Spatiotemporal Patterns of Land-Use Changes in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.3. Mapping and Evaluating the Land-Use Spatial Pattern
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Factor Name | Description | Date * | Source |
---|---|---|---|
Population density, 1989 | Population density in 1989, number of inhabitants/km2 | 1989 | Population and housing census 1989 |
Population density, 2011 | Population density in 2011, number of inhabitants/km2 | 2011 | Population and housing census 2011 |
Soil productivity grade | Average soil productivity score for agricultural land | Dirv_DR10LT—spatial dataset of soil of the territory of the Republic of Lithuania at scale 1:10,000 | |
Land reclamation intensity | Drainage areas from the total area of the municipality, percentage | Mel_DR10LT—spatial dataset of reclamation status and sodden soil of the territory of the Republic of Lithuania at scale 1:10,000 | |
Minimum altitude | Minimum altitude value within the borders of municipality | Digital raster elevation model (cell size 100 m) in GDB200 GIS database—topographic map at scale 1:200,000. Elevation model was created using contour lines (interval between contours 20 m) and elevation points and applying Topo to Raster function of ArcGIS Desktop | |
Range of altitude | Range of altitude values within the borders of municipality | ||
Mean altitude | The average altitude within the borders of municipality | ||
Standard deviation of altitude | Standard deviation of altitude values within the borders of municipality | ||
Mean slope | Average of terrain slope within the borders of municipality. Slope was calculated in degrees using Slope function of ArcGIS Desktop | ||
Standard deviation of slope | Standard deviation of relief slope values within the borders of municipality. | ||
Private land area, 2004 | Private land area in 2004 | 2004 | Agricultural census data, available from the Official Statistics Portal of Lithuania |
Number of private owners, 2004 | Number of private owners in 2004 | 2004 | |
Private land area per estate, 2004 | Average area of private land area per estate in 2004 | 2004 | |
% of agricultural land in private land, 2004 | Proportion of agricultural land in private land area in 2004 | 2004 | |
Private land area, 2008 | Private land area in 2008 | 2008 | |
Number of private owners, 2008 | Number of private owners in 2008 | 2008 | |
Private land area per estate, 2008 | Average area of private land area per estate in 2008 | 2008 | |
% of agricultural land in private land, 2008 | Proportion of agricultural land in private land area in 2008 | 2008 | |
Private land area, 2014 | Private land area in 2014 | 2014 | |
Number of private owners, 2014 | Number of private owners in 2014 | 2014 | |
Private land area per estate, 2014 | Average area of private land area per estate in 2014 | 2014 | |
% of agricultural land in private land, 2014 | Proportion of agricultural land in private land area in 2014 | 2014 | |
Grassland area per cattle-unit, 2008 | Area of permanent pasture for one animal unit in 2008 | 2008 | |
Grassland area per cattle-unit, 2014 | Area of permanent pasture for one animal unit in 2014 | 2014 | |
Forest, 1971 | Proportion of forest area in municipality in 1971 | 1971 | Database of Lithuanian NFI |
Forest, 1990 | Proportion of forest area in municipality in 1990 | 1990 | |
Forest, 2005 | Proportion of forest area in municipality in 2005 | 2005 | |
Forest, 2015 | Proportion of forest area in municipality in 2015 | 2015 | |
Producing land, 1971 | Proportion of producing land area in municipality in 1971 | 1971 | |
Producing land, 1990 | Proportion of producing land area in municipality in 1990 | 1990 | |
Producing land, 2005 | Proportion of producing land area in municipality in 2005 | 2015 | |
Producing land, 2015 | Proportion of producing land area in municipality in 2015 | 2015 | |
Grassland, 1971 | Proportion of grassland area in municipality in 1971 | 1971 | |
Grassland, 1990 | Proportion of grassland area in municipality in 1990 | 1990 | |
Grassland, 2005 | Proportion of grassland area in municipality in 2005 | 2005 | |
Grassland, 2015 | Proportion of grassland area in municipality in 2015 | 2015 | |
Population < 15-min drive to cities | Proportion of population residing within 15 min driving distance to cities | 2007 | Cartographic vector database of reference features according to the national specification KDB10LT-MIKRO (earlier version of current Georeference background cadastre (GRPK)), with all field and forest roads from Forest State Cadastre additionally included |
Protection zones of roads | Area of protection zones around roads | SŽNS_DR10LT—data base of limited land-use areas of the Republic of Lithuania at scale 1:10,000 | |
