Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data
Abstract
:1. Introduction
- (1)
- How should the metrorail accessibility of each traffic analysis zone be evaluated from the perspective of transportation integration?
- (2)
- What are the spatial characteristics of the metrorail transit system and urban spatial form?
- (3)
- Is the existing metrorail accessibility consistent and coordinated with the urban spatial form?
2. Literature Review
2.1. Transportation Accessibility
2.2. Metrorail Accessibility and Urban Spatial Form
3. Data and Study Area
4. Methodology
4.1. SFCA Method for Accessibility Calculation
- —Supply-to-demand ratio ;
- —index of the supply point (destination station);
- —the total number of passenger arrivals in station ;
- —the passenger carrying capacity of station for one day.
- —index of the demand point (departure station);
- —the weight value of the demand, calculated by the ridership departure from station to station;
- —BTA value of departure station ; for this paper, we took this value as the attractiveness of the station. Other notations are the same as in Equation (1);
- —the total number of routes that depart from station.
- —metrorail accessibility of zone ;
- —the attractiveness of departure station , is same as the Equation (2);
- —distance decay.
4.2. Coordination Model
4.2.1. Data Standardization
4.2.2. Coupling Degree Model
4.2.3. Coupling Coordination Development Model
5. Results and Discussions
5.1. Urban Spatial Form
5.2. Metrorail Accessibility
5.2.1. By Transit Accessibility
5.2.2. Metrorail Accessibility
5.3. Spatial Coordination between Metrorail Accessibility and Urban Spatial Form
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
TTA | To Transit Accessibility |
BTA | By Transit Accessibility |
USF | Urban Spatial Form |
FAR | Floor area ratio |
2SFCA | The two-step floating catchment area |
3SFCA | The three-step floating catchment area |
References
- Bertolini, L. Spatial Development Patterns and Public Transport: The Application of an Analytical Model in the Netherlands. Plan. Pr. Res. 1999, 14, 199–210. [Google Scholar] [CrossRef]
- Suzuki, H.; Cervero, R.; Iuchi, K. Transforming Cities with Transit: Transit and Land-Use Integration for Sustainable Urban Development; World Bank Publications: Washington, DC, USA, 2013. [Google Scholar]
- Qu, Y.; Zhou, X. Large-Scale Dynamic Transportation Network Simulation: A Space-Time-Event Parallel Computing Approach. Transp. Res. Part C Emerg. Technol. 2017, 75, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Iida, A.; Yokohari, M. Spatial Patterns of Population Turnover in a Japanese Regional City for Urban Regeneration against Population Decline: Is Compact City Policy Effective? Cities 2018, 81, 230–241. [Google Scholar] [CrossRef]
- Falcocchio, J.C.; Levinson, H.S. Road Traffic Congestion: A Concise Guide; Springer: Cham, Switzerland, 2015; Volume 7. [Google Scholar]
- Pan, T.; Lam, W.H.K.; Sumalee, A.; Zhong, R. Multiclass Multilane Model for Freeway Traffic Mixed with Connected Automated Vehicles and Regular Human-Piloted Vehicles. Transp. Transp. Sci. 2021, 17, 5–33. [Google Scholar] [CrossRef]
- Madireddy, M.; De Coensel, B.; Can, A.; Degraeuwe, B.; Beusen, B.; De Vlieger, I.; Botteldooren, D. Assessment of the Impact of Speed Limit Reduction and Traffic Signal Coordination on Vehicle Emissions Using an Integrated Approach. Transp. Res. D Transp. Environ. 2011, 16, 504–508. [Google Scholar] [CrossRef] [Green Version]
