossRef]
- Silva, V.B.; Morais, D.C.; Almeida, A.T. A multicriteria group decision model to support watershed committees in Brazil. Water Resour. Manag. 2010, 24, 4075–4091. [Google Scholar] [CrossRef]
- Yilmaz, B.; Harmancioglu, N. Multi-criteria decision making for water resource management: A case study of the Gediz River Basin, Turkey. Water SA 2010, 36. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.Y.; Lien, H.P.; Liu, C.H.; Liou, J.J.; Tzeng, G.H.; Yang, L.S. Fuzzy MCDM approach for selecting the best environment-watershed plan. Appl. Soft Comput. 2011, 11, 265–275. [Google Scholar] [CrossRef]
- Lennox, J.; Proctor, W.; Russell, S. Structuring stakeholder participation in New Zealand's water resource governance. Ecol. Econ. 2011, 70, 1381–1394. [Google Scholar] [CrossRef]
- Aznar, J.; Estruch-Guitart, V.; Vallés-Planells, M. Valuation of environmental assets by the multicriteria AMUVAM method and its application to the Pego-Oliva wetland. Environ. Eng. Manag. J. 2014, 13, 597–610. [Google Scholar]
- Pinto, R.; da Conceição Cunha, M.; Roseta-Palma, C.; Marques, J.C. Mainstreaming sustainable decision-making for ecosystems: Integrating ecological and socio-economic targets within a decision support system. Environ. Process. 2014, 1, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Aher, S.; Shinde, S.; Guha, S.; Majumder, M. Identification of drought in Dhalai River watershed using MCDM and ANN models. J. Earth Syst. Sci. 2017, 126, 21. [Google Scholar] [CrossRef]
- Sheikhipour, B.; Javadi, S.; Banihabib, M.E. A hybrid multiple criteria decision-making model for the sustainable management of aquifers. Environ. Earth Sci. 2018, 77, 712. [Google Scholar] [CrossRef]
- DasGupta, R.; Hashimoto, S.; Okuro, T.; Basu, M. Scenario-based land change modelling in the Indian Sundarban delta: An exploratory analysis of plausible alternative regional futures. Sustain. Sci. 2019, 14, 221–240. [Google Scholar] [CrossRef]
- Everard, M.; Kangabam, R.; Tiwari, M.K.; McInnes, R.; Kumar, R.; Talukdar, G.H.; Das, L. Ecosystem service assessment of selected WETs of Kolkata and the Indian Gangetic Delta: Multi-beneficial systems under differentiated management stress. Wetlands Ecol. Manag. 2019, 27, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M.; Parizi, E.; Ataie-Ashtiani, B.; Simmons, C.T. Assessment of sustainable groundwater Resour. Manag. using integrated environmental index: Case studies across Iran. Sci. Total Environ. 2019, 676, 792–810. [Google Scholar] [CrossRef] [PubMed]
- Kacem, H.A.; Fal, S.; Karim, M.; Alaoui, H.M.; Rhinane, H.; Maanan, M. Application of fuzzy analytical hierarchy process for assessment of desertification sensitive areas in North West of Morocco. Geocarto Int. 2019, 7, 1–18. [Google Scholar] [CrossRef]
- Karabulut, A.A.; Udias, A.; Vigiak, O. Assessing the policy scenarios for the Ecosystem Water Food Energy (EWFE) nexus in the Mediterranean region. Ecosyst. Serv. 2019, 35, 231–240. [Google Scholar] [CrossRef]
- Yun, H.J.; Kang, D.J.; Kim, D.K.; Kang, Y. A GIS-Assisted Assessment and Attribute-Based Clustering of Forest Wetland Utility in South Korea. Sustainability 2019, 11, 4632. [Google Scholar] [CrossRef] [Green Version]
