Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing and Census Data
2.3. Spatial Metric for Measuring Urban Sprawl and Its Impacts on the Local Population
3. Results
3.1. Patterns of Land Consumption and the Compactness of the TTC Area
3.2. Local Microclimates and the Social Vulnerability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Shao, Z.; Sumari, N.S.; Portnov, A.; Ujoh, F.; Musakwa, W.; Mandela, P.J. Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geo-Spat. Inf. Sci. 2020, 1–15. [Google Scholar] [CrossRef]
- Prakash, M.; Ramage, S.; Kavvada, A.; Goodman, S. Open Earth Observations for Sustainable Urban Development. Remote Sens. 2020, 12, 1646. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Escobedo, F.J.; Clerici, N.; De La Barrera, F.; Eleuterio, A.A.; MacGregor-Fors, I.; Reyes-Paecke, S.; Vásquez, A.; Camaño, J.D.Z.; Hernández, H.J. Urban ecosystem Services in Latin America: Mismatch between global concepts and regional realities? Urban Ecosyst. 2019, 22, 173–187. [Google Scholar] [CrossRef]
- Gaviria, S.; Goldwyn, E.; Liu, Y.; Galarza, N.; Angel, S. Invisible walls: Measuring the impact of organized violence on urban expansion. Cities 2020, 97, 102498. [Google Scholar] [CrossRef]
- Ewing, R.; Hamidi, S. Compactness versus Sprawl: A review of recent evidence from the United States. J. Plan. Lit. 2015, 30, 413–432. [Google Scholar] [CrossRef]
- Bongaarts, J.; O’Neill, B.C. Global warming policy: Is population left out in the cold? Science 2018, 361, 650–652. [Google Scholar] [CrossRef]
- Salim, Z.; Bosco, F.J. Latin American Cities. Placing Latin America: Contemporary Themes in Geography; Rowman & Littlefield Publishers: London, UK, 2020; p. 61. [Google Scholar]
- Rovai, M.; Zetti, I.; Lucchesi, F.; Rossi, M.; Andreoli, M. Peri-urban open spaces and sustainable urban development between value and consumption. In Values and Functions for Future Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 249–265. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights; ONU: New York, NY, USA, 2014; Volume 1. [Google Scholar]
- Acuto, M.; Parnell, S.; Seto, K.C. Building a global urban science. Nat. Sustain. 2018, 1, 2–4. [Google Scholar] [CrossRef]
- Rivera, M. Political criteria for Sustainable Development Goal (SDG) selection and the role of the urban dimension. Sustainability 2013, 5, 5034–5051. [Google Scholar] [CrossRef] [Green Version]
- Bilal, U.; Alazraqui, M.; Caiaffa, W.T.; Lopez-Olmedo, N.; Martinez-Folgar, K.; Miranda, J.J.; Rodriguez, D.A.; Vives, A.; Diez-Roux, A.V. Inequalities in life expectancy in six large Latin American cities from the SALURBAL study: An ecological analysis. Lancet Planet. Health 2019, 3, e503–e510. [Google Scholar] [CrossRef] [Green Version]
- Rausky, M.E.; Chaves, M. Living and Working in Poverty in Latin America; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Molina, I.; Czischke, D.; Rolnik, R. Housing policy issues in contemporary South America: An introduction. Int. J. Hous. Policy 2019, 19, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Roberts, B.R.; Wilson, R.H. Urban Segregation and Governance in the Americas; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Rotondano, R.O. Brazilian apartheid: Racism and segregation in Salvador, Brazil. Int. J. Sociol. Soc. Policy 2019, 39, 950–961. [Google Scholar] [CrossRef]
- Creţan, R.; Málovics, G.; Méreiné-Berki, B. On the perpetuation and contestation of racial stigma: Urban Roma in a disadvantaged neighbourhood of Szeged. Geogr. Pannonica 2020, 24, 294–310. [Google Scholar] [CrossRef]
- Inostroza, L.; Baur, R.; Csaplovics, E. Urban sprawl and fragmentation in Latin America: A dynamic quantification and characterization of spatial patterns. J. Environ. Manag. 2013, 115, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Leite, C.; Acosta, C.; Militelli, F.; Jajamovich, G.; Wilderom, M.; Bonduki, N.; Somekh, N.; Herling, T. Social urbanism in Latin America. In Social Urbanism in Latin America; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–21. [Google Scholar]
- Ojima, R.; Hogan, D.J. Mobility, Urban sprawl and environmental risks in brazilian urban agglomerations:challenges for urban sustainability. In Urban Population-Environment Dynamics in the Developing World: Case Studies and Lessons Learned; De Sherbiniin, A., Rahman, A., Barbieri, A., Fotso, J.C., Zhu, Y., Eds.; Committee for International Cooperation in National Research in Demography: Paris, France, 2009; pp. 281–316. ISBN 2-910053-35-0. [Google Scholar]
- Sabatini, F. The Social Spatial Segregation in the Cities of Latin America; Inter-American Development Bank: Washington, DC, USA, 2003. [Google Scholar]
- Sperandelli, D.I.; Dupas, F.A.; Pons, N.A.D. Dynamics of Urban Sprawl, Vacant Land, and Green Spaces on the Metropolitan Fringe of São Paulo, Brazil. J. Urban Plan. Dev. 2013, 139, 274–279. [Google Scholar] [CrossRef]
- Klink, J.; Denaldi, R. On financialization and state spatial fixes in Brazil. A geographical and historical interpretation of the housing program My House My Life. Habitat Int. 2014, 44, 220–226. [Google Scholar] [CrossRef]
- Mourougane, A.; Pisu, M. Promoting Infrastructure Development in Brazil. 2011. Available online: https://ideas.repec.org/p/oec/ecoaaa/898-en.html (accessed on 17 April 2021).
