Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species (Portulaca oleracea L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.1.1. The First Experiment
2.1.2. The Second Experiment
2.1.3. Chemical Analyses
3. Results
3.1. The pH and Electrical Conductivity (ECw)
3.1.1. The pH and the ECw of the Drainage Water
3.1.2. The pH and ECs of the Soil
3.2. Fresh and Dry Weights of the Plants
3.3. Root Length of P. oleracea
3.4. Macro- and Micronutrient Content in Leaves
3.5. Macro- and Micronutrients in the Soil
3.6. Macro- and Micronutrient Levels in Drainage Water
3.7. Yields of P. oleracea
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camalle, M.; Standing, D.; Jitan, M.; Muhaisen, R.; Bader, N.; Bsoul, M.; Ventura, Y.; Soltabayeva, A.; Sagi, M. Effect of Salinity and Nitrogen Sources on the Leaf Quality, Biomass, and Metabolic Responses of Two Ecotypes of Portulaca oleracea. Agronomy 2020, 10, 656. [Google Scholar] [CrossRef]
- Anastacio, A.; Carvalho, I.S. Accumulation of fatty acids in purslane grown in hydroponic salt stress conditions. Int. J. Food Sci. Nutr. 2013, 64, 235–242. [Google Scholar] [CrossRef]
- Uddin, M.K.; Juraimi, A.S.; Anwar, F.; Hossain, M.A.; Alam, M.A. Effect of salinity on proximate mineral composition of purslane (Portulca oleracea). Aust. J. Crop Sci. 2012, 6, 1732–1736. [Google Scholar]
- Uddin, M.K.; Juraimi, A.S.; Ismail, M.R.; Brosnan, J.B. Characterizing weed populations in different turfgrass sites throughout the Klang valley of western peninsular Malaysia. Weed Technol. 2010, 24, 173–181. [Google Scholar] [CrossRef]
- Uddin, M.K.; Juraimi, A.S.; Ismail, M.R.; Rahim, M.A.; Radziah, O. Floristic composition of weed community in turfgrass area of West Peninsular Malaysia. Int. J. Agric. Biol. 2009, 11, 13–20. [Google Scholar]
- Franco, J.A.; Cros, V.; Vicente, J.; Martinez-Sanchez, J.J. Effects of salinity on the germination, growth, and nitrate contents of purslane (Portulaca oleracea L.) cultivated under different climatic conditions. J. Hortic. Sci. Biotechnol. 2011, 86, 1–6. [Google Scholar] [CrossRef]
- Grieve, C.M.; Suarez, D.L. Purslane (Portulaca oleracea L.): A halophytic crop for drainage water reuse systems. Plant Soil 1997, 192, 277–283. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Ankush; Prakash, R.; Singh, V.; Diwedi, A.; Popat, R.C.; Kumari, S.; Kumar, N.; Dhillon, A. Sewage Sludge Impacts on Yields, Nutrients and Heavy Metals Contents in Pearl Millet–Wheat System Grown Under Saline Environment. Int. J. Plant Prod. 2020. [Google Scholar] [CrossRef]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Hakim, M.A. Salinity-induced changes in the morphology and major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions. Biol. Res. 2016, 49, 24. [Google Scholar] [CrossRef] [Green Version]
- Ramoliya, P.J.; Patel, H.M.; Pandey, A.N. Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). For. Ecol. Manag. 2004, 202, 181–193. [Google Scholar] [CrossRef]
- Lauchli, A.; Grattan, S.R. Plant growth and development under salinity stress. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Jenks, M.A., Hasegawa, P.M., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–32. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Akram, N.A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol. Adv. 2009, 27, 744–752. [Google Scholar] [CrossRef]
- Hakim, M.A.; Juraimi, A.S.; Begum, M.; Hanafi, M.M.; Ismail, M.R.; Selamat, A. Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). Afr. J. Biotechnol. 2010, 9, 1911–1918. [Google Scholar]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Paul, D.; Lade, H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A review. Agron. Sustain. Dev. 2014, 34, 737–752. [Google Scholar] [CrossRef]