Reference | Region | Method | Problem | Participation | Study area | Water Course Type |
---|---|---|---|---|---|---|
Jaber and Mohsen, 2001 [38] | Jordania | HIER | ALLOC | NO | Ceyhanand Seyhan River | River |
Nayak and Panda, 2001 [53] | India | FUZ | ALLOC | EXP | Mahanadi Delta | River |
Arriaza et al., 2002 [47] | Spain | UT | ALLOC | YES | Guadalquivir Valley | River |
Mimi and Sawalhi, 2003 [22] | Jordania, Israel, Palestina | DIS | ALLOC | EXP | Jordan River | River |
Prato, 2003 [45] | USA | OUT | MAN | NO | Missouri River | River |
Hyde et al., 2004 [46] | Spain-Adelaide | OUT | ALLOC | EXP | Flumen Monegros-Northern Adelaide Plains | River |
Karnib, 2004 [54] | Theoretical | FUZ | MAN | NO | - | - |
McPhee and Yeh, 2004 [55] | USA | FUZ | MAN | NO | Upper San Pedro River Basin | River |
Srdjevic et al., 2004 [56] | Brazil | DIS | ALLOC | NO | Paraguaçu River basin | River |
Mysiak et al., 2005 [49] | Various | Other | MAN | YES | - | River |
López-Baldoví et al., 2006 [48] | Spain | UT | ALLOC | NO | Guadalquivir Valley | River |
Zarghaami, 2006 [57] | Irán | DIS | ALLOC | EXP | Polrud River basin | River |
Raju and Vasan, 2007 [58] | India | MIX | ALLOC | NO | Various | River |
Zarghami and Szidarovszky, 2009 [51] | Hungary | MIX | IMPACT-VUL | YES | Central Tisza River | River |
Gómez-Limón and Riesgo, 2009 [59] | Spain | MIX | MAN | EXP | Duero basin | River |
Chowdhury et al., 2010 [39] | India | HIER | ALLOC | EXP | Subarnarekha and Kasai Rivers | Groundwater |
Machiwal et al., 2011 [40] | Theoretical | HIER | ALLOC | NO | - | Lake |
Opricovic, 2011 [60] | Serby | MIX | MAN | NO | Mlava River | River |
Machiwal et al., 2015 [41] | India | HIER | ALLOC | NO | Ahar catchment | Groundwater |
Estalaki et al., 2016 [52] | Iran | FUZ | IMPACT-VUL | YES | Chitgar Lake | Lake |
Swetha et al., 2017 [44] | India | HIER | ALLOC | NO | Kuttiyadi River basin | Groundwater |
Zeng et al., 2017 [61] | China | Other | ALLOC | NO | Guanting reservoir basin | River |
Roozbahani et al., 2018 [50] | Iran | MIX | MAN | YES | Lake Urmia | Lake |
Arabameri et al., 2019 [62] | Iran | DIS | ALLOC | NO | Shahroud plane | Groundwater |
Bera and Bnik, 2019 [63] | India | Oher | ALLOC | NO | Kansachara watershed | River |
Çelik, 2019 [42] | Turkey | HIER | ALLOC | EXP | Tigris River | Groundwater |
Arabameri et al., 2020 [64] | Iran | MIX | ALLOC | NO | Bastam watershed | Groundwater |
Rana and Suruanarayana, 2020 [43] | India | HIER | ALLOC | EXP | Vishwamitri watershed | River |
Reference | Region | Method | Problem | Participation | Study Area | Water Course Type |
---|---|---|---|---|---|---|
Arondel and Girardin, 2000 [75] | France | FUZ | IMPACT-VUL | EXP | Rhine Plain | Groundwater |
Chuntian and Chau, 2002 [76] | China | FUZ | FLOOD | NO | Fengman Reservoir | River |
Wang et al., 2003 [77] | China | HIER | IMPACT-VUL | NO | Jianghan Plain | Wetland |
Bana e Costa et al., 2004 [78] | Portugal | UT | FLOOD | EXP | Livramento creek in the peninsula of Setúbal | River |