- Salazar, E.; Henríquez, C.; Durán, G.; Qüense, J.; Puente-Sotomayor, F. How to Define a New Metropolitan Area? The Case of Quito, Ecuador, and Contributions for Urban Planning. Land (Basel) 2021, 10, 413. [Google Scholar]
- Grengs, J. Job Accessibility and the Modal Mismatch in Detroit. J. Transp. Geogr. 2010, 18, 42–54. [Google Scholar] [CrossRef]
- Levine, J.; Grengs, J.; Shen, Q.; Shen, Q. Does Accessibility Require Density or Speed? A Comparison of Fast versus Close in Getting Where You Want to Go in US Metropolitan Regions. J. Am. Plan. Assoc. 2012, 78, 157–172. [Google Scholar] [CrossRef]
- Martens, K. Accessibility and Potential Mobility as a Guide for Policy Action. Transp. Res. Rec. 2015, 2499, 18–24. [Google Scholar] [CrossRef]
- Cheng, J.; Bertolini, L.; Clercq, F.; Kapoen, L. Understanding Urban Networks: Comparing a Node-, a Density-and an Accessibility-Based View. Cities 2013, 31, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.J. Place-Based versus People-Based Accessibility. In Access to Destinations; Levinson, D., Krizek, K.J., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2005; pp. 63–89. [Google Scholar]
- Geurs, K.T.; van Wee, B. Accessibility Evaluation of Land-Use and Transport Strategies: Review and Research Directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Clifton, N. The “Creative Class” in the Uk: An Initial Analysis. Geogr. Ann. Ser. B 2008, 90, 63–82. [Google Scholar] [CrossRef]
- Feng, J.; Dijst, M.; Prillwitz, J.; Wissink, B. Travel Time and Distance in International Perspective: A Comparison between Nanjing (China) and the Randstad (The Netherlands). Urban Stud. 2013, 50, 2993–3010. [Google Scholar] [CrossRef]
- Levine, J.; Grengs, J.; Merlin, L.A. From Mobility to Accessibility: Transforming Urban Transportation and Land-Use Planning; Cornell University Press: Ithaca, NY, USA, 2019. [Google Scholar]
- Dittmar, H.; Ohland, G. (Eds.) The New Transit Town: Best Practices in Transit-Oriented Development; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Cervero, R.; Murakami, J. Rail and Property Development in Hong Kong: Experiences and Extensions. Urban Stud. 2009, 46, 2019–2043. [Google Scholar] [CrossRef]
- Wang, X.; Tong, D.; Gao, J.; Chen, Y. The Reshaping of Land Development Density through Rail Transit: The Stories of Central Areas vs. Suburbs in Shenzhen, China. Cities 2019, 89, 35–45. [Google Scholar] [CrossRef]
- Yu, M.; Fan, W. Accessibility Impact of Future High Speed Rail Corridor on the Piedmont Atlantic Megaregion. J. Transp. Geogr. 2018, 73, 1–12. [Google Scholar] [CrossRef]
- Zuo, T.; Wei, H.; Chen, N.; Zhang, C. First-and-Last Mile Solution via Bicycling to Improving Transit Accessibility and Advancing Transportation Equity. Cities 2020, 99, 102614. [Google Scholar] [CrossRef]
- Engelfriet, L.; Koomen, E. The Impact of Urban Form on Commuting in Large Chinese Cities. Transportation (Amst.) 2018, 45, 1269–1295. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.P.; Sekhar, C.R.; Parida, M. Residential Dissonance in TOD Neighborhoods. J. Transp. Geogr. 2018, 72, 166–177. [Google Scholar] [CrossRef]
- Steele, W.; Hussey, K.; Dovers, S. What’s Critical about Critical Infrastructure? Urban Policy Res. 2017, 35, 74–86. [Google Scholar] [CrossRef]
- Luo, W.; Qi, Y. An Enhanced Two-Step Floating Catchment Area (E2SFCA) Method for Measuring Spatial Accessibility to Primary Care Physicians. Health Place 2009, 15, 1100–1107. [Google Scholar] [CrossRef]
- Xu, W.; Li, Y.; Wang, H. Transit Accessibility for Commuters Considering the Demand Elasticities of Distance and Transfer. J. Transp. Geogr. 2016, 56, 138–156. [Google Scholar] [CrossRef]