- Shimbo, L. An unprecedented alignment: State, finance, construction and housing production in Brazil since the 2000s. Int. J. Hous. Policy 2019, 19, 337–353. [Google Scholar] [CrossRef]
- Filho, W.L.F.C.; Santiago, D.D.B.; De Oliveira-Júnior, J.F.; Junior, C.A.D.S. Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió, Brazil. Land Use Policy 2019, 87, 104026. [Google Scholar] [CrossRef]
- De Espindola, G.M.; Carneiro, E.L.N.D.C.; Façanha, A.C. Four decades of urban sprawl and population growth in Teresina, Brazil. Appl. Geogr. 2017, 79, 73–83. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Carneiro, E.; Lopes, W.; Espindola, G. Urban Land Mapping Based on Remote Sensing Time Series in the Google Earth Engine Platform: A Case Study of the Teresina-Timon Conurbation Area in Brazil. Remote Sens. 2021, 13, 1338. [Google Scholar] [CrossRef]
- Hamidi, S.; Ewing, R. A longitudinal study of changes in urban sprawl between 2000 and 2010 in the United States. Landsc. Urban Plan. 2014, 128, 72–82. [Google Scholar] [CrossRef]
- Zhou, W.; Jiao, M.; Yu, W.; Wang, J. Urban sprawl in a megaregion: A multiple spatial and temporal perspective. Ecol. Indic. 2019, 96, 54–66. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Lu, Y.; Coops, N.C.; Hermosilla, T. Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data. ISPRS J. Photogramm. Remote Sens. 2017, 126, 11–23. [Google Scholar] [CrossRef]
- Song, X.-P.; Sexton, J.O.; Huang, C.; Channan, S.; Townshend, J.R. Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sens. Environ. 2016, 175, 1–13. [Google Scholar] [CrossRef]
- Iannelli, G.C.; Gamba, P. Jointly exploiting Sentinel-1 and Sentinel-2 for urban mapping. In Proceedings of the IGARSS 2018-2018IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8209–8212. [Google Scholar]
- El Mendili, L.; Puissant, A.; Chougrad, M.; Sebari, I. Towards a Multi-Temporal Deep Learning Approach for Mapping Urban Fabric Using Sentinel 2 Images. Remote Sens. 2020, 12, 423. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas. Remote Sens. 2016, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Goldblatt, R.; Addas, A.; Crull, D.; Maghrabi, A.; Levin, G.; Rubinyi, S. Remotely Sensed Derived Land Surface Temperature (LST) as a Proxy for Air Temperature and Thermal Comfort at a Small Geographical Scale. Land 2021, 10, 410. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Hu, M.; Zhou, Y. Influence of Urban Scale and Urban Expansion on the Urban Heat Island Effect in Metropolitan Areas: Case Study of Beijing–Tianjin–Hebei Urban Agglomeration. Remote Sens. 2020, 12, 3491. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2011, 46, 696–703. [Google Scholar] [CrossRef]
- Srivastava, P.; Majumdar, T.; Bhattacharya, A.K. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Adv. Space Res. 2009, 43, 1563–1574. [Google Scholar] [CrossRef]
- Liu, S.; Long, B.; Pan, Z.; Lun, F.; Song, Y.; Yuan, W.; Huang, N.; Zhang, Z.; Ma, S. Evaluation of Climatic Comfort of Living Environment based on Age Differentials in Beijing-Tianjin-Hebei Area. Ecosyst. Health Sustain. 2020, 6, 1843371. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, M.; Li, J.; Jiang, N.; Wang, D.; Yao, L.; Xu, Y. The Gradient Effect on the Relationship between the Underlying Factor and Land Surface Temperature in Large Urbanized Region. Land 2020, 10, 20. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Gao, P.; Zhong, C. Monitoring the Detailed Dynamics of Regional Thermal Environment in a Developing Urban Agglomeration. Sensors 2020, 20, 1197. [Google Scholar] [CrossRef] [Green Version]