Brouwer and Ek, 2004 [67] | Netherlands | Other | FLOOD | YES | River Rhine and Meuse Delta | River-Wetland |
Herath, 2004 [79] | Victoria | HIER | MAN | YES | Wonga Wetlands | Wetland |
Olenick et al., 2004 [80] | USA | DIS | MAN | NO | Edwards Aquifer and Twin Buttes watersheds | Other |
Tzionas et al., 2004 [81] | Greece | FUZ | RESTOR | EXP | Lake Koronia | Lake |
Almasri and Kaluarachchi, 2005 [82] | Whashington | NEU | IMPACT-VUL | NO | Sumas–Blaine aquifer | River |
Janssen et al., 2005 [66] | Germany | Other | MAN | YES | Noord-Hollands Midden | Wetland |
Lee and Chang, 2005 [83] | Taiwan | FUZ | IMPACT-VUL | NO | Tou-Chen River basin | River |
Levy, 2005 [68] | China | HIER | FLOOD | YES | Tokai flood | River |
Elshorbagy, 2006 [84] | Canadá | OUT | RESTOR | NO | Fort McMurray (reconstructed watershed) | River |
Liu et al., 2006 [85] | New South Wales | DIS | RESTOR | EXP | Clarence River | Wetland |
Rohde et al., 2006 [72] | Switzerland | Other | RESTOR | YES | Rhône-Thur Rivers | River |
Kenyon, 2007 [69] | Scotland | SOFT | FLOOD | YES | Scotland (general) | River |
Levy et al., 2007 [70] | Japan | HIER | FLOOD | YES | Shinkawa and the Shonai rivers (Tokai floods) | River |
Li, 2007 [86] | China | HIER | CON | EXP | Chaohu Lake | Lake |
Qin et al., 2008 [87] | Canadá | MIX | IMPACT-VUL | EXP | Georgia basin | River |
Randhir and Shriver, 2009 [73] | USA | HIER | RESTOR | YES | Chicopee River | River |
Olu-Owolabi et al., 2012 [88] | Nigeria | FUZ | IMPACT-VUL | NO | Ondo coast | Estuary |
Sun et al., 2012 [89] | China | MIX | IMPACT-VUL | NO | Dayang Estuary | Wetland-Estuary |
Wu et al., 2012 [90] | China | MIX | ALLOC | YES | Qixinghe | Wetland |
Sener and Davraz, 2013 [91] | Turkey | HIER | IMPACT-VUL | NO | Egirdir Lake basin | Groundwater |
Lee et al., 2014 [92] | Korea | MIX | FLOOD | NO | Han River | River |
Malekmohammadi and Blouchi, 2014 [93] | Iran | HIER | IMPACT-VUL | EXP | Shadegan Wetland | Wetland |
Chatterjee et al., 2015 [94] | India | MIX | IMPACT-VUL | NO | Keoladeo National Park | Wetland |
McVittie et al., 2015 [95] | Theoretical | Other | IMPACT-VUL | NO | Theoretical | River |
Meraj et al., 2015 [96] | India | Other | FLOOD | NO | Lidder and Rembiara watersheds of the Jhelum basin | River |
Shafiee et al., 2015 [97] | Iran | MIX | IMPACT-VUL | NO | Heleh protected area | Wetland |
Walker et al., 2015 [98] | Serbia | Other | IMPACT-VUL | NO | Danube River | River |
Abd-El Monsef et al., 2017 [99] | Egypt | HIER | CON | NO | Sharm El-Bahari | Wetland |
Daneshvar et al., 2017 [65] | USA | DIS | IMPACT-VUL | YES | Saginaw River watershed | Wetland |
Duodu et al., 2017 [100] | Queensland | OUT | IMPACT-VUL | NO | Brisbane River | River |
Gross and Hagy, 2017 [74] | Various | SOFT | RESTOR | YES | Various | Lake-Estuary |
Man et al., 2017 [101] | China | HIER | CON | NO | Sanjiang plain | Wetland |
Malekmohammadi and Jahanishakib, 2017 [102] | Iran | HIER | IMPACT-VUL | EXP | Choghakhor Wetland | Wetland |
Rather et al., 2017 [103] | India | Other | IMPACT-VUL | NO | Jhelum Basin | River |
Golbarg et al., 2018 [104] | Iran | HIER | IMPACT-VUL | EXP | Shadegan International Wetland | Wetland |