- Welch, T.F.; Mishra, S. A Measure of Equity for Public Transit Connectivity. J. Transp. Geogr. 2013, 33, 29–41. [Google Scholar] [CrossRef]
- Fransen, K.; Neutens, T.; Farber, S.; De Maeyer, P.; Deruyter, G.; Witlox, F. Identifying Public Transport Gaps Using Time-Dependent Accessibility Levels. J. Transp. Geogr. 2015, 48, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Zhou, X.; Miller, H.J. Transportation Network Design for Maximizing Space–Time Accessibility. Trans. Res. Part B Methodol. 2015, 81, 555–576. [Google Scholar] [CrossRef] [Green Version]
- Tuzun Aksu, D.; Ozdamar, L. A Mathematical Model for Post-Disaster Road Restoration: Enabling Accessibility and Evacuation. Transp. Res. Part E Logist. Trans. Rev. 2014, 61, 56–67. [Google Scholar] [CrossRef]
- Wang, G.; Zhong, Y.; Teo, C.-P.; Liu, Q. Flow-Based Accessibility Measurement: The Place Rank Approach. Transp. Res. Part C Emerg. Technol. 2015, 56, 335–345. [Google Scholar] [CrossRef]
- Yang, S.; Liu, X.; Wu, Y.J.; Woolschlager, J.; Coffin, S.L. Can Freeway Traffic Volume Information Facilitate Urban Accessibility Assessment? Case Study of the City of St. Louis. J. Transp. Geogr. 2015, 44, 65–75. [Google Scholar] [CrossRef]
- Hansen, W.G. How Accessibility Shapes Land Use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Wang, F.; Tang, Q. Planning toward Equal Accessibility to Services: A Quadratic Programming Approach. Environ. Plan. B Plan. Des. 2013, 40, 195–212. [Google Scholar] [CrossRef]
- Curl, A.; Nelson, J.D.; Anable, J. Same Question, Different Answer: A Comparison of GIS-Based Journey Time Accessibility with Self-Reported Measures from the National Travel Survey in England. Comput. Environ. Urban Syst. 2015, 49, 86–97. [Google Scholar] [CrossRef]
- Mavoa, S.; Witten, K.; McCreanor, T.; O’Sullivan, D. GIS Based Destination Accessibility via Public Transit and Walking in Auckland, New Zealand. J. Transp. Geogr. 2012, 20, 15–22. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Dumas, C.F.; Herstine, J.; Hill, J.; Buerger, B. Valuing Beach Access and Width with Revealed and Stated Preference Data. Mar. Resour. Econ. 2008, 23, 119–135. [Google Scholar] [CrossRef]
- Leitham, S.; McQuaid, R.W.; Nelson, J.D. The Influence of Transport on Industrial Location Choice: A Stated Preference Experiment. Transp. Res. Part A Policy Pract. 2000, 34, 515–535. [Google Scholar] [CrossRef]
- Marcucci, E.; Gatta, V. Regional Airport Choice: Consumer Behaviour and Policy Implications. J. Transp. Geogr. 2011, 19, 70–84. [Google Scholar] [CrossRef]
- Cascetta, E.; Cartenì, A.; Montanino, M. A New Measure of Accessibility Based on Perceived Opportunities. Procedia Soc. Behav. Sci. 2013, 87, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Witter, R. Public Urban Transport, Travel Behavior and Social Exclusion–the Case of Santiago de Chile; XII World Conference on Transportation Research: Lisbon, Portugal, 2010. [Google Scholar]
- Mamun, S.A.; Lownes, N.E.; Osleeb, J.P.; Bertolaccini, K. A Method to Define Public Transit Opportunity Space. J. Transp. Geogr. 2013, 28, 144–154. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Páez, A. Accessibility to Transit, by Transit, and Mode Share: Application of a Logistic Model with Spatial Filters. J. Transp. Geogr. 2012, 24, 198–205. [Google Scholar] [CrossRef]
- Shadabmehr, H.; Rahnama, M.R.; Ajza Shokoh, M.; Mafi, E.A. Reforming the Main Public Transport Systems Path of Mashhad City Using Ant Colony Algorithm and Improving Access. Geogr. Plan. Space 2019, 9, 1–12. [Google Scholar]
