Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Basic Data Acquisition and Processing
2.3. Landscape Metric Selection and Calculation
2.4. Graph Metric Selection and Calculation
2.5. Correlation Analysis
3. Results
3.1. Dynamic Changes of Surface Waters
3.2. Landscape Transition of Surface Waters
3.3. Landscape Pattern Changes in Surface Waters
3.4. Changes in Surface Water Spatial Connectivity
3.4.1. Global-Level Analysis
3.4.2. Component-Level Analysis
3.4.3. Local-Level Analysis
4. Discussion
4.1. Surface Water Pattern Dynamics and Relevant Influencing Factors
4.2. Surface Water Graph Connectivity Dynamics and Identification of Key Patches
4.3. Method Applicability and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y. Urban land and sustainable resource use: Unpacking the countervailing effects of urbanization on water use in China, 1990–2014. Land Use Policy 2020, 90, 104307. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.D.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H.; Li, T.; Tu, S. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Policy 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Ming, D.; Meng, J.; Xiaotai, N.; Ju, R. Analysis of evolution characteristics of urban water system form based on remote sensing data. Eng. J. Wuhan Univ. 2016, 49, 16–21. [Google Scholar]
- Xinran, N.; Rong, L.; Aiqiu, N.; Huafeng, L.; Rongjie, T. The change map and dynamic monitoring of lake area in Nanchang city in recent 30 years. Geomat. Spat. Inf. Technol. 2018, 41, 117–122. [Google Scholar]
- Wen, Y.; Kai, Y.; Qi, X.X. Effect of urbanization on growth of Shanghai river function and stream structure. Rrsources Environ. Yangtze Basin 2005, 14, 133–138. [Google Scholar]
- Yu, H.; Song, Y.; Chang, X.; Gao, H.; Peng, J. A Scheme for a sustainable urban water environmental system during the urbanization process in China. Engineering 2018, 4, 190–193. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Tang, L. Coupling relationship between urban expansion and lake change—A case study of Wuhan. Water 2019, 11, 1215. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Tan, M. Challenges for sustainable urbanization: A case study of water shortage and water environment changes in Shandong, China. Procedia Environ. Sci. 2012, 13, 919–927. [Google Scholar] [CrossRef] [Green Version]
- Pan, X. The theoretical innovation and practical significance of the theory about “Two Mountains” by Xi Jinping. IOP Conf. Ser.: Earth Environ. Sci. 2018, 199, 022047. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Li, X.; Zhang, H. Understanding and thinking of intelligent water conservancy in China under the background of informatization. IOP Conf. Ser.: Earth Environ. Sci. 2021, 643, 012102. [Google Scholar] [CrossRef]
- Modica, G.; Praticò, S.; Di Fazio, S. Abandonment of traditional terraced landscape: A change detection approach (a case study in Costa Viola, Calabria, Italy). Land Degrad. Dev. 2017, 28, 2608–2622. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. Remote sensing monitoring dataset of multi-period land use and land cover in China (CNLUCC). Data Regist. Publ. Syst. Data Cent. Resour. Environ. Sci., Chin. Acad. Sci. 2018. [Google Scholar] [CrossRef]
- Herold, M.; Scepan, J.; Clarke, K.C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plan. 2002, 34, 1443–1458. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Perini, L.; Salvati, L. Unraveling landscape complexity: Land use/land cover changes and landscape pattern dynamics (1954–2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy. Environ. Manag. 2015, 56, 916–932. [Google Scholar] [CrossRef] [PubMed]
- Hamad, R.; Balzter, H.; Kolo, K. Multi-Criteria assessment of land cover dynamic changes in halgurd sakran national park (hsnp), kurdistan region of iraq, using remote sensing and GIS. Land 2017, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Kevin McGarigal. FRAGSTATS Help; University of Massachusetts: Amherst, MA, USA, 2015; p. 182. [Google Scholar]
- Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Lamine, S.; Petropoulos, G.P.; Singh, S.K.; Szabó, S.; Bachari, N.E.I.; Srivastava, P.K.; Suman, S. Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS®. Geocarto Int. 2017, 33, 862–878. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Wang, Y.; Li, Y.; Jiang, Y.; Fu, Y.; Wu, J. Landscape composition or configuration: Which contributes more to catchment hydrological flows and variations? Landsc. Ecol. 2020, 35, 1531–1551. [Google Scholar] [CrossRef]
- Mu, B.; Mayer, A.L.; He, R.; Tian, G. Land use dynamics and policy implications in Central China: A case study of Zhengzhou. Cities 2016, 58, 39–49. [Google Scholar] [CrossRef]
- Iojă, I.-C.; Osaci-Costache, G.; Breuste, J.; Hossu, C.A.; Grădinaru, S.R.; Onose, D.A.; Nită, M.R.; Skokanová, H. Integrating urban blue and green areas based on historical evidence. Urban. For. Urban Green. 2018, 34, 217–225. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, Q. Expressing the spatio-temporal pattern of farmland change in arid lands using landscape metrics. J. Arid Environ. 2016, 124, 118–127. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Zhou, Y.; Zhu, J.; Zhang, J.; Hou, Y.; Liu, W. Landscape pattern variation, protection measures, and land use/land cover changes in drinking water source protection areas: A case study in Danjiangkou Reservoir, China. Glob. Ecol. Conserv. 2020, 21, e00827. [Google Scholar] [CrossRef]
- Clauzel, C.; Foltête, J.-C.; Girardet, X.; Vuidel, G. Graphab 2.4 User Manual. 2019. Available online: https://sourcesup.renater.fr/www/graphab/en/documentation.html (accessed on 1 November 2020).