Maleki et al., 2018 [105] | Afghanistan-Iran | HIER | RESTOR | NO | Hamun Wetlands | Wetland |
Rahdari et al., 2018 [106] | Iran | MIX | CON | EXP | Gavkhooni Wetland-Plasjan sub-bsin | River-Wetland |
Arabameri et al., 2019 [107] | Iran | DIS | IMPACT-VUL | EXP | Semnan watershed | River |
Bid and Siddique, 2019 [108] | India | DIS | FLOOD | EXP | Damodar River-Panchet dam | River |
de Souza et al., 2019 [109] | Brazil | MIX | IMPACT-VUL | EXP | Doce River basin | River |
Ghosh and Das, 2019 [110] | India | MIX | IMPACT-VUL | NO | East Kolkata Wetland (Ramsar) | Wetland |
Li et al., 2019 [111] | China | MIX | IMPACT-VUL | NO | Eastern Pearl River Delta | Estuary |
Roy and Majumder, 2019 [112] | India | Other | IMPACT-VUL | NO | Loktak Lake | Lake |
Xu et al., 2019 [113] | China | HIER | IMPACT-VUL | NO | Xiangjian River basin | River |
Akay and Koçyigit, 2020 [114] | Turkey | MIX | FLOOD | NO | Akçay basin | River |
Alamanos and Papaioannou, 2020 [115] | Canadá | HIER | IMPACT-VUL | EXP | Lake Erie watershed | Wetland |
Arabameri et al., 2020 [116] | Iran | HIER | IMPACT-VUL | EXP | Kalvari basin | River |
Bhattacharya et al., 2020 [117] | India | DIS | IMPACT-VUL | NO | Kangsabati basin | River |
Ghaleno et al., 2020 [118] | Iran | MIX | IMPACT-VUL | EXP | Gorganrud basin | River |
Ghosh and Das, 2020 [119] | India | NEU | IMPACT-VUL | EXP | East Kolkata Wetland (Ramsar) | Wetland |
Perrone et al., 2020 [71] | Italy | FUZ | FLOOD | YES | Bradano River | River |
Popovic et al., 2020 [120] | Serbia | MIX | RESTOR | NO | Lake Vrutci | Lake |
Sarkar and Majumder, 2020 [121] | India | MIX | IMPACT-VUL | EXP | Tripura River | River |
Souissi et al., 2020 [122] | Tunisia | HIER | FLOOD | EXP | Gabes region | River |
Sun et al., 2020 [123] | China | MIX | FLOOD | NO | Yangtze River delta | River |
Yang and Wang, 2020 [124] | China | DIS | IMPACT-VUL | EXP | Taihu basin | Lake-River |
Reference | Region | Method | Problem | Participation | Study Area | Water Course Type |
---|---|---|---|---|---|---|
Zhang et al., 2011 [125] | China | DIS | TOUR | NO | Yangtze River Delta | River |
Aiping et al., 2015 [127] | China | HIER | TOUR | NO | Yellow River | Wetland |
Erfani et al., 2015 [129] | Iran | MIX | TOUR | NO | Hamoon Lake | Lake |
Biglarfadafan et al., 2016 [128] | Irán | MIX | IMPACT-VUL | NO | Bazangan Lake | Wetland |
Balist et al., 2019 [130] | Iran | MIX | TOUR | NO | Zarivar Lake | Lake |
Maghsoudi et al., 2019 [131] | Iran | MIX | TOUR | NO | Shur River (Lut desert) | River |
Tang et al., 2019 [126] | China | FUZ | IMPACT-VUL | NO | West Lake of Hangzhou | Wetland |
Reference | Region | Method | Problem | Participation | Study Area | Water Course Type |
---|---|---|---|---|---|---|
Qureshi and Harrison, 2001 [132] | Queensland | HIER | CON | YES | Johnstone River catchment | River |
Eliasson et al., 2003 [133] | Sweden | DIS | CON | YES | Aquifer Nybroåsen (Kalmar) | Groundwater |
Dong et al., 2013 [141] | China | HIER | CON | NO | West Songnen Plain | Wetland |
Kozlov et al., 2016 [142] | Rusia | Other | CON | NO | Volga-Akhtuba Wetlands | Wetland |
