Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Context
2.2. Independent Variables; Survey and Participatory Mapping
2.3. Secondary Variables; Independent Secondary Data
2.4. Statistic Analysis
2.4.1. Variable Selection
2.4.2. Latent Class Analysis
2.4.3. Random Forest Modelling
2.4.4. Validation and Mapping
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mascia, M.B.; Brosius, J.P.; Dobson, T.A.; Forbes, B.C.; Horowitz, L.; McKean, M.A.; Turner, N.J. Conservation and the social sciences. Conserv. Biol. 2003, 17, 649–650. [Google Scholar] [CrossRef] [Green Version]
- Schultz, P.W. Conservation Means Behavior. Conserv. Biol. 2011, 25, 1080–1083. [Google Scholar] [CrossRef] [Green Version]
- Fisichelli, N.A.; Schuurman, G.W.; Monahan, W.B.; Ziesler, P.S. Protected Area Tourism in a Changing Climate: Will Visitation at US National Parks Warm Up or Overheat? PLoS ONE 2015, 10, e0128226. [Google Scholar] [CrossRef]
- Gill, J.A. Approaches to measuring the effects of human disturbance on birds. Ibis 2007, 149, 9–14. [Google Scholar] [CrossRef]
- Bötsch, Y.; Tablado, Z.; Jenni, L. Experimental evidence of human recreational disturbance effects on bird-territory establishment. Proc. R. Soc. B Biol. Sci. 2017, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwis, N.S.; Perera, P.; Dayawansa, N.P. Response of tropical avifauna to visitor recreational disturbances: A case study from the Sinharaja World Heritage Forest, Sri Lanka. Avian Res. 2016, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Remacha, C.; Delgado, J.A.; Bulaic, M.; Pérez-Tris, J. Human Disturbance during Early Life Impairs Nestling Growth in Birds Inhabiting a Nature Recreation Area. PLoS ONE 2016, 11, e0166748. [Google Scholar] [CrossRef] [Green Version]
- Allbrook, D.L.; Quinn, J.L. The effectiveness of regulatory signs in controlling human behaviour and Northern gannet (Morus bassanus) disturbance during breeding: An experimental test. J. Nat. Conserv. 2020, 58, 125915. [Google Scholar] [CrossRef] [PubMed]
- Finney, S.K.; Pearce-Higgins, J.W.; Yalden, D.W. The effect of recreational disturbance on an upland breeding bird, the golden plover Pluvialis apricaria. Biol. Conserv. 2005, 121, 53–63. [Google Scholar] [CrossRef]
- Calladine, J.; Critchley, C.N.R.; Baker, D.; Towers, J.; Thiel, A. Conservation management of moorland: A case study of the effectiveness of a combined suite of management prescriptions which aim to enhance breeding bird populations. Bird Study 2014, 61, 56–72. [Google Scholar] [CrossRef] [Green Version]
- Beh, A.; Bruyere, B.L. Segmentation by visitor motivation in three Kenyan national reserves. Tour. Manag. 2007, 28, 1464–1471. [Google Scholar] [CrossRef]
- Fung, C.K.W.; Jim, C.Y. Segmentation by motivation of Hong Kong Global Geopark visitors in relation to sustainable nature-based tourism. Int. J. Sustain. Dev. World Ecol. 2015, 22, 76–88. [Google Scholar] [CrossRef]
- Formica, S.; Uysal, M. Segmentation of travelers based on environmental attitudes. J. Hosp. Leis. Mark. 2001, 9, 35–49. [Google Scholar] [CrossRef]
- Kim, A.K.; Weiler, B. Visitors’ attitudes towards responsible fossil collecting behaviour: An environmental attitude-based segmentation approach. Tour. Manag. 2013, 36, 602–612. [Google Scholar] [CrossRef]
- Halpenny, E.A. Pro-environmental behaviours and park visitors: The effect of place attachment. J. Environ. Psychol. 2010, 30, 409–421. [Google Scholar] [CrossRef]
- Bennett, N.J.; Roth, R.; Klain, S.C.; Chan, K.; Christie, P.; Clark, D.A.; Cullman, G.; Curran, D.; Durbin, T.J.; Epstein, G.; et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 2017, 205, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Booth, J.E.; Gaston, K.J.; Armsworth, P.R. Public understanding of protected area designation. Biol. Conserv. 2009, 142, 3196–3200. [Google Scholar] [CrossRef]
- González Del Campo, A. Mapping environmental sensitivity: A systematic online approach to support environmental assessment and planning. Environ. Impact Assess. Rev. 2017, 66, 86–98. [Google Scholar] [CrossRef]
- Dhami, I.; Deng, J.; Burns, R.C.; Pierskalla, C. Identifying and mapping forest-based ecotourism areas in West Virginia—Incorporating visitors’ preferences. Tour. Manag. 2014, 42, 165–176. [Google Scholar] [CrossRef]