- Foltête, J.-C.; Clauzel, C.; Vuidel, G. A software tool dedicated to the modelling of landscape networks. Environ. Model. Softw. 2012, 38, 316–327. [Google Scholar] [CrossRef]
- Minor, E.S.; Urban, D.L. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 2008, 22, 297–307. [Google Scholar] [CrossRef]
- Saura, S.; Vogt, P.; Velázquez, J.; Hernando, A.; Tejera, R. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For. Ecol. Manag. 2011, 262, 150–160. [Google Scholar] [CrossRef]
- Qi, K.; Fan, Z.; Ng, C.N.; Wang, X.; Xie, Y. Functional analysis of landscape connectivity at the landscape, component, and patch levels: A case study of Minqing County, Fuzhou City, China. Appl. Geogr. 2017, 80, 64–77. [Google Scholar] [CrossRef]
- Liu, S.; Yin, Y.; Cheng, F.; Dong, S.; Zhang, Y. Using cross-scale landscape connectivity indices to identify key habitat resource patches for Asian elephants in Xishuangbanna, China. Landsc. Urban Plan. 2018, 171, 80–87. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Tulbure, M.G.; Broich, M. Surface-water dynamics and land use influence landscape connectivity across a major dryland region. Ecol. Appl. 2017, 27, 1124–1137. [Google Scholar] [CrossRef]
- Saura, S.; Rubio, L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 2010. [Google Scholar] [CrossRef]
- Mu, B.; Li, H.; Mayer, A.L.; He, R.; Tian, G. Dynamic changes of green-space connectivity based on remote sensing and graph theory: A case study in Zhengzhou, China. Acta Ecol. Sin. 2017, 37, 4883–4895. [Google Scholar]
- Pascual-Hortal, L.; Saura, S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Bodin, Ö.; Saura, S. Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecol. Model. 2010, 221, 2393–2405. [Google Scholar] [CrossRef]
- Saura, S.; Estreguil, C.; Mouton, C.; Rodríguez-Freire, M. Network analysis to assess landscape connectivity trends: Application to European forests (1990–2000). Ecol. Indic. 2011, 11, 407–416. [Google Scholar] [CrossRef]
- Minor, E.S.; Urban, D.L. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol. Appl. 2007, 17, 1771–1782. [Google Scholar] [CrossRef]
- Zetterberg, A.; Mörtberg, U.M.; Balfors, B. Making graph theory operational for landscape ecological assessments, planning, and design. Landsc. Urban Plan. 2010, 95, 181–191. [Google Scholar] [CrossRef]
- Foltête, J.-C.; Girardet, X.; Clauzel, C. A methodological framework for the use of landscape graphs in land-use planning. Landsc. Urban Plan. 2014, 124, 140–150. [Google Scholar] [CrossRef]
- Mu, B.; Liu, C.; Tian, G.; Xu, Y.; Zhang, Y.; Mayer, A.L.; Lv, R.; He, R.; Kim, G. Conceptual planning of urban–rural green space from a multidimensional perspective: A case study of Zhengzhou, China. Sustainability 2020, 12, 2863. [Google Scholar] [CrossRef] [Green Version]
- Shanthala Devi, B.S.; Murthy, M.S.R.; Debnath, B.; Jha, C.S. Forest patch connectivity diagnostics and prioritization using graph theory. Ecol. Model. 2013, 251, 279–287. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Goldberg, C.S.; Waits, L.P. Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol. Ecol. 2010, 19, 3650–3663. [Google Scholar] [CrossRef]
- Xia, X.; Dong, J.; Wang, M.; Xie, H.; Xia, N.; Li, H.; Zhang, X.; Mou, X.; Wen, J.; Bao, Y. Effect of water-sediment regulation of the Xiaolangdi reservoir on the concentrations, characteristics, and fluxes of suspended sediment and organic carbon in the Yellow River. Sci. Total Environ. 2016, 571, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Ottinger, M.; Kuenzer, C.; Liu, G.; Wang, S.; Dech, S. Monitoring land cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat 5 TM. Appl. Geogr. 2013, 44, 53–68. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhou, W.; Chen, Q. Channel re-establishment of the Lower Yellow River in ten years operation of Xiaolangdi Reservoir. J. Hydraul. Eng. 2012, 43, 127–135. [Google Scholar]