Qiu et al., 2016 [143] | USA | MIX | CON | NO | Raritan River basin | River |
Xue et al., 2016 [144] | China | FUZ | CON | NO | Yangtze River Estuary | Estuary |
Buruso, 2018 [138] | Ethiopia | Other | CON | NO | Lake Tana Biosphere Reserve | Lake |
Wu et al., 2017 [139] | China | HIER | CON | NO | 60 National Wetlands Parks | Wetland |
Qi et al., 2018 [145] | China | MIX | CON | NO | Lake Poyang | Lake |
Chen et al., 2019 [135] | Taiwan | MIX | MAN | EXP | Guan-Du Wetland | Wetland |
Choulak et al., 2019 [134] | France | MIX | CON | YES | Bourgogne comte | Wetland |
Saha and Pal, 2019 [136] | India | FUZ | IMPACT-VUL | NO | Atreyee River | Wetland-River |
Jafari et al., 2019 [140] | Iran | MIX | CON | NO | Kavir National Park | River |
Talukdar et al., 2020 [137] | India | NEU | IMPACT-VUL | NO | Tangan River | Wetland-River |
Reference | Region | Method | Problem | Ecosystem Service | Participation | Study Area | Water Course Type |
---|---|---|---|---|---|---|---|
De Marchi et al., 2000 [158] | Sicilia | FUZ | MAN | PROV-REG-CULT | YES | Dam and lake in Ancipa | Lake |
Srinivasa et al., 2000 [159] | Spain | OUT | MAN | PROV-REG-CULT | NO | Flumen Monegros irrigation area (Hoya de Huesca and Monegros) | River |
Gregory and Wellman, 2001 [146] | USA | UT | RESTOR | PROV-REG-CULT | YES | Tillamook Bay | Estuary |
Hamalainen et al., 2001 [160] | Finland | DIS | MAN | PROV-REG-CULT | YES | Lake Päijänne-River Kymikoki | Lake |
Pavlikakis and Tsihrintzis, 2003 [161] | Greece | DIS | MAN | PROV-REG-CULT | YES | National Park of river Nestos delta and Lakes Vistonida and Ismarida | Lake |
Cai et al., 2004 [21] | China | DIS | MAN | PROV-REG-CULT | YES | Theoretical | NI |
Mustajoki et al., 2004 [162] | Finland | UT | MAN | PROV-REG-CULT | YES | Lake Päijänne | Lake |
Raju and Duckstein, 2004 [163] | Spain | OUT | MAN | PROV-REG-CULT | EXP | Flumen Monegros irrigation area | River |
Vantanen and Marttunen, 2005 [151] | Finland | SOFT | IMPACT-VUL | REG-CULT | YES | Lake Kemijärvi | Lake |
Wattage and Mardle, 2005 [164] | India | HIER | MAN | PROV-REG-CULT | YES | Muthurajawela Marsh and Negombo Lagoon | Wetland |
Messner et al., 2006 [165] | Germany | Other | MAN | PROV-REG-CULT | YES | Spree river basin | River |
Wang et al., 2006 [166] | China | FUZ | MAN | PROV-REG-CULT | YES | Lake Quionghai | Lake |
Goosen et al., 2007 [167] | Holland | Other | MAN | PROV-REG-CULT | YES | Wormer and Jisperveld | Wetland |
Marchamalo and Romero, 2007 [168] | Costa Rica | DIS | MAN | PROV-REG-CULT | YES | Birrís River | River |
Srdjevic, 2007 [169] | Brazil | MIX | MAN | PROV-REG-CULT | YES | San Francisco river basin | River |
Hajkowicz and Higgins, 2008 [170] | NI | Other | MAN | PROV-REG-CULT | YES | Various | NI |
Marttunen and Hamalainen, 2008 [14] | Finland | Other | MAN | PROV-REG-CULT | YES | Lake Päijänne-RIV Kymikoki | Lake |
Van Cauwenbergh et al., 2008 [171] | Spain | MIX | MAN | PROV-REG-CULT | YES | Andarax catchment | River |
Chung and Lee, 2009 [172] | Korea | MIX | MAN | PROV-REG-CULT | YES | Anyangcheon watershed (Han river) | River |
Ryu et al., 2009 [173] | Korea | DIS | MAN | PROV-REG-CULT | YES | Geum river basin | River |