- Eynard, A.; Lal, R.; Wiebe, K.D. Salt-affected Soils. Encycl. Soil Sci. 2006, 1538–1541. [Google Scholar] [CrossRef]
- Tanji, K.K.; Wallender, W. Nature and extent of agricultural salinity and sodicity. In Agricultural Salinity and Management; Wallender, K., Tanji, K.K., Eds.; American Society of Civil Engineers: New York, NY, USA, 2012; pp. 1–25. [Google Scholar]
- Shabala, S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 2013, 112, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 2015, 16, 237. [Google Scholar] [CrossRef]
- Singh, A. Poor quality water utilization for agricultural production: An environmental perspective. Land Use Policy 2015, 43, 259–262. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Crops and Drops: Making the Best Use of Water for Agriculture; FAO: Rome, Italy, 2002. [Google Scholar]
- Joshi, R.; Mangu, R.M.; Bedre, R.; Sanchez, L.; Pilcher, W.; Zandkarimi, H. Salt Adaptation Mechanisms of Halophytes: Improvement of Salt Tolerance in Crop Plants. In Elucidation of Abiotic Stress Signaling in Plants; Pandey, G.K., Ed.; Springer Science + Business Media: New York, NY, USA, 2015; pp. 243–279. [Google Scholar]
- Alqahtani, M.; Roy, S.J.; Tester, M. Increasing Salinity Tolerance of Crops. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2019. [Google Scholar]
- Wang, X.C.; Chang, L.L.; Wang, B.C.; Wang, D.; Li, P.H. Comparative proteomics of Thellungiellahalophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol. Cell Proteom. 2013, 12, 2174–2195. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [Green Version]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Schachtman, D.; Condon, A. The Significance of a Two-Phase Growth Response to Salinity in Wheat and Barley. Funct. Plant. Biol. 1995, 22, 561–569. [Google Scholar] [CrossRef]
- Zhu, J.K. Plant salt stress. In eLS; John Wiley & Sons Ltd.: Chichester, UK, 2007. [Google Scholar] [CrossRef]
- Abobatta, W.F. Plant Responses and Tolerance to Extreme Salinity: Learning from Halophyte Tolerance to Extreme Salinity. Salt and Drought Stress Tolerance in Plants; Springer Nature: Cham, Switzerland, 2020; pp. 177–210. [Google Scholar]
- Askari, H.; Edqvist, J.; Hajheidari, M.; Kafi, M.; Salekdeh, G.H. Effects of salinity levels on proteome of Suaedaaegyptiaca leaves. Proteomics 2006, 6, 2542–2554. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, S.; Zhao, Q.; Wang, T.; Yang, C.; Diaz, C. Physiological and proteomic analysis of salinity tolerance in Puccinelliatenuiflora. J. Proteom. Res. 2011, 10, 3852–3870. [Google Scholar] [CrossRef] [PubMed]
- Radojevic, M.; Bashkin, V.N. Practical Environmental Analysis; The Royal Society of Chemistry: Cambridge, UK, 1999. [Google Scholar]
- Mindak, W.R.; Dolan, S.P. Inductively Coupled Plasma-Atomic Emission Spectrometric Determination of Elements in Food Using Microwave Assisted Digestion. In Elemental Analysis Manual for Food and Related Products; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2010; pp. 3–14. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis, 1st ed.; Interscience Publishers, Inc.: New York, NY, USA, 1947; pp. 272–274. [Google Scholar]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Bekmirzaev, G.T.; Beltrao, J.; Neves, M.A. Effects of salt removal species in lettuce rotation. In Proceedings of the 5th WSEAS World Congress: Applied Computing Conference 2012 (ACC’12), Faro, Portugal, 2–4 May 2012. [Google Scholar]
- Bekmirzaev, G.; Beltrao, J.; Neves, M.A.; Costa, C. Climatical changes effects on the potential capacity of salt removing species. Int. J. Geol. 2011, 5, 79–85. [Google Scholar]