- Yang, Y.; Hu, B.; Li, S. Impact from Mid-route of South-to-North Water Transfer Project on water environment along its Henan Section and study on relevant countermeasures. Water Resour. Hydropower Eng. 2012, 43, 16–18. [Google Scholar]
- Du, N.; Ottens, H.; Sliuzas, R. Spatial impact of urban expansion on surface water bodies—A case study of Wuhan, China. Landsc. Urban Plan. 2010, 94, 175–185. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Weng, S.; Xu, Y.; Zhu, L. Impact of urbanization on stream structure and connectivity of plain river network in the Taihu Basin. J. Lake Sci. 2020, 32, 553–563. [Google Scholar]
- Girardet, X.; Foltête, J.-C.; Clauzel, C. Designing a graph-based approach to landscape ecological assessment of linear infrastructures. Environ. Impact Assess. Rev. 2013, 42, 10–17. [Google Scholar] [CrossRef]
- Matos, C.; Petrovan, S.O.; Wheeler, P.M.; Ward, A.I. Landscape connectivity and spatial prioritization in an urbanising world: A network analysis approach for a threatened amphibian. Biol. Conserv. 2019, 237, 238–247. [Google Scholar] [CrossRef]
Original Node | Original Land Use | New Land Use | New Node |
---|---|---|---|
11 | Paddy field | Crop land | 1 |
12 | Dry farm | ||
21 | Forest land | Forest land | 2 |
22 | Shrub land | ||
23 | Open forest land | ||
24 | Other woodland | ||
31 | High coverage grassland | Grass land | 3 |
32 | Medium coverage grassland | ||
33 | Low coverage grassland | ||
41 | River and canal | Liner waters | 4 |
42 | Lake | Patchy waters | 5 |
43 | Reservoir and pond | ||
45 | Intertidal zone | Tidal flats | 6 |
46 | Bottomland | ||
51 | Urban land | Built-up land | 7 |
52 | Rural residential area | ||
53 | Other construction land | ||
61 | Sand | Other unused land | 8 |
63 | Saline and alkaline land | ||
64 | Marshland | ||
65 | Bare land | ||
66 | Bare rock stony ground |
Landscape Metrics | Meaning | Brief Description | Computing Level |
---|---|---|---|
Largest patch index (LPI) | landscape dominance | Percent of total area covered by the largest patch | Class Landscape |
Patch density (PD) | landscape fragmentation | Number of patches per area | Class Landscape |
Effective mesh size (MESH) | The subdivision of a landscape independent of the size, lower values indicate higher fragmentation | Class Landscape | |
Mean Euclidean Nearest Neighbor distance (ENN_MN) | landscape distance | The mean of the shortest paths between the patches of a given land-cover type | Class Landscape |
Interspersion Juxtaposition Index (IJI) | landscape connectivity | Distribution of patch adjacencies and isolates the interspersion or intermixing of patch types | Class Landscape |
Patch cohesion index (COHESION) | Physical contentedness of the patches, expresses the aggregation or clumping of cover types into patches | Class Landscape |
Connectivity Metrics | Computing Level | Brief Description | Computing Purpose |
---|---|---|---|
Size of the largest components (SLC) | Global | Largest capacity of components, higher values indicate larger size of component consists of connected patches | Compare the size and quantity of the connected patches at different time periods |
Number of components (NC) | Global | Number of components in the study area, lower values indicate higher connectivity | |
Integral index of connectivity (IIC) | Global Component | Improved connectivity for the entire graph, indicates that two points randomly placed in the study area are connected | Estimate total connectivity and determine the highly connected patch distribution at different spatial scales |