Calizaya et al., 2010 [174] | Bolivia | HIER | MAN | PROV-REG-CULT | YES | Lake Poopo Basin (Ramsar) | Lake |
Chen et al., 2010 [175] | Taiwan | MIX | MAN | PROV-REG-CULT | YES | Pei-Keng watershed | River |
Silva et al., 2010 [176] | Brazil | OUT | MAN | PROV-REG-CULT | YES | Jabuatao River watershed | River |
Yilmaz and Harmancioglu, 2010 [177] | Turkey | DIS | MAN | PROV-REG-CULT | YES | Gediz River basin | River |
Weng et al., 2010 [149] | China | Other | MAN | PROV-REG | YES | Haihe river basin | River |
Chen et al., 2011 [178] | China | FUZ | MAN | PROV-REG-CULT | EXP | Pei-Keng brook of catchments area | River |
Lennox et al., 2011 [179] | New Zealand | SOFT | MAN | PROV-REG-CULT | YES | Canterbury region | River |
Wang et al., 2012 [152] | China | NEU | IMPACT-VUL | REG-CULT | NO | Others-Theoretical | Wetland |
Azarnivand et al., 2014 [147] | Iran | MIX | RESTOR | PROV-REG-CULT | YES | Lake Urmia | Lake |
Aznar et al., 2014 [180] | Spain | MIX | MAN | PROV-REG-CULT | YES | Pego-Oliva Wetland | Wetland |
Pinto et al., 2014 [181] | Portugal | DIS | MAN | PROV-REG-CULT | YES | Mondego Estuary | Estuary |
Aher et al., 2017 [182] | India | HIER | ALLOC | PROV-REG | NO | Dhalai River | River |
Derak et al., 2017 [148] | Morocco | HIER | MAN | PROV-REG | YES | Beni Boufrah Valley | River |
Sheikhipour et al., 2018 [183] | Iran | MIX | MAN | PROV-REG-CULT | NO | Shahrekord aquifer | Groundwater |
DasGupta et al., 2019 [184] | India | DIS | MAN | PROV-REG-CULT | YES | Indian Sundarban Delta | Estuary |
Everard et al., 2019 [185] | India | other | MAN | PROV-REG-CULT | YES | SudhanyakhaliIsland-Gosaba Island-East Kolkata Wetland | Wetland |
Hosseini et al., 2019 [186] | Iran | MIX | MAN | PROV-REG | EXP | Various | Groundwater |
Kacem et al., 2019 [187] | Morocco | MIX | IMPACT-VUL | PROV-REG | EXP | Draden basin | River |
Karabulut et al., 2019 [188] | Mediterranean region | DIS | MAN | PROV-REG | EXP | Theoretical-Mediterranean region | Theoretical |
Yun et al., 2019 [189] | Korea | HIER | MAN | PROV-REG-CULT | EXP | Various | Wetland |
Dowlatabadi et al., 2020 [150] | Iran-Irak-Turkey | MIX | CON | PROV-REG | YES | Tigris and Karkheh rivers and the Hawizeh/Hoor-Al-Azim wetland | Wetland |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro-Pardo, M.; Fernández Martínez, P.; Pérez Zabaleta, A.; Azevedo, J.C. Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services. Land 2021, 10, 469. https://doi.org/10.3390/land10050469
de Castro-Pardo M, Fernández Martínez P, Pérez Zabaleta A, Azevedo JC. Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services. Land. 2021; 10(5):469. https://doi.org/10.3390/land10050469
Chicago/Turabian Stylede Castro-Pardo, Mónica, Pascual Fernández Martínez, Amelia Pérez Zabaleta, and João C. Azevedo. 2021. "Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services" Land 10, no. 5: 469. https://doi.org/10.3390/land10050469
APA Stylede Castro-Pardo, M., Fernández Martínez, P., Pérez Zabaleta, A., & Azevedo, J. C. (2021). Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services. Land, 10(5), 469. https://doi.org/10.3390/land10050469