Protection zones of railroads | Area of protection zones around railroads | ||
Protection zones of electricity lines | Area of protection zones around electricity lines | ||
Protection zones of gas pipelines | Area of protection zones around gas pipelines | ||
Protection zones of oil pipelines | Area of protection zones around oil pipelines | ||
Graveyard protection zones | Area of graveyards and protection zones around them | ||
Protection zones of water bodies | Area of protection zones around water bodies | ||
Cultural heritage protection zones | Area of cultural heritage protection zones | ||
Protected areas | Total area of protected areas | ||
Area of abandoned land | Total area of abandoned agricultural land | AŽ_DRLT—spatial dataset of neglected land of the territory of the Republic of Lithuania | |
Area of agricultural blocks, 2004 | Area of agricultural blocks in municipality in 2004 | 2004 | Land parcel identification system (KZS_DR5LT) database and cartographic vector database of reference features according to the national specification KDB10LT-MIKRO or (for 2014) Georeference background cadastre (GRPK) |
Area of built-up blocks, 2004 | Area of built-up blocks in municipality in 2004 | 2004 | |
Area of miscellaneous blocks, 2004 | Area of miscellaneous blocks in municipality in 2004 | 2004 | |
Area of road infrastructure | Area of road blocks in municipality in 2004 | 2004 | |
Length of streams, 2004 | Total length of streams in municipality in 2004 | 2004 | |
Area of water bodies, 2004 | Area of blocks around the water bodies in municipality in 2004 | 2004 | |
Area of agricultural blocks, 2008 | Area of agricultural blocks in municipality in 2008 | 2008 | |
Area of built-up blocks, 2008 | Area of built-up blocks in municipality in 2008 | 2008 | |
Area of miscellaneous blocks, 2008 | Area of miscellaneous blocks in municipality in 2008 | 2008 | |
Area of road infrastructure, 2008 | Area of road blocks in municipality in 2008 | 2008 | |
Length of streams, 2008 | Total length of streams in municipality in 2008 | 2008 | |
Area of water bodies, 2008 | Area of blocks around the water bodies in municipality in 2008 | 2008 | |
Area of agricultural blocks, 2014 | Area of agricultural blocks in municipality in 2014 | 2014 | |
Area of built-up blocks, 2014 | Area of built-up blocks in municipality in 2014 | 2014 | |
Area of miscellaneous blocks, 2014 | Area of miscellaneous blocks in municipality in 2014 | 2014 | |
Area of road infrastructure, 2014 | Area of road blocks in municipality in 2014 | 2014 | |
Length of streams, 2014 | Total length of streams in municipality in 2014 | 2014 | |
Area of water bodies, 2014 | Area of blocks around the water bodies in municipality in 2014 | 2014 |
References
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Goldewijk, K.K.; Ramankutty, N. Land cover change over the last three centuries due to human activities: The availability of new global data sets. Geojournal 2004, 61, 335–344. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Chang. Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef]
- Liu, S.; Gao, W.; Liang, X.-Z. A regional climate model downscaling projection of China future climate change. Clim. Dyn. 2013, 41, 1871–1884. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [Green Version]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hostert, P.; Kuemmerle, T.; Prishchepov, A.; Sieber, A.; Lambin, E.F.; Radeloff, V.C. Rapid land use change after socio-economic disturbances: The collapse of the Soviet Union versus Chernobyl. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Wu, J.; Hobbs, R. Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landsc. Ecol. 2002, 17, 355–365. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Sauri, D. Post-classification change detection with data from different sensors: Some accuracy considerations. Int. J. Remote Sens. 2003, 24, 3311–3340. [Google Scholar] [CrossRef]
- Zhang, F.; Tiyip, T.; Feng, Z.D.; Kung, H.; Johnson, V.C.; Ding, J.L.; Tashpolat, N.; Sawut, M.; Gui, D.W. Spatio-Temporal Patterns of Land Use/Cover Changes Over the Past 20 Years in the Middle Reaches of the Tarim River, Xinjiang, China. Land Degrad. Dev. 2015, 26, 284–299. [Google Scholar] [CrossRef]
- Bell, A.R.; Ward, P.S.; Mapemba, L.; Nyirenda, Z.; Msukwa, W.; Kenamu, E. Smart subsidies for catchment conservation in Malawi. Sci. Data 2018, 5, 180113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale, V.; O’Neill, R.; Pedlowski, M.; Southworth, F. Causes and effects of land use change in Central Rondonia, Brazil. Photogramm. Eng. Remote Sens. 1993, 59, 97–1005. [Google Scholar]
- Houghton, R.A. The world-wide extent of land-use change. Bioscience 1994, 44, 305–313. [Google Scholar] [CrossRef]