Equivalent connectivity (EC) | Global Component | The size of a single maximally connected habitat patch | |
Node degree (Dg) | Local | Indicates the ability of a patch to connect with other patches | Identify the hub patches |
Betweenness centrality index (BC) | Local | The potential for a patch to be crossed by a path linking other patches | Identify the stepping stone patches |
Fractions of delta probability of connectivity (dPC) | Delta | Assess the relative importance of each graph element by computing the rate of variation in the global metric induced by each removal | Assess the relative importance of each water patch to the overall connectivity |
Resistance Value | Land Use/Land Cover | Elevation (Natural Breaks) | Slope (Natural Breaks) |
---|---|---|---|
1 | Surface water | 20–140 | 0–2% |
20 | Crop land | 140–316 | 2–5% |
40 | Grass land | 316–554 | 5–9% |
80 | Forest land | 554–847 | 9–14% |
160 | Unused land | 847–1198 | 14–20% |
320 | Built-up land | 1198–2378 | 20–50% |
Weight | 0.4 | 0.3 | 0.3 |
Base Year Compared Year | Land Use Area in 2018 (Compared Year) (km2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Crop Land | Forest Land | Grass Land | Linear Waters | Patchy Waters | Tidal Flats | Built-up Land | Other Land | Total | ||
Land Use Area In 1990 (Base year) (km2) | Crop land | 100,823.04 | 488.40 | 165.30 | 115.50 | 353.32 | 66.40 | 3654.00 | 2.57 | 105,668.53 |
Forest land | 837.55 | 25,705.03 | 289.37 | 9.93 | 30.71 | 4.46 | 84.48 | 0.23 | 26,961.76 | |
Grass land | 612.34 | 737.72 | 8324.46 | 14.40 | 42.72 | 6.33 | 63.55 | 1.25 | 9802.77 | |
Linear waters | 241.26 | 38.21 | 11.45 | 1526.95 | 58.50 | 48.71 | 7.53 | 5.23 | 1937.83 | |
Patchy waters | 55.22 | 15.52 | 6.11 | 12.46 | 1223.24 | 25.04 | 21.10 | 0.35 | 1359.04 | |
Tidal flats | 320.43 | 10.50 | 27.74 | 161.67 | 112.23 | 235.43 | 8.45 | 9.41 | 885.85 | |
Built-up land | 585.20 | 17.96 | 13.85 | 5.29 | 5.87 | 0.36 | 17,857.16 | 0.02 | 18,485.71 | |
Other land | 98.65 | 7.55 | 2.76 | 2.85 | 8.43 | 1.46 | 7.86 | 10.86 | 140.42 | |
Total | 103,573.69 | 27,020.88 | 8841.03 | 1849.04 | 1835.03 | 388.17 | 21,704.14 | 29.92 | 165,241.90 | |
note: | changed waters | greatly changed waters | unchanged waters |
Global Level | |||||
---|---|---|---|---|---|
Period | EC (km2) | SLC (km2) | IIC | NC | |
Variations during different periods | 1990–2000 | −391.72 (−48.08%) | −104.12 (−9.79%) | −3.79 (−64.90%) | 9 (1.62%) |
2000–2010 | 324.65 (76.74%) | 30.56 (3.18%) | 3.20 (155.89%) | −15 (−2.66%) | |
2010–2018 | −265.90 (−35.56%) | −173.35 (−17.50%) | −2.88 (−54.90%) | 38 (−6.92%) | |
1990–2018 | −332.97 (−40.87%) | −246.91 (−23.21%) | −3.47 (−59.49%) | 32 (5.77%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, B.; Tian, G.; Xin, G.; Hu, M.; Yang, P.; Wang, Y.; Xie, H.; Mayer, A.L.; Zhang, Y. Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China. Land 2021, 10, 471. https://doi.org/10.3390/land10050471
Mu B, Tian G, Xin G, Hu M, Yang P, Wang Y, Xie H, Mayer AL, Zhang Y. Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China. Land. 2021; 10(5):471. https://doi.org/10.3390/land10050471
Chicago/Turabian StyleMu, Bo, Guohang Tian, Gengyu Xin, Miao Hu, Panpan Yang, Yiwen Wang, Hao Xie, Audrey L. Mayer, and Yali Zhang. 2021. "Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China" Land 10, no. 5: 471. https://doi.org/10.3390/land10050471
APA StyleMu, B., Tian, G., Xin, G., Hu, M., Yang, P., Wang, Y., Xie, H., Mayer, A. L., & Zhang, Y. (2021). Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China. Land, 10(5), 471. https://doi.org/10.3390/land10050471