- Graham, S.; Lewis, B.; Flanagan, B.; Watson, M.; Peipins, L. Travel by Public Transit to Mammography Facilities in 6 US Urban Areas. J. Transp. Health 2015, 2, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Delmelle, E.C.; Casas, I. Evaluating the Spatial Equity of Bus Rapid Transit-Based Accessibility Patterns in a Developing Country: The Case of Cali, Colombia. Transp. Policy 2012, 20, 36–46. [Google Scholar] [CrossRef]
- Foth, N.; Manaugh, K.; El-Geneidy, A.M. Towards Equitable Transit: Examining Transit Accessibility and Social Need in Toronto, Canada, 1996–2006. J. Transp. Geogr. 2013, 29, 1–10. [Google Scholar] [CrossRef]
- Melbye, D.C.; Møller-Jensen, L.; Andreasen, M.H.; Kiduanga, J.; Busck, A.G. Accessibility, Congestion and Travel Delays in Dar Es Salaam-A Time-Distance Perspective. Habitat Int. 2015, 46, 178–186. [Google Scholar] [CrossRef]
- Berube, A.; Kneebone, E.; Puentes, R.; Tomer, A. Missed Opportunity: Transit and Jobs in Metropolitan America, Metropolitan Infrastructure Initiative Series and Metropolitan Opportunity Series. Brook. Inst. 2011, 5, 13. [Google Scholar]
- Alonso, W. Location and Land Use. Toward a General Theory of Land Rent. Location and Land Use. Toward a General Theory of Land Rent; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Mills, E.S. Studies in the Structure of the Urban Economy; The Johns Hopkins Press: Baltimore, MD, USA, 1972. [Google Scholar]
- Muth, R.F. The Spatial Pattern of Urban Residential Land Use, Cities and Housing; Cambridge University Press: Cambridge, UK, 1969. [Google Scholar]
- Stokenberga, A. Does Bus Rapid Transit Influence Urban Land Development and Property Values: A Review of the Literature. Transp. Rev. 2014, 34, 276–296. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Chalermpong, S. New Highways, House Prices, and Urban Development: A Case Study of Toll Roads in Orange County, Ca. Hous. Policy Debate 2001, 12, 575–605. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.T.; O’Neill, K.M.; Hallman, W.K. Expertise, Trust, and Communication about Food Biotechnology. J. Agrobiotechnology Manag. Econ. 2003, 6, 4. [Google Scholar]
- Cervero, R.; Landis, J. Twenty Years of the Bay Area Rapid Transit System: Land Use and Development Impacts. Transp. Res. Part A Policy Pract. 1997, 31, 309–333. [Google Scholar] [CrossRef]
- Glaeser, E. Cities, Productivity, and Quality of Life. Science 2011, 333, 592–594. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Cervero, R. Travel and the Built Environment: A Meta-Analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Munishi, E.J. Rural-Urban Migration and Resilience Implications on the Maasai Households’ in North- Eastern Tanzania. Afr. J. Appl. Res. 2019, 5, 24–44. [Google Scholar]
- Litman, T. Well Measured: Developing Indicators for Sustainable and Livable Transport Planning; Victoria Transport Policy Institute: Victoria, BC, Canada, 2021. [Google Scholar]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Kho, S.-Y.; Park, J.J.; Kim, D.-K. Effects of Spatial Aggregation Level on an Urban Transportation Planning Model. KSCE J. Civ. Eng. 2012, 16, 835–844. [Google Scholar] [CrossRef]
- Zegras, C. The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile. Urban Stud. 2010, 47, 1793–1817. [Google Scholar] [CrossRef]
- Ratner, K.A.; Goetz, A.R. The Reshaping of Land Use and Urban Form in Denver through Transit-Oriented Development. Cities 2013, 30, 31–46. [Google Scholar] [CrossRef]