- Medley, K.E.; Okey, B.W.; Barrett, G.W.; Lucas, M.F.; Renwick, W.H. Landscape change with agricultural intensification in a rural watershed, southwestern Ohio, USA. Landsc. Ecol. 1995, 10, 161–176. [Google Scholar] [CrossRef]
- Tsendbazar, N.; Herold, M.; Lesiv, M.; Fritz, S. Copernicus Global Land Operations—Vegetation and Energy “CGLOPS-1”; European Union: Brussels, Belgium, 2018. [Google Scholar]
- Schäfer, M.P.; Dietrich, O.; Mbilinyi, B. Streamflow and lake water level changes and their attributed causes in Eastern and Southern Africa: State of the art review. Int. J. Water Resour. Dev. 2015, 32, 853–880. [Google Scholar] [CrossRef]
- Gessesse, B.; Bewket, W.; Bräuning, A. Model-Based Characterization and Monitoring of Runoff and Soil Erosion in Response to Land Use/land Cover Changes in the Modjo Watershed, Ethiopia. Land Degrad. Dev. 2015, 26, 711–724. [Google Scholar] [CrossRef]
- Ligonja, P.J.; Shrestha, R.P. Soil Erosion Assessment in Kondoa Eroded Area in Tanzania using Universal Soil Loss Equation, Geographic Information Systems and Socioeconomic Approach. Land Degrad. Dev. 2015, 26, 367–379. [Google Scholar] [CrossRef]
- Lithuanian Statistical Yearbook. National Land Service under the Ministry of Agriculture of the Republic of Lithuania. 2000. Available online: http://www.nzt.lt/go.php/lit/Lietuvos-respublikos-zemes-fondas (accessed on 14 January 2021).
- Mozgeris, G.; Juknelienė, D. Modeling Future Land Use Development: A Lithuanian Case. Land 2021, 10, 360. [Google Scholar] [CrossRef]
- Veteikis, D.; Piškinaitė, E. Geographical study of land use Change in Lithuania: Development, directions, perspectives. Geol. Geogr. 2019, 5. [Google Scholar] [CrossRef]
- European Landscape Convention. Strasbourg. 2000. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.189933 (accessed on 9 February 2021).
- Ribokas, G. Apleistų žemių (dirvonų) problema retai apgyvendintose teritorijose [Problem of Unused Lands in the Sparsely Populated Regions]. Kaimo Raidos Kryptys Žinių Visuomenėje 2011, 2, 298–307. [Google Scholar]
- Vaitkus, G. CORINE Žemės Danga 2000 Lietuvoje; Aplinkos Apsaugos Agentūra prie LR Aplinkos Ministerijos: Vilnius, Lithuania, 2004. [Google Scholar]
- Vaitkus, G. Lietuvos CORINE Žemės Danga GIS Duomenų Bazės Taikomojo Panaudojimo Aplinkosaugos Srityje Studija; Sutarties Nr.4F–124 (2004.08.27); Aplinkos Apsaugos Agentūra Prie LR Aplinkos Ministerijos: Vilnius, Lithuania, 2005. [Google Scholar]
- Vaitkuviene, D.; Dagys, M. Lietuvos CORINE Žemơs Danga 2006; Vilniaus Universiteto Ekologijos Instituto GIS Grupė, Aplinkos Apsaugos Agentnūros Užsakymu: Vilnius, Lithuania, 2008. [Google Scholar]
- Vitkauskienė, R.; Antanavičiūtė, U.; Buiko, A.; Kasilovskis, K.S.; Jelisejev, A.; Pakrosnienė, I. GMES Žemės Dangos Monitoringas 2011–2013 m; Lietuvos CORINE Žemės Dangos Duomenų Bazės ir Tematinių Sluoksnių Parengimas; Sutarties Nr. 28TP-2013-73/(4.22)10MF-63; GIS-Centras ir Aerogeodezijos Institutas: Vilnius, Lithuania, 2014. [Google Scholar]
- Flynn, H.C.; Canals, L.M.I.; Keller, E.; King, H.; Sim, S.; Hastings, A.; Wang, S.; Smith, P. Quantifying global greenhouse gas emissions from land-use change for crop production. Glob. Chang. Biol. Bioenergy 2012, 18, 1622–1635. [Google Scholar] [CrossRef]
- Richards, M.; Pogson, M.; Dondini, M.; Jones, E.O.; Hastings, A.; Henner, D.N.; Tallis, M.J.; Casella, E.; Matthews, R.W.; Henshall, P.A.; et al. High-resolution spatial modelling of greenhouse gas emissions from land-use change to energy crops in the United Kingdom. GCB Bioenergy 2016, 9, 627–644. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Adams, J.; Beerling, D.J.; Beringer, T.; Calvin, K.V.; Fuss, S.; Griscom, B.; Hagemann, N.; Kammann, C.; Kraxner, F.; et al. Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annu. Rev. Environ. Resour. 2019, 44, 255–286. [Google Scholar] [CrossRef]
- Blujdea, V.N.; Bird, D.N.; Robledo, C. Consistency and comparability of estimation and accounting of removal by sinks in afforestation/reforestation activities. Mitig. Adapt. Strat. Glob. Chang. 2009, 15, 1–18. [Google Scholar] [CrossRef]
- Fyson, C.L.; Jeffery, M.L. Ambiguity in the Land Use Component of Mitigation Contributions Toward the Paris Agreement Goals. Earth’s Future 2019, 7, 873–891. [Google Scholar] [CrossRef]
- Konstantinavičiūtė, I.; Byčenkienė, S.; Kavšinė, A.; Zaikova, I.; Juška, R.; Žiukelytė, I.; Lenkaitis, R.; Kazanavičiūtė, V.; Mačiulskas, M.; Juraitė, T.; et al. Lithuania’s National Inventory Report 2018: Greenhouse Gas Emissions 1990–2016; Ministry of Environment, Environmental Protection Agency, State Forest Service: Vilnius, Lithuania, 2018; p. 617. Available online: http://klimatas.gamta.lt/files/LT_NIR_20180415_final.pdf (accessed on 9 February 2021).