- Sabrin, S.; Karimi, M.; Fahad, G.R.; Nazari, R. Quantifying environmental and social vulnerability: Role of urban Heat Island and air quality, a case study of Camden, NJ. Urban Clim. 2020, 34, 100699. [Google Scholar] [CrossRef]
- Bhanjee, S.; Zhang, S. Do urban planning and sprawl affect social vulnerability? An assessment of Dar es Salaam. Dev. S. Afr. 2021, 38, 189–207. [Google Scholar] [CrossRef]
- Mereine Berki, B.; Málovics, G.; Toth, J.; Creţan, R. The Role of Social Capital and Interpersonal Relations in The Alleviation of Extreme Poverty And Spatial Segregation Of Romani People In Szeged. J. Urban Reg. Anal. 2017, 9, 33–50. [Google Scholar]
- Málovics, G.; Creţan, R.; Méreiné Berki, B.; Tóth, J. Urban Roma, segregation and place attachment in Szeged, Hungary. Area 2019, 51, 72–83. [Google Scholar] [CrossRef]
- Khan, S. Vulnerability assessments and their planning implications: A case study of the Hutt Valley, New Zealand. Nat. Hazards 2012, 64, 1587–1607. [Google Scholar] [CrossRef]
- Spielman, S.E.; Tuccillo, J.; Folch, D.C.; Schweikert, A.; Davies, R.; Wood, N.; Tate, E. Evaluating social vulnerability indicators: Criteria and their application to the Social Vulnerability Index. Nat. Hazards 2020, 100, 417–436. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.J. From Systems Thinking to Systemic Action: Social Vulnerability and the Institutional Challenge of Urban Resilience. City Community 2018, 17, 8–11. [Google Scholar] [CrossRef]
- Freitas, C.R.; D’Avignon, A.L.D.A.; Castro, A.C. Urban social vulnerability and climate change in Rio de Janeiro city associated with population mobility. J. Environ. Policy Plan. 2019, 21, 797–810. [Google Scholar] [CrossRef]
- Hummell, B.M.D.L.; Cutter, S.L.; Emrich, C.T. Social Vulnerability to Natural Hazards in Brazil. Int. J. Disaster Risk Sci. 2016, 7, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Tascón-González, L.; Ferrer-Julià, M.; Ruiz, M.; García-Meléndez, E. Social Vulnerability Assessment for Flood Risk Analysis. Water 2020, 12, 558. [Google Scholar] [CrossRef] [Green Version]
- Aroca-Jimenez, E.; Bodoque, J.M.; Garcia, J.A.; Diez-Herrero, A. Construction of an integrated social vulnerability index in urban areas prone to flash flooding. Nat. Hazards Earth Syst. Sci. 2017, 17, 1541–1557. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Du, S.; Liao, B.; Wen, J.; Wang, C.; Chen, R.; Chen, B. A hierarchical pattern of urban social vulnerability in Shanghai, China and its implications for risk management. Sustain. Cities Soc. 2018, 41, 170–179. [Google Scholar] [CrossRef]
- Fahy, B.; Brenneman, E.; Chang, H.; Shandas, V. Spatial analysis of urban flooding and extreme heat hazard potential in Portland, OR. Int. J. Disaster Risk Reduct. 2019, 39, 101117. [Google Scholar] [CrossRef]
- Hossain, M.K.; Meng, Q. A thematic mapping method to assess and analyze potential urban hazards and risks caused by flooding.Comput. Environ. Urban Syst. 2020, 79, 101417. [Google Scholar] [CrossRef]
- IBGE. Censo Demográfico 2010. In Síntese de Indicadores: Rio de Janeiro. 2013. Available online: https://biblioteca.ibge.gov.br/visualizacao/periodicos/93/cd_2010_caracteristicas_populacao_domicilios.pdf (accessed on 17 April 2021).