- Rieb, J.T.; Chaplin-Kramer, R.; Daily, G.C.; Armsworth, P.R.; Böhning-Gaese, K.; Bonn, A.; Cumming, G.S.; Eigenbrod, F.; Grimm, V.; Jackson, B.M.; et al. When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. Bioscience 2017, 67, 820–833. [Google Scholar] [CrossRef]
- Hammitt, W.E.; Cole, D.N.; Monz, C.A. Free-Choice Environmental Learning: Framing the Discussion; Taylor and Francis Ltd.: New York, NY, USA, 2005; Volume 11. [Google Scholar]
- Salata, T.L.; Ostergren, D.M. Evaluating Forestry Camps with National Standards in Environmental Education: A Case Study of the Junior Forester Academy, Northern Arizona University. Appl. Environ. Educ. Commun. 2010, 9, 50–57. [Google Scholar] [CrossRef]
- Kidd, A.M.; Monz, C.; D’Antonio, A.; Manning, R.E.; Reigner, N.; Goonan, K.A.; Jacobi, C. The effect of minimum impact education on visitor spatial behavior in parks and protected areas: An experimental investigation using GPS-based tracking. J. Environ. Manag. 2015, 162, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Langston, R.H.W.; Liley, D.; Murison, G.; Woodfield, E.; Clarke, R.T. What effects do walkers and dogs have on the distribution and productivity of breeding European Nightjar Caprimulgus europaeus? Ibis 2007, 149, 27–36. [Google Scholar] [CrossRef]
- Liley, D.; Sutherland, W.J. Predicting the population consequences of human disturbance for Ringed Plovers Charadrius hiaticula: A game theory approach. Ibis 2007, 149, 82–94. [Google Scholar] [CrossRef]
- Bötsch, Y.; Tablado, Z.; Almasi, B.; Jenni, L. Human recreation decreases antibody titre in bird nestlings: An overlooked transgenerational effect of disturbance. J. Exp. Biol. 2020, 223. [Google Scholar] [CrossRef] [PubMed]
- Steven, R.; Pickering, C.; Guy Castley, J. A review of the impacts of nature based recreation on birds. J. Environ. Manag. 2011, 92, 2287–2294. [Google Scholar] [CrossRef]
- Mayer-Gross, H.; Crick, H.Q.P.; Greenwood, J.J.D. Bird Study The effect of observers visiting the nests of passerines: An experimental study. Bird Study 2010, 44, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.; Leonard, J. Conflict resolution in coastal waters: The case of personal watercraft. Mar. Policy 2000, 24, 61–67. [Google Scholar] [CrossRef]
- Harris, S.J.; Massimino, D.; Balmer, D.E.; Eaton, M.A.; Noble, D.G.; Pearce-Higgins, J.W.; Woodcock, P.; Gillings, S. The Breeding Bird Survey 2019; Thetford: Ann Arbor, MI, USA, 2020. [Google Scholar]
- Eaton, M.; Aebischer, N.; Brown, A.; Hearn, R.; Lock, L.; Musgrove, A.; Noble, D.; Stroud, D.; Gregory, R.; Powell, R. Birds of Conservation Concern 4: The Population Status of Birds in the UK, Channel Islands and Isle of Man. Br. Birds 2015, 108, 708–746. [Google Scholar]
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 140, 44–53. [Google Scholar]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D. Likert Scale: Explored and Explained. Br. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Centre for Ecology and Hydrology the UKCEH Land Cover Maps for 2017, 2018 and 2019. Available online: https://www.ceh.ac.uk/services/lcm2019-lcm2018-and-lcm2017 (accessed on 15 December 2020).
- Ordnance Survey OS Terrain® 50. Available online: https://osdatahub.os.uk/downloads/open/Terrain50 (accessed on 13 November 2020).
- QGIS. Development Team QGIS Geographic Information System. Available online: https://qgis.org/ (accessed on 4 January 2021).
- Geofabrik OpenStreetMap Data Extracts. Available online: https://download.geofabrik.de/ (accessed on 15 December 2020).
- Cuckovic, Z. Advanced viewshed analysis: A Quantum GIS plug-in for the analysis of visual landscapes. J. Open Source Softw. 2016, 1, 32. [Google Scholar] [CrossRef] [Green Version]
- Berk, R.A. An introduction to ensemble methods for data analysis. Sociol. Methods Res. 2006, 34, 263–295. [Google Scholar] [CrossRef] [Green Version]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression. UCSF: Center for Bioinformatics and Molecular Biostatistics. 2004. Available online: https://escholarship.org/uc/item/35x3v9t4 (accessed on 4 January 2021).