- Kulbokas, G.; Jurevičienė, V.; Kuliešis, A.; Augustaitis, A.; Petrauskas, E.; Mikalajūnas, M.; Vitas, A.; Mozgeris, G. Fluctuations in gross volume increment estimated by the Lithuanian National Forest Inventory compared with annual variations in single tree increment. Balt. For. 2019, 25, 105–112. [Google Scholar] [CrossRef]
- Lukšienė, L. Pasėlių, pievų, pelkių, urbanizuotų teritorijų ir kitų žemės naudmenų plotų pokyčių Lietuvoje 1990–2011 m. įvertinimas [Assessment of Producing Land, Grassland, Wetland, Urban Land and Other Land Use Changes in Lithuania during 1990–2011]; Darbo pagal 2012 m. kovo 8 d. sutarties Nr. 2012.03.18-001 tarp Lietuvos Respublikos aplinkos ministerijos ir VĮ Valstybės žemės fondo ataskaita [Report of the Project Implemented following the Agreement from 8 March 2012 No.2012.03.18-001 between Ministry of Environment of Republic of Lithuania and State Company Valstybinės Žemės Fondas); Lietuvos Respublikos Aplinkos Ministerija: Vilnius, Lithuania, 2012; p. 13. (In Lithuanian) [Google Scholar]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Science and Systems, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; p. 496. [Google Scholar]
- Kučas, A.; Trakimas, G.; Balčiauskas, L.; Vaitkus, G. Multi-scale Analysis of Forest Fragmentationin Lithuania. Balt. For. 2011, 17, 128–135. [Google Scholar]
- Lazdinis, M.; Roberge, J.M.; Mozgeris, G.; Angelstam, P. Afforestation planning and biodiversity conservation: Predicting effects on habitat functionality in Lithuania. J. Environ. Plan. Manag. 2005, 48, 331–348. [Google Scholar] [CrossRef]
- Juknelienė, D.; Mozgeris, G. The spatial pattern of forest cover changes in Lithuania during the second half of the twentieth century. Žemės Ūkio Mokslai 2015, 22, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Manton, M.; Makrickas, E.; Banaszuk, P.; Kołos, A.; Kamocki, A.; Grygoruk, M.; Stachowicz, M.; Jarašius, L.; Zableckis, N.; Sendžikaitė, J.; et al. Assessment and Spatial Planning for Peatland Conservation and Restoration: Europe’s Trans-Border Neman River Basin as a Case Study. Land 2021, 10, 174. [Google Scholar] [CrossRef]
- Tiškutė-Memgaudienė, D.; Mozgeris, G.; Gaižutis, A. Open geo-spatial data for sustainable forest management: Lithuanian case. For. Wood Process. 2020. [Google Scholar] [CrossRef]
- Juknelienė, D.; Valčiukienė, J.; Atkocevičienė, V. Assessment of regulation of legal relations of territorial planning: A case study in Lithuania. Land Use Policy 2017, 67, 65–72. [Google Scholar] [CrossRef]
- Kuliešis, A.; Kasperavičius, A.; Kulbokas, G. Lithuania (Book Chapter) National Forest Inventories: Assessment of Wood Availability and Use; Springer: Cham, Switzerland, 2016; pp. 521–547. [Google Scholar]
- IPCC. Good Practice Guidancefor Land Use, Land-Use Change and Forestry; National Greenhouse Gas Inventories Programme; C/o Institute for Global Environmental Strategies 2108-11; Institute for Global Environmental Strategies: Hayama, Japan, 2003; p. 240-0115. [Google Scholar]
- FP7 RURALJOBS Project. Available online: https://cordis.europa.eu/project/id/211605/reporting (accessed on 22 February 2021).