- Balla, D.; Omar, M.; Maassen, S.; Hamidov, A.; Khamidov, M. Efficiency of duckweed (Lemnaceae) for the desalination and treatment of agricultural drainage water in detention reservoirs. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia. Environmental Science and Engineering (Subseries: Environmental Science); Springer: Cham, Switzerland, 2014; pp. 423–440. [Google Scholar]
- Khamidov, M.K.; Balla, D.; Hamidov, A.M.; Juraev, U.A. Using collector-drainage water in saline and arid irrigation areas for adaptation to climate change. IOP Conference Series: Earth Environ. Sci. 2020, 422, 012121. [Google Scholar] [CrossRef]
- Khamidov, M.K.; Khamraev, K.S.; Isabaev, K.T. Innovative soil leaching technology: A case study from Bukhara region of Uzbekistan. IOP Conference Series: Earth Environ. Sci. 2020, 422, 012118. [Google Scholar] [CrossRef]
- Bekmirzaev, G.; Ouddane, B.; Beltrao, J. Effect of irrigation water regimes on yield of Tetragonia tetragonioides. Agriculture 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Bekmirzaev, G.; Ouddane, B.; Beltrao, J.; Fujii, Y. The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides. Agriculture 2020, 10, 238. [Google Scholar] [CrossRef]
- Lolaei, A. Effect of calcium chloride on growth and yield of tomato under sodium chloride stress. J. Ornam. Hortic. Plants 2012, 2, 155–160. [Google Scholar]
- Navarro, A.; Banon, S.; Conejero, W.; Sánchez-Blanco, M.J. Ornamental characters, ion concentration and water status in Arbutus unedo seedlings irrigated with saline water and subsequent relief and transplanting. Environ. Exp. Bot. 2008, 62, 364–370. [Google Scholar] [CrossRef]
- Villarino, G.H.; Mattson, N.S. Assessing tolerance to sodium chloride salinity in fourteen floriculture species. Hort. Technol. 2011, 21, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Debouba, M.; Gouia, H.; Suzuki, A.; Ghorbel, M.H. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato “Lycopersicon esculentum” seedlings. J. Plant Physiol. 2006, 163, 1247–1258. [Google Scholar] [CrossRef]
- Maggio, A.; Raimondi, G.; Martino, A.; De Pascale, S. Salt stress response in tomato beyond the salinity tolerance threshold. Environ. Exp. Bot. 2007, 59, 276–282. [Google Scholar] [CrossRef]
- Torres, J.S.; Hanks, R.J. Modelling water table contribution to the water supply of maize. Agric. Water Manag. 1989, 16, 35–42. [Google Scholar]
- Beltrao, J.; Da Silva, A.A.; Ben Asher, J. Modelling the effect of capillary rise in corn yield in Portugal. Irrig. Drain. Syst. 1996, 10, 179–189. [Google Scholar] [CrossRef]
- Villora, G.; Moreno, A.; Pulgar, G.; Romero, L. Yield improvement in zucchini under salt stress: Determining micronutrient balance. Sci. Hort. 2000, 86, 175–183. [Google Scholar] [CrossRef]
- Lao, M.T.; Plaza, B.M.; Jiménez, S. Impact of salt stress on micronutrients in Cordyline fruticosa var. ‘Red Edge’. J. Plant Nutr. 2013, 36, 990–1000. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Salinity mineral nutrient relations in horticultural crops: A review. Sci. Hortic. 1999. [Google Scholar] [CrossRef]
- Eom, S.H.; Setter, T.L.; Di Tommaso, A.; Weston, L.A. Differential growth response to salt stress among selected ornamentals. J. Plant Nutr. 2007, 30, 1109–1126. [Google Scholar] [CrossRef]
- Kaymak, H.C. Effect of nitrogen forms on growth, yield and nitrate accumulation of cultivated purslane (Portulaca oleracea L.). Bulg. J. Agric. Sci. 2013, 19, 444–449. [Google Scholar]
- Vural, H.; Esiyok, D.; Duman, I. Vegetable Growing; Ege University Press: Izmir, Turkey, 2000. [Google Scholar]
- Ehni, A.A.; Mebrahnu, T.; Omara-Alwala, T.; Ezekwe, M. Environmental effects on yield and agronomic traits of Purslane (Portulaca spp.). Va. J. Sci. 1997, 48, 204–210. [Google Scholar]