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Peschel, A.O.; Grebitus, C.; Steiner, B.; Veeman, M. How does consumer knowledge affect environmentally sustainable choices? Evidence from a cross-country latent class analysis of food labels. Appetite 2016, 106, 78–91. [Google Scholar] [CrossRef] [Green Version]
- Rhead, R.; Elliot, M.; Upham, P. Using latent class analysis to produce a typology of environmental concern in the UK. Soc. Sci. Res. 2018, 74, 210–222. [Google Scholar] [CrossRef]
- Ehrlich, O.; Bi, X.; Borisova, T.; Larkin, S. A latent class analysis of public attitudes toward water resources with implications for recreational demand. Ecosyst. Serv. 2017, 28, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Linzer, D.A.; Lewis, J.B. poLCA: An R package for polytomous variable latent class analysis. J. Stat. Softw. 2011, 42, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Zhang, F.; Zhang, X. Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach. ISPRS J. Photogramm. Remote Sens. 2015, 105, 107–119. [Google Scholar] [CrossRef]
- Moon, J.; Kim, Y.; Son, M.; Hwang, E. Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron. Energies 2018, 11, 3283. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Chen, X.; De Vos, J.; Lai, X.; Witlox, F. Applying a random forest method approach to model travel mode choice behavior. Travel Behav. Soc. 2019, 14, 1–10. [Google Scholar] [CrossRef]
- Braun, T.; Cottrell, R.; Dierkes, P. Fostering changes in attitude, knowledge and behavior: Demographic variation in environmental education effects. Environ. Educ. Res. 2018, 24, 899–920. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2016, 188, 1–27. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Tien Bui, D.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef]
- Kim, J.-C.; Lee, S.; Jung, H.-S.; Lee, S. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. 2018, 33, 1000–1015. [Google Scholar] [CrossRef]
- Park, S.; Kim, J. Landslide Susceptibility Mapping Based on Random Forest and Boosted Regression Tree Models, and a Comparison of Their Performance. Appl. Sci. 2019, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Heung, B.; Bulmer, C.E.; Schmidt, M.G. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma 2014, 214–215, 141–154. [Google Scholar] [CrossRef]
- Mascaro, J.; Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Martin, R.E.; Anderson, C.; Higgins, M.; Chadwick, K.D. A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping. PLoS ONE 2014, 9, e85993. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.M.; Miller, S.N.; Murphy, M.A. High-resolution landcover classification using Random Forest. Remote Sens. Lett. 2014, 5, 112–121. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. JSS J. Stat. Softw. 2017, 77. [Google Scholar] [CrossRef] [Green Version]
- Gilleland, E. Bootstrap methods for statistical inference. Part i: Comparative forecast verification for continuous variables. J. Atmos. Ocean. Technol. 2020, 37, 2117–2134. [Google Scholar] [CrossRef]
- O’Donnell, M.S.; Ignizio, D.A. Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. US Geol. Surv. Data Ser. 2012, 691, 4–9. [Google Scholar]
- Ballantyne, R.; Packer, J.; Hughes, K. Environmental awareness, interests and motives of botanic gardens visitors: Implications for interpretive practice. Tour. Manag. 2008, 29, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Finger, M. From Knowledge to Action? Exploring the Relationships Between Environmental Experiences, Learning, and Behavior. J. Soc. Issues 1994, 50, 141–160. [Google Scholar] [CrossRef]
- Schultz, P.W. Inclusion with nature: The psychology of human-nature relations. In Psychology of Sustainable Development; Springer: Cham, Switzerland, 2002; pp. 61–78. [Google Scholar]
- Maguire, G.; Rimmer, J.; Weston, M. Stakeholder Perceptions of Threatened Species and Their Management on Urban Beaches. Animals 2013, 3, 1002–1020. [Google Scholar] [CrossRef]
- Halpenny, E.A. Environmental Behaviour, Place Attachment and Park Visitation: A Case Study of Visitors to Point Pelee National Park; University of Waterloo: Waterloo, ON, Canada, 2006. [Google Scholar]