- Official Statistics Portal of Lithuania. Available online: https://osp.stat.gov.lt/zemes-ukio-surasymai1 (accessed on 22 February 2021).
- Salmi, T.; Anu Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS; No. 31, Report Code FMI-AQ-31; Finnish Meteorological Institute, Air Quality Research, Publications on Air Quality: Helsinki, Finland, 2002; 35p, Available online: https://www.researchgate.net/publication/259356944 (accessed on 9 December 2018).
- Lietuvos 2007–2013 m. Kaimo Plėtros Programa [Rural Development Programme 2007–2013]. Europos Komisija, 2007 m. Rugsėjo 19 d. Nr. 1698/2005. Available online: https://zum.lrv.lt/uploads/zum/documents/files/LT_versija/Veiklos_sritys/Kaimo_pletra/Lietuvos_kaimo_pletros_2007%E2%80%932013%20m._programa/KPP20072013LT20141222.pdf (accessed on 22 January 2021).
- Lietuvos 2014–2020 m. Kaimo Plėtros Programa [Rural Development Programme 2014–2020]. Europos Komisija, 2015 m. Vasario 13 d. Nr. C(2015)842. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/key_policies/documents/rdp-lithuanua-fulltext_lt.pdf (accessed on 22 January 2021).
- European Parliament and Council. Regulation (EU) No 1307/2013 of the European Parliament and of the Council of 17 December 2013 Establishing Rules for Direct Payments to Farmers under Support Schemes within the Framework of the Common Agricultural Policy and Repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009. Available online: http://data.europa.eu/eli/reg/2013/1307/oj (accessed on 14 January 2021).
- Makrickiene, E.; Mozgeris, G.; Brukas, V.; Brodrechtova, Y.; Sedmak, R.; Salka, J. From command-and-control to good forest governance: A critical comparison between Lithuania and Slovakia. For. Policy Econ. 2019, 109, 1–13. [Google Scholar] [CrossRef]
- Mozgeris, G.; Kazanavičiūtė, V.; Juknelienė, D. Does Aiming for Long-Term Non-Decreasing Flow of Timber Secure Carbon Accumulation: A Lithuanian Forestry Case. Sustainability 2021, 13, 2778. [Google Scholar] [CrossRef]
- Ribokas, G.; Milius, J. Turning point in the development of farm lands (a case of Lithuanian agroterritories). Geografija 2007, 43, 8–11. [Google Scholar]
- Aleknavičius, P. Kaimiškųjų teritorijų žemės naudojimo problemos [Land use problems in rural territories]. Žemės Ūkio Mokslai 2007, 14, 82–90. [Google Scholar]
- Gerulytė, P.; Stravinskienė, V. Žemės ūkio naudmenų kaita Lietuvos ir Europos agrarinėse teritorijose [The change of agricultural lands in the agrarian areas of Lithuania and Europe]. Miškininkystė ir Kraštotvarka. Kauno Miškų ir Aplink. Inžinerijos Kolegija 2017, 2, 95–99. [Google Scholar]
- Aleknavičius, P.; Valčiukienė, J. Kaimiškojo kraštovaizdžio raidos ypatumai Vilniaus miesto įtakos zonoje. Vandens Ūkio Inžinerija 2011, 38, 32–41. [Google Scholar]
- Aleknavičius, P.; Aleknavičius, A.; Juknelienė, D. Agrarinių teritorijų naudojimo problemos ir jų sprendimas Lietuvoje [Problems and solutions of the use of agrarian areas in Lithuania]. Žemės Ūkio Mokslai 2014, 2, 78–88. [Google Scholar]
- Lithuanian Statistical Yearbook of Forestry. Ministry of Environment, State Forest Service. 2019. Available online: http://www.amvmt.lt/index.php/leidiniai/misku-ukio-statistika/2019 (accessed on 14 January 2021).
- Kurowska, K.; Kryszk, H.; Marks-Bielska, R.; Mika, M.; Leń, P. Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience. Land Use Policy. 2020, 95, 104614. [Google Scholar] [CrossRef]
- Verburg, P.; de Koning, G.; Kok, K.; Veldkamp, A.; Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 1999, 116, 45–61. [Google Scholar] [CrossRef]
- Veldkamp, A.; Fresco, L.O. Reconstructing land use drivers and their spatial scale dependence for Costa Rica (1973 and 1984). Agric. Syst. 1997, 55, 19–43. [Google Scholar] [CrossRef]
- Vinclovaitė, G.; Veteikis, D. Kraštovaizdžio poliarizacijos metodologinės problemos [The problems of landscape polarization methodology]. Geografja 2011, 47, 38–45. [Google Scholar]
- Lietuvos Respublikos Teritorijos Bendrasis Planas [Plan of the Territory of the Republic of Lithuania]. Available online: http://www.bendrasisplanas.lt/wp-content/uploads/2020/07/LR-BPTeritorini%C5%B3-element%C5%B3-vystymas.pdf (accessed on 14 January 2021).