- Li, G. China Urban Rail Transit Industry Development Report; China Railway Publications: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Lee, J.; Abdel-Aty, M.; Jiang, X. Development of Zone System for Macro-Level Traffic Safety Analysis. J. Transp. Geogr. 2014, 38, 13–21. [Google Scholar] [CrossRef]
- Litman, T. The Online TDM Encyclopedia: Mobility Management Information Gateway. Transp. Policy 2003, 10, 245–249. [Google Scholar] [CrossRef]
- Robinson, P.L.; Dominguez, F.; Teklehaimanot, S.; Lee, M.; Brown, A.; Goodchild, M. Does Distance Decay Modelling of Supermarket Accessibility Predict Fruit and Vegetable Intake by Individuals in a Large Metropolitan Area? J. Health Care Poor Underserved 2013, 24, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Wang, F. Measures of Spatial Accessibility to Health Care in a GIS Environment: Synthesis and a Case Study in the Chicago Region. Environ. Plan. B Plan. Des. 2003, 30, 865–884. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Ding, Y.; Zhou, J.; Li, Y. Transit Accessibility Measures Incorporating the Temporal Dimension. Cities 2015, 46, 55–66. [Google Scholar] [CrossRef]
- Li, Z.; Han, Z.; Xin, J.; Luo, X.; Su, S.; Weng, M. Transit Oriented Development among Metro Station Areas in Shanghai, China: Variations, Typology, Optimization and Implications for Land Use Planning. Land Use policy 2019, 82, 269–282. [Google Scholar] [CrossRef]
- Storper, M.; Scott, A.J. Rethinking Human Capital, Creativity and Urban Growth. J. Econ. Geogr. 2008, 9, 147–167. [Google Scholar] [CrossRef] [Green Version]
- Wegener, M.; Fuerst, F. Land-Use Transport Interaction: State of the Art. SSRN Electron. J. 2004, 1, 19–22. [Google Scholar] [CrossRef]
- Illingworth, P.J.; Groome, N.P.; Byrd, W.; Rainey, W.E.; McNeilly, A.S.; Mather, J.P.; Bremner, W.J. Inhibin-B: A Likely Candidate for the Physiologically Important Form of Inhibin in Men. J. Clin. Endocrinol. Metab. 1996, 81, 1321–1325. [Google Scholar] [PubMed] [Green Version]
- Chen, N.; Qin, F.; Zhai, Y.; Cao, H.; Zhang, R.; Cao, F. Evaluation of Coordinated Development of Forestry Management Efficiency and Forest Ecological Security: A Spatiotemporal Empirical Study Based on China’s Provinces. J. Clean. Prod. 2020, 260, 121042. [Google Scholar] [CrossRef]
- Cong, I.; Choi, S.; Lukin, M.D. Quantum Convolutional Neural Networks. Nat. Phys. 2019, 15, 1273–1278. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Fang, C.; Zhang, Q. Coupling Coordinated Development between Social Economy and Ecological Environment in Chinese Provincial Capital Cities-Assessment and Policy Implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Cervero, R.; Kang, C.D. Bus Rapid Transit Impacts on Land Uses and Land Values in Seoul, Korea. Transp. Policy 2011, 18, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, J. Making a City: Urbanity, Vitality and Urban Design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Sung, H.; Oh, J.-T. Transit-Oriented Development in a High-Density City: Identifying Its Association with Transit Ridership in Seoul, Korea. Cities 2011, 28, 70–82. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G. Models of Core/Periphery Structures. Soc. Netw. 2000, 21, 375–395. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Liu, J.; Li, H.-Y.; Jiang, M. Capacity-Oriented Passenger Flow Control under Uncertain Demand: Algorithm Development and Real-World Case Study. Transp. Res. Part E Logist. Trans. Rev. 2016, 87, 130–148. [Google Scholar] [CrossRef]