- Sterl, P.; Brandenburg, C.; Arnberger, A. Visitors’ awareness and assessment of recreational disturbance of wildlife in the Donau-Auen National Park. J. Nat. Conserv. 2008, 16, 135–145. [Google Scholar] [CrossRef]
- Alcock, I.; White, M.P.; Pahl, S.; Duarte-Davidson, R.; Fleming, L.E. Associations between pro-environmental behaviour and neighbourhood nature, nature visit frequency and nature appreciation: Evidence from a nationally representative survey in England. Environ. Int. 2020, 136, 105441. [Google Scholar] [CrossRef]
- Reeves, M.J.; Rafferty, A.P.; Miller, C.E.; Lyon-Callo, S.K. The Impact of Dog Walking on Leisure-Time Physical Activity: Results From a Population-Based Survey of Michigan Adults. J. Phys. Act. Health 2011, 8, 436–444. [Google Scholar] [CrossRef]
- Williams, D.R.; Child, M.F.; Dicks, L.V.; Ockendon, N.; Pople, R.G.; Showler, D.A.; Walsh, J.C.; zu Ermgassen, E.K.H.J.; Sutherland, W.J. Bird Conservation. In What Works in Conservation 2020; Sutherland, W.J., Dicks, L.V., Petrovan, S.O., Smith, R.K., Eds.; Open Book Publishers: Cambridge, UK, 2020; pp. 137–281. [Google Scholar]
- Ballantyne, R.; Hughes, K. Using front-end and formative evaluation to design and test persuasive bird feeding warning signs. Tour. Manag. 2006, 27, 235–246. [Google Scholar] [CrossRef]
- Weaver, D.B.; Lawton, L.J. A new visitation paradigm for protected areas. Tour. Manag. 2017, 60, 140–146. [Google Scholar] [CrossRef]
- Wolf, I.D.; Hagenloh, G.; Croft, D.B. Visitor monitoring along roads and hiking trails: How to determine usage levels in tourist sites. Tour. Manag. 2012, 33, 16–28. [Google Scholar] [CrossRef]
- Gosal, A.S.; Newton, A.C.; Gillingham, P.K. Comparison of methods for a landscape-scale assessment of the cultural ecosystem services associated with different habitats. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 91–104. [Google Scholar] [CrossRef] [Green Version]
Environmental Awareness Question | Abbreviated Form |
---|---|
Are you aware that Ilkley Moor is a South Pennine Moors Site of Special Scientific Interest (SSSI), a Special Protection Area (SPA), and a Special Area of Conservation (SAC)? | Site designations |
Are you aware that the nesting season for birds is between March and July every year (5 months)? | Nesting season |
Are you aware of the ecological importance of the nesting season in March–July every year (5 months) for birds such as the golden plover, red grouse, lapwing, and short eared owls? | Eco. bird nesting |
Are you aware of the issues that off-lead dogs can cause to the nesting birds? | Issues of off-leading |
Were you previously aware of the request to keep dogs on a lead during the period of March–July (5 months)? | Requested on-leading |
Variable | Environmentally Aware (%) | Environmentally Ambiguous (%) |
---|---|---|
Age | ||
18–30 | 5.00 | 22.70 |
31–40 | 7.50 | 6.80 |
41–50 | 17.50 | 15.90 |
51–60 | 27.50 | 20.50 |
61–70 | 18.80 | 25.00 |
70+ | 23.70 | 9.10 |
Gender | ||
Female | 47.50 | 29.55 |
Male | 52.50 | 70.45 |
Travel distance | ||
Less than 1 mile | 31.25 | 25.00 |
1 to 5 miles | 28.75 | 31.82 |
More than 5 miles | 40.00 | 43.18 |
Frequency of visit | ||
Daily | 26.25 | 9.09 |
2–3 times a week | 20.00 | 20.45 |
Once a week | 10.00 | 15.91 |
Twice a month | 2.50 | 2.27 |
Once a month | 7.50 | 13.64 |
1–2 times a year | 5.00 | 9.09 |
2–3 times a year | 8.75 | 4.55 |
Once every 2–3 years | 1.25 | 2.27 |
Sporadically | 16.25 | 9.09 |
First visit | 2.50 | 13.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gosal, A.S.; McMahon, J.A.; Bowgen, K.M.; Hoppe, C.H.; Ziv, G. Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness. Land 2021, 10, 560. https://doi.org/10.3390/land10060560
Gosal AS, McMahon JA, Bowgen KM, Hoppe CH, Ziv G. Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness. Land. 2021; 10(6):560. https://doi.org/10.3390/land10060560
Chicago/Turabian StyleGosal, Arjan S., Janine A. McMahon, Katharine M. Bowgen, Catherine H. Hoppe, and Guy Ziv. 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness" Land 10, no. 6: 560. https://doi.org/10.3390/land10060560
APA StyleGosal, A. S., McMahon, J. A., Bowgen, K. M., Hoppe, C. H., & Ziv, G. (2021). Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness. Land, 10(6), 560. https://doi.org/10.3390/land10060560