- Veldkamp, A.; Zuidema, G.; Fresco, L.; Veldkamp, T. A model analysis of the terrestrial vegetation model of image 2.0 for Costa Rica. Ecol. Model. 1996, 93, 263–273. [Google Scholar] [CrossRef]
- Veldkamp, A.; Fresco, L. Exploring land use scenarios, an alternative approach based on actual land use. Agric. Syst. 1997, 55, 1–17. [Google Scholar] [CrossRef]
- Bilsborrow, R.E.; Okoth-Ogendo, H.W.O. Population-Driven Changes in Land Use in Developing Countries. Ambio 1992, 21, 37–45. [Google Scholar]
- Heilig, G.K. Neglected Dimensions of Global Land-Use Change: Reflections and Data. Popul. Dev. Rev. 1994, 20, 831. [Google Scholar] [CrossRef]
- Azadi, H.; Ho, P.; Hasfiati, L. Agricultural land conversion drivers: A comparison between less developed, developing and developed countries. Land Degrad. Dev. 2010, 22, 596–604. [Google Scholar] [CrossRef]
- Chen, R.S.; Ye, C.; Cai, Y.L.; Xing, X.S.; Chen, Q. The impact of rural out-migration on land use transition in China: Past, present and trend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Skog, K.L.; Steinnes, M. How do centrality, population growth and urban sprawl impact farmland conversion in Norway? Land Use Policy 2016, 59, 185–196. [Google Scholar] [CrossRef]
- Haarsma, D.; Qiu, F. Assessing Neighbor and Population Growth Influences on Agricultural Land Conversion. Appl. Spat. Anal. Policy 2017, 10, 21–41. [Google Scholar] [CrossRef]
- Tong, Q.; Qiu, F. Population growth and land development: Investigating the bi-directional interactions. Ecol. Econ. 2020, 169, 106505. [Google Scholar] [CrossRef]
- Maziliauskas, A.; Morkunas, V.; Rimkus, Z.; Šaulys, V. Economic incentives in land reclamation sector in Lithuania. J. Water Land Dev. 2007, 11, 17–30. [Google Scholar] [CrossRef]
- Mardosa, J. Lithuania’s Rural Settlements Structural Transformations in Soviet and Post-Soviet Period. In Liquid Structures and Cultures; Uniwersytet Szczeciński: Szczecin, Poland, 2017. [Google Scholar]
- Šaulys, V.; Barvidienė, O. Substantiation of the expediency of drainage systems renovation in Lithuania. In Proceedings of the 9th International Conference Environmental Engineering, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar] [CrossRef]
- Lietuvos Respublikos Žemės ūkio Ministro ir Lietuvos Respublikos Aplinkos Ministro į s a k y m a s dėl Miško Įveisimo ne Miško Žemėje 2004 m. kovo 29 d. Nr. 3D-130/D1-144 Vilnius. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.230808/asr (accessed on 22 February 2021).