- Marengo, J.A.; Cunha, A.P.; Soares, W.R.; Torres, R.R.; Alves, L.M.; de Barros Brito, S.S.; Cuartas, L.A.; Leal, K.; Ribeiro Neto, G.; Alvalá, R.C.S.; et al. Increase Risk of Drought in the Semiarid Lands of Northeast Brazil Due to Regional Warming above 4 °C. In Climate Change Risks in Brazil; Springer International Publishing: Cham, Switzerland, 2019; pp. 181–200. [Google Scholar]
- Paredes-Trejo, F.J.; Barbosa, H.; Kumar, T.L. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid. Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- Dos Santos, S.M.; de Farias, M.M.M. Potential for rainwater harvesting in a dry climate: Assessments in a semiarid region in northeast Brazil. J. Clean. Prod. 2017, 164, 1007–1015. [Google Scholar] [CrossRef]
- Lemos, M.C.; Finan, T.J.; Fox, R.W.; Nelson, D.R.; Tucker, J. The Use of Seasonal Climate Forecasting in Policymaking: Lessons from Northeast Brazil. Clim. Chang. 2002, 55, 479–507. [Google Scholar] [CrossRef]
- Alencar, A.; Shimbo, J.Z.; Lenti, F.; Marques, C.B.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Ribeiro, J.F.M.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef] [Green Version]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google earth engine open-source code for land surface tem-perature estimation from the landsat series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- De Freitas Rocha, A.T.; Mira de Espindola, G.; Araujo Soares, M.R.; de Ribamar de Sousa Rocha, J.; Nery Costa, C.H. Visceralleishmaniasis and vulnerability conditions in an endemic urban area of Northeastern Brazil. Trans. R. Soc. Trop. Med. Hyg. 2018, 112, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Estiri, H. Tracking urban sprawl: Applying Moran’s I technique in developing sprawl detection models. Emergent Placemaking 2012, 47–53. [Google Scholar]
- Rahman, M.S. Quantifying urban form-compactness versus sprawl: An analysis of Chittagong and Sylhet metropolitan cities. Jahangirnagar University. Plan. Rev. 2012, 10, 39–50. [Google Scholar]
- Tsai, Y.-H. Quantifying Urban Form: Compactness versus ‘Sprawl’. Urban Stud. 2005, 42, 141–161. [Google Scholar] [CrossRef]
- de Magalhães, D.J.A.V. Localização residencial e acessibilidade ao local de trabalho dentro do aglomerado urbano formado pelos municípios de Teresina (PI) e Timon (MA). Anais 2016, 34, 1–20. [Google Scholar]
- Ojima, R.; Marandola, E., Jr.; Pereira, R.H.M.; da Silva, R.B. O estigma de morar longe da cidade: Repensando o consenso sobre as” cidades-dormitório” no Brasil. Cad. Metrópole 2010, 12, 395–415. [Google Scholar]
- Ojima, R.; Pereira, R.H.M.; da Silva, R.B. Cidades-dormitório e a mobilidade pendular: Espaços da desigualdade na redis-tribuição dos riscos socioambientais? Anais 2016, 36, 1–20. [Google Scholar]
- Marengo, J.A.; Bernasconi, M. Regional differences in aridity/drought conditions over Northeast Brazil: Present state and future projections. Clim. Chang. 2015, 129, 103–115. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Clim. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.M.A.; Nobre, C.A.; Neto, G.G.R.; Magalhaes, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.; Cuartas, L.A.; et al. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C. Nat. Hazards 2020, 103, 2589–2611. [Google Scholar] [CrossRef]
- Leuzinger, S.; Vogt, R.; Körner, C. Tree surface temperature in an urban environment. Agric. For. Meteorol. 2010, 150, 56–62. [Google Scholar] [CrossRef]
- Moschetto, F.; Ribeiro, R.; De Freitas, D. Urban expansion, regeneration and socioenvironmental vulnerability in a mangrove ecosystem at the southeast coastal of São Paulo, Brazil. Ocean Coast. Manag. 2020, 200, 105418. [Google Scholar] [CrossRef]