Field Name | Amount | Variables | Data Source | Year | |
---|---|---|---|---|---|
OD | M Workday | 7,245,131 | Departure station; Departure route; Destination Station; Destination route; Counts | shmetro.com | 2018 |
N Workday | 7,297,484 | ||||
Holiday | 8,200,763 | ||||
Shanghai Road Map | 81,599 | Road level; Name; Length | udparty.com | ||
Metro Station | 344 | Line Routes; Time Schedule; Station name; Location; Length; Transfer Station name; Average time interval; Capacity; | udparty.com | ||
Floor to Area ratio | 618,415 | Stories; Land Area; Build area; Location | udparty.com | ||
Parcels | 5270 | ID; Land Area | udparty.com |
Average Density | First Ring | Second Ring | Third Ring | Fourth Ring | Total |
---|---|---|---|---|---|
500 m | 4.9139 | 3.6984 | 2.6620 | 2.0209 | 4.0601 |
800 m | 5.5402 | 4.2620 | 3.4625 | 2.4513 | 4.5140 |
1000 m | 7.1026 | 5.1184 | 4.2177 | 2.4140 | 3.9509 |
1500 m | 5.1725 | 4.0148 | 3.4159 | 1.9911 | 3.4713 |
2000 m | 3.3991 | 3.8013 | 3.5071 | 1.8967 | 2.4030 |
Total | 4.5629 | 3.9311 | 3.5103 | 2.0421 | 3.8035 |
Types | Distance Threshold | First Ring | Second Ring | Third Ring | Fourth Ring | Total |
---|---|---|---|---|---|---|
Average Workday Accessibility | 500 m | 8.4852 | 5.8625 | 4.4607 | 2.7529 | 5.9816 |
800 m | 8.3847 | 5.8349 | 4.6141 | 2.9553 | 6.3719 | |
1000 m | 7.9968 | 5.8556 | 4.5611 | 2.9231 | 5.7024 | |
1500 m | 7.6818 | 5.6610 | 4.4242 | 2.8126 | 4.9297 | |
2000 m | 6.1111 | 4.9222 | 4.0945 | 2.7119 | 3.4785 | |
Total | 8.1954 | 5.7276 | 4.4414 | 2.8128 | 5.4606 | |
Average Holiday Accessibility | 500 m | 8.4708 | 5.9996 | 4.6942 | 3.0709 | 6.1108 |
800 m | 8.3777 | 5.9797 | 4.8368 | 3.2923 | 6.4867 | |
1000 m | 7.9621 | 5.9943 | 4.7771 | 3.2472 | 5.8358 | |
1500 m | 7.6498 | 5.8186 | 4.6372 | 3.1079 | 5.1021 | |
2000 m | 6.2122 | 5.1106 | 4.3221 | 2.9826 | 3.7168 | |
Total | 8.1781 | 5.8764 | 4.6628 | 3.1151 | 5.6109 |
Types | Distance ThreshOld | First Ring | Second Ring | Third Ring | Fourth Ring | Total |
---|---|---|---|---|---|---|
Average Workday Accessibility and Urban Spatial Form | 500 m | 0.3082 | 0.2517 | 0.2228 | 0.1246 | 0.2426 |
800 m | 0.3092 | 0.2521 | 0.2301 | 0.1402 | 0.2587 | |
1000 m | 0.3040 | 0.2530 | 0.2300 | 0.1409 | 0.2433 | |
1500 m | 0.2979 | 0.2491 | 0.2293 | 0.1369 | 0.2225 | |
2000 m | 0.2591 | 0.2346 | 0.2198 | 0.1314 | 0.1740 | |
Total | 0.3056 | 0.2501 | 0.2269 | 0.1346 | 0.2334 | |
Average Holiday Accessibility and Urban Spatial Form | 500 m | 0.3102 | 0.2550 | 0.2274 | 0.1292 | 0.2459 |
800 m | 0.3113 | 0.2554 | 0.2345 | 0.1454 | 0.2619 | |
1000 m | 0.3060 | 0.2562 | 0.2343 | 0.1460 | 0.2467 | |
1500 m | 0.3000 | 0.2524 | 0.2336 | 0.1417 | 0.2262 | |
2000 m | 0.2618 | 0.2381 | 0.2243 | 0.1359 | 0.1783 | |
Total | 0.3076 | 0.2534 | 0.2313 | 0.1393 | 0.2369 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Hou, X.; Xia, C.; Kang, X.; Zhou, Y. Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data. Land 2021, 10, 580. https://doi.org/10.3390/land10060580
Liu J, Hou X, Xia C, Kang X, Zhou Y. Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data. Land. 2021; 10(6):580. https://doi.org/10.3390/land10060580
Chicago/Turabian StyleLiu, Jingming, Xianhui Hou, Chuyu Xia, Xiang Kang, and Yujun Zhou. 2021. "Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data" Land 10, no. 6: 580. https://doi.org/10.3390/land10060580
APA StyleLiu, J., Hou, X., Xia, C., Kang, X., & Zhou, Y. (2021). Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data. Land, 10(6), 580. https://doi.org/10.3390/land10060580