- Johnson, G.D.; Patil, G.P. Landscape Pattern Analysis for Assessing Ecosystem Condition; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Zhao, Y.; Tomita, M.; Hara, K.; Fujihara, M.; Yang, Y.; Da, L. Effects of topography on status and changes in land-cover patterns, Chongqing City, China. Landsc. Ecol. Eng. 2011, 10, 125–135. [Google Scholar] [CrossRef]
Land-Use Type | Trend Statistics for the Period under Review | |||||||
---|---|---|---|---|---|---|---|---|
1971–2015 | 1971–1990 | 1990–2005 | 2005–2015 | |||||
Slope | Z Statistic | Slope | Z Statistic | Slope | Z Statistic | Slope | Z Statistic | |
Forest | 0.085 | 9.67 *** | 0.076 | 6.13 *** | 0.064 | 5.36 *** | 0.106 | 4.20 *** |
Producing land | −0.027 | −0.69 | 0.539 | 5.09 *** | −0.624 | −5.36 *** | 0.418 | 4.05 *** |
Grassland/pasture | −0.031 | −0.78 | −0.579 | −5.16 *** | 0.612 | 5.36 *** | −0.542 | −4.05 *** |
Wetlands | −0.020 | −9.52 *** | −0.023 | −6.10 *** | −0.012 | −4.95 *** | −0.007 | −3.74 *** |
Built-up land | 0.009 | 6.79 *** | −0.001 | −2.98 ** | 0.014 | 4.95 *** | 0.015 | 3.97 *** |
Other land | −0.015 | −7.47 *** | −0.002 | −2.37 * | −0.016 | −4.86 *** | 0.001 | 0.93 |
Adjusted R2 | Corrected Akaike Information Criterion | Jarque–Bera Statistic | Koenker (BP) Statistic | Variance Inflation Factor | Moran’s I of the Regression Residuals | Model |
---|---|---|---|---|---|---|
Period: 1971–2015 | ||||||
Dependent Variable: Slope of Linear Trend of Forest Proportion Changes in Lithuanian Municipalities | ||||||
0.65 | −64.94 | 0.68 | 0.21 | 1.60 | 0.39 | 1.474085 − 0.004053 × [Population density, 2011] ** − 0.02052 × [Soil productivity grade] *** + 0.003441 × [Standard deviation of altitude] − 0.010011 × [Forest, 1971] *** |
Dependent Variable: Slope of Linear Trend of Producing Land Proportion Changes in Lithuanian Municipalities | ||||||
0.40 | 111.9 | 0.00 | 0.00 | 5.02 | 0.20− | 0.39185 + 0.032059 × [Standard deviation of altitude] * − 5.077213 × [Mean slope] ** + 3.110821 × [Standard deviation of slope] ** − 0.395311 × [Grassland area per cattle-unit, 2014] * |
Dependent variable: slope of linear trend of grassland proportion changes in Lithuanian municipalities | ||||||
0.37 | 43.33 | 0.12 | 0.55 | 4.89 | 0.40 | −0.722898 + 1.852514 × [Mean slope] *** − 1.465708 × [Standard deviation of slope] ** + 0.012207 × [Grassland, 1971] *** + 0.000001 × [Protected areas] ** |
Period: 1971–1990 | ||||||
Dependent Variable: Slope of Linear Trend of Forest Proportion Changes in Lithuanian Municipalities | ||||||
0.40 | 24.99 | 0.00 | 0.11 | 3.25 | 0.22 | 0.484 − 0.0049 × [Land reclamation intensity] + 0.003281 × [Minimum altitude] + 0.012543 × [Standard deviation of altitude] ** − 0.013414 × [Forest, 1971] *** |
Dependent Variable: Slope of Linear Trend of Producing Land Proportion Changes in Lithuanian Municipalities | ||||||
0.45 | 322.44 | 0.00 | 0.04 | 5.83 | 0.82 | −3.213562 + 0.826977 × [Soil productivity grade] ** − 0.1465 × [Land reclamation intensity] ** − 0.232591 × [Forest, 1971] *** − 0.433926 × [Producing land, 1971] *** |
Dependent Variable: Slope of Linear Trend of Grassland Proportion Changes in Lithuanian Municipalities | ||||||
0.58 | 175.65 | 0.00 | 0.43 | 2.24 | 0.68 | 4.890114 − 0.009301 × [Range of altitude] * + 2.125683 × [Mean slope] − 0.070913 × [Forest, 1971] *** − 0.113908 × [Grassland, 1971] *** |
Period: 1990–2005 | ||||||
Dependent Variable: Slope of Linear Trend of Forest Proportion Changes in Lithuanian Municipalities | ||||||
0.42 | −41.24 | 0.36 | 0.08 | 2.34 | 0.45 | 1.686125 − 0.032764 × [Soil productivity grade] *** − 0.007497 × [Standard deviation of altitude] *** − 0.006543 × [Forest, 1990] *** + 0.000001 × [Area of agricultural blocks, 2004] *** − 0.000001 × [Area of water bodies, 2004] ** |
Dependent Variable: Slope of Linear Trend of Producing Land Proportion Changes in Lithuanian Municipalities | ||||||
0.34 | 349.86 | 0.00 | 0.01 | 2.62 | 0.80 | −8.849178 + 0.277094 × [Land reclamation intensity] *** − 0.190026 × [Producing land, 1990] * − 0.000001 × [Protection zones of electricity lines] + 0.000001 × [Protected areas] ** − 0.000001 × [Area of water bodies, 2004] * |
Dependent Variable: Slope of Linear Trend of Grassland Proportion Changes in Lithuanian Municipalities | ||||||
0.45 | 198.44 | 0.44 | 0.55 | 2.34 | 0.68 | 3.864368 − 0.072516 × [Land reclamation intensity] *** − 0.047102 × [Minimum altitude] *** + 0.018176 × [Range of altitude] *** − 0.000034 × [Population < 15-min drive to cities] ** + 0.000001 × [Area of water bodies, 2004] *** |
Period: 2005–2015 | ||||||
Dependent Variable: Slope of Linear Trend of Forest Proportion Changes in Lithuanian Municipalities | ||||||
0.47 | 12.58 | 0.33 | 0.08 | 2.04 | 0.88 | −0.427383 + 0.003047 × [Mean slope] *** − 0.014434 × [Standard deviation of altitude] *** + 0.017336 × [Grassland, 2005] *** + 0.000001 × [Area of agricultural blocks, 2008] *** − 0.000001 × [Area of built-up blocks, 2008] ** |
Dependent Variable: Slope of Linear Trend of Producing Land Proportion Changes in Lithuanian Municipalities | ||||||
0.29 | 194.65 | 0.12 | 0.01 | 4.86 | 0.75 | 1.326413 − 0.025171 × [Minimum altitude] ** − 0.000049 × [Area of agricultural blocks, 2008] ** + 0.000042 × [Private land area, 2008] ** + 0.058605 × [Grassland, 2005] *** − 0.000001 × [Area of water bodies, 2008] ** |
Dependent Variable: Slope of Linear Trend of Grassland Proportion Changes in Lithuanian Municipalities | ||||||
0.50 | 140.2 | 0.56 | 0.37 | 4.66 | 0.13 | 4.202848 − 0.198318 × [Soil productivity grade] *** + 0.637596 × [Grassland area per cattle-unit, 2008] ** + 0.063401 × [Forest, 2005] *** − 0.000001 × [Length of streams, 2014] ** + 0.000001 × [Area of water bodies, 2014] ** |
Selected Explanatory Variable | Forest | Producing Land | Meadow/Pasture | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1971–2015 | 1971–1990 | 1990–2005 | 2005–2015 | 1971–2015 | 1971–1990 | 1990–2005 | 2005–2015 | 1971–2015 | 1971–1990 | 1990–2005 | 2005–2015 | |
Soil productivity grade | −0.347 | −0.247 | −0.202 | −0.337 | 0.314 | −0.427 | 0.408 | −0.175 | −0.407 | 0.609 | −0.520 | −0.580 |
Population density in 2011 | −0.295 | −0.117 | −0.284 | −0.384 | 0.064 | −0.047 | 0.014 | −0.014 | −0.135 | 0.067 | −0.094 | −0.061 |
Land reclamation intensity | −0.091 | −0.216 | 0.032 | −0.178 | 0.426 | −0.511 | 0.502 | 0.006 | −0.364 | 0.506 | −0.398 | −0.387 |
Standard deviation of altitude | 0.421 | 0.474 | 0.009 | −0.043 | −0.033 | 0.132 | −0.134 | 0.117 | 0.121 | −0.332 | 0.365 | 0.441 |
Mean slope | 0.123 | 0.298 | −0.015 | 0.025 | −0.458 | 0.393 | −0.410 | 0.096 | 0.409 | −0.450 | 0.420 | 0.306 |
Forest | −0.499 | −0.259 | −0.106 | −0.121 | −0.231 | 0.136 | 0.567 | −0.037 | 0.127 | −0.270 | −0.590 | 0.049 |
Producing land | −0.130 | −0.094 | −0.118 | −0.257 | 0.468 | −0.290 | 0.572 | −0.079 | −0.512 | 0.348 | −0.628 | −0.628 |
Grassland | 0.577 | 0.551 | 0.397 | 0.424 | −0.385 | 0.042 | −0.541 | 0.185 | 0.515 | 0.016 | 0.597 | 0.623 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juknelienė, D.; Kazanavičiūtė, V.; Valčiukienė, J.; Atkocevičienė, V.; Mozgeris, G. Spatiotemporal Patterns of Land-Use Changes in Lithuania. Land 2021, 10, 619. https://doi.org/10.3390/land10060619
Juknelienė D, Kazanavičiūtė V, Valčiukienė J, Atkocevičienė V, Mozgeris G. Spatiotemporal Patterns of Land-Use Changes in Lithuania. Land. 2021; 10(6):619. https://doi.org/10.3390/land10060619
Chicago/Turabian StyleJuknelienė, Daiva, Vaiva Kazanavičiūtė, Jolanta Valčiukienė, Virginija Atkocevičienė, and Gintautas Mozgeris. 2021. "Spatiotemporal Patterns of Land-Use Changes in Lithuania" Land 10, no. 6: 619. https://doi.org/10.3390/land10060619
APA StyleJuknelienė, D., Kazanavičiūtė, V., Valčiukienė, J., Atkocevičienė, V., & Mozgeris, G. (2021). Spatiotemporal Patterns of Land-Use Changes in Lithuania. Land