- Valença, M.M.; Bonates, M.F. The trajectory of social housing policy in Brazil: From the National Housing Bank to the Ministry of the Cities. Habitat Int. 2010, 34, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Ren, X. Governing the Informal: Housing Policies Over Informal Settlements in China, India, and Brazil. Hous. Policy Debate 2018, 28, 79–93. [Google Scholar] [CrossRef]
- Biderman, C.; Hiromoto, M.H.; Ramos, F.R. Brazilian Housing Program Minha Casa Minha Vida: Effect on Urban Sprawl; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2018. [Google Scholar]
- Neto, P.N.; Moreira, T.A.; Schussel, Z.D.G.L. Housing Policy. A Critical Analysis on the Brazilian Experience. TeMA-J. Land Use Mobil. Environ. 2012, 5, 65–76. [Google Scholar]
- Mohammad, P.; Goswami, A.; Bonafoni, S. The Impact of the Land Cover Dynamics on Surface Urban Heat Island Variations in Semi-Arid Cities: A Case Study in Ahmedabad City, India, Using Multi-Sensor/Source Data. Sensors 2019, 19, 3701. [Google Scholar] [CrossRef] [Green Version]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S.K. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data ap-plications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Mugiraneza, T.; Nascetti, A.; Ban, Y. Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing. Remote Sens. 2020, 12, 2883. [Google Scholar] [CrossRef]
- Mohammadnejad, V. Urban lands Extraction from Sentinel 1 and 2 satellite imagery based on Google Earth Engine (GEE). Geogr. Urban Plan. Res. GUPR 2020, 8, 613–630. [Google Scholar]
- Ranagalage, M.; Ratnayake, S.S.; Dissanayake, D.; Kumar, L.; Wickremasinghe, H.; Vidanagama, J.; Cho, H.; Udagedara, S.; Jha, K.K.; Simwanda, M.; et al. Spatiotemporal Variation of Urban Heat Islands for Implementing Nature-Based Solutions: A Case Study of Kurunegala, Sri Lanka. ISPRS Int. J. Geo-Inf. 2020, 9, 461. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Liu, X.; Meng, Y.; Zhu, L.; Rong, Y. Spatio-Temporal evolution of surface urban heat islands in the Chang-Zhu-Tan urban agglomeration. Phys. Chem. Earth Parts A/B/C 2020, 117, 102865. [Google Scholar] [CrossRef]
Characteristics | Teresina | Timon |
---|---|---|
Brazilian state | Piauí (PI) | Maranhão (MA) |
Population estimated in 2019 | 864,845 inhabitants | 169,107 inhabitants |
Population surveyed in 2010 | 814,230 inhabitants | 155,460 inhabitants |
Urban population in 2010 | 80.54% | 71.15% |
Population density in 2010 | 584.94 inhabitants/km2 | 89.18 inhabitants/km2 |
Total estimated urban area in 2019 | 168.64 km2 | 39.49 km2 |
Human Development Index (HDI) in 2010 | 0.751 | 0.649 |
Gross Domestic Product (GDP) per capita | USD 6785.28 | USD 3245.85 |
Sensor/Satellite 1 | Filtered Collection | Spatial Resolution |
---|---|---|
TM Landsat-5 (L5) | 2000 to 2011 | 30 m |
ETM+ Landsat-7 (L7) | 2012 | 30 m |
OLI Landsat-8 (L8) | 2013 to 2018 2019 (TIR only) | 30 m |
MSI Sentinel-2 (S2) | 2019 | 10 m |
MSI Sentinel-2 (S2) | 2019 | 20 m (Band 11 only) |
Bivariate Moran’s I | LST 1 2000 | LST 2010 | LST 2019 |
---|---|---|---|
Urban 2000 | 0.538 | - | - |
Urban 2010 | - | 0.556 | - |
Urban 2019 | - | - | 0.574 |
SVI 1 | −0.119 | −0.098 | −0.063 |
SSVI | −0.114 | −0.075 | −0.074 |
HSVI | −0.133 | −0.084 | −0.015 |
UIV | −0.123 | −0.103 | 0.096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, E.; Lopes, W.; Espindola, G. Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil. Land 2021, 10, 516. https://doi.org/10.3390/land10050516
Carneiro E, Lopes W, Espindola G. Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil. Land. 2021; 10(5):516. https://doi.org/10.3390/land10050516
Chicago/Turabian StyleCarneiro, Eduilson, Wilza Lopes, and Giovana Espindola. 2021. "Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil" Land 10, no. 5: 516. https://doi.org/10.3390/land10050516
APA StyleCarneiro, E., Lopes, W., & Espindola, G. (2021). Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil. Land, 10(5), 516. https://doi.org/10.3390/land10050516