- Hamidov, A.; Beltrao, J.; Costa, C.; Khaydarova, V.; Sharipov, S. Environmentally Useful Technique—Portulaca oleracea Golden Purslane as a Salt Removal Species. WSEAS Trans. Environ. Dev. 2007, 2, 117–122. [Google Scholar]
- Ors, S.; Suarez, D.L. Spinach biomass yield and physiological response to interactive salinity and water stress. Agric. Water Manag. 2017, 190, 31–41. [Google Scholar] [CrossRef]
Treatment | The First Experiment | The Second Experiment | ||||||
---|---|---|---|---|---|---|---|---|
27 January 2016 | 12 March 2016 | 27 April 2016 | 16 June 2016 | |||||
pH | ECw 1 | pH | ECw | pH | ECw | pH | ECw | |
T0 | 5.0 ± 0.4 a | 3.9 ± 0.2 a | 5.6 ± 0.5 a | 2.4 ± 0.1 a | 6.7 ± 0.5 a | 1.9 ± 0.1 a | 7.0 ± 0.6 a | 1.4 ± 0.0 a |
T1 | 5.1 ± 0.4 a | 4.6 ± 0.3 b | 5.4 ± 0.4 a | 8.5 ± 0.8 b | 6.6 ± 0.5 a | 7.2 ± 0.7 b | 6.9 ± 0.6 a | 4.5 ± 0.3 b |
T2 | 4.9 ± 0.3 a | 3.9 ± 0.2 a | 5.7 ± 0.5 a | 12 ± 1.3 c | 6.8 ± 0.6 a | 8.8 ± 0.9 b | 6.8 ± 0.6 a | 6.2 ± 0.6 c |
T3 | 4.8 ± 0.2 a | 5.4 ± 0.4 c | 5.2 ± 0.4 ab | 16 ± 2.7 d | 6.1 ± 0.5 b | 15.6 ± 2.5 c | 6.5 ± 0.5 ab | 7.8 ± 0.6 d |
Treatment | The First Experiment | The Second Experiment | ||||||
---|---|---|---|---|---|---|---|---|
27 January 2016 | 12 March 2016 | 27 April 2016 | 16 June 2016 | |||||
pH | ECs 1 | pH | ECs | pH | ECs | pH | ECs | |
T0 | 6.6 ± 0.5 a | 1.2 ± 0.1 a | 6.1 ± 0.5 a | 1.1 ± 0.0 a | 6.2 ± 0.5 a | 0.9 ± 0.0 a | 6.4 ± 0.5 a | 0.5 ± 0.0 a |
T1 | 5.6 ± 0.5 a | 3.0 ± 0.2 b | 5.8 ± 0.5 a | 3.7 ± 0.2 b | 5.9 ± 0.5 a | 3.3 ± 0.1 b | 6.3 ± 0.5 a | 1.2 ± 0.0 a |
T2 | 4.5 ± 0.3 ab | 4.6 ± 0.3 c | 5.2 ± 0.4 ab | 5.6 ± 0.5 c | 5.8 ± 0.5 a | 4.4 ± 0.3 ab | 6.3 ± 0.5 a | 2.0 ± 0.1 ab |
T3 | 4.3 ± 0.3 ab | 6.2 ± 0.5 d | 5.0 ± 0.4 ab | 9.0 ± 0.8 d | 5.6 ± 0.5 ab | 8.1 ± 2.8 c | 6.0 ± 0.4 a | 3.2 ± 0.2 ab |
Treatment | Root Length, cm | |
---|---|---|
The First Exp. | The Second Exp. | |
T0 | 25.0 ± 4.88 a | 25.7 ± 1.26 a |
T1 | 25.5 ± 3.18 a | 19.7 ± 2.47 ab |
T2 | 25.0 ± 1.73 a | 20.3 ± 1.82 ab |
T3 | 18.5 ± 1.32 ab | 18.5 ± 2.04 ab |
Treatment | Portulaca oleracea | ||
---|---|---|---|
FW (g plant−1) | DW (g plant−1) | Yield (%) | |
T0 | 59.25 ± 6.1 a | 3.25 ± 0.48 a | 5.5 ± 0.28 ab |
T1 | 49.0 ± 9.7 a | 2.75 ± 0.75 ab | 5.5 ± 0.28 ab |
T2 | 40.75 ± 5.2 ab | 3.25 ± 1.03 a | 7.25 ± 1.60 a |
T3 | 20.0 ± 2.7 b | 1.5 ± 0.29 b | 7.0 ± 0.41 a |
Treatment | Portulaca oleracea | ||
---|---|---|---|
FW (g plant−1) | DW (g plant−1) | Yield (%) | |
T0 | 16.5 ± 2.99 b | 1.0 ± 0.41 ab | 6.5 ± 0.65 ab |
T1 | 31.75 ± 4.23 ab | 2.3 ± 0.48 a | 7.0 ± 1.08 a |
T2 | 37.5 ± 11.55 ab | 2.3 ± 0.75 a | 6.5 ± 0.29 ab |
T3 | 40.25 ± 4.99 a | 2.5 ± 0.64 a | 5.75 ± 0.85 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekmirzaev, G.; Ouddane, B.; Beltrao, J.; Khamidov, M.; Fujii, Y.; Sugiyama, A. Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species (Portulaca oleracea L.). Land 2021, 10, 481. https://doi.org/10.3390/land10050481
Bekmirzaev G, Ouddane B, Beltrao J, Khamidov M, Fujii Y, Sugiyama A. Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species (Portulaca oleracea L.). Land. 2021; 10(5):481. https://doi.org/10.3390/land10050481
Chicago/Turabian StyleBekmirzaev, Gulom, Baghdad Ouddane, Jose Beltrao, Mukhamadkhon Khamidov, Yoshiharu Fujii, and Akifumi Sugiyama. 2021. "Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species (Portulaca oleracea L.)" Land 10, no. 5: 481. https://doi.org/10.3390/land10050481
APA StyleBekmirzaev, G., Ouddane, B., Beltrao, J., Khamidov, M., Fujii, Y., & Sugiyama, A. (2021). Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species (Portulaca oleracea L.). Land, 10(5), 481. https://doi.org/10.3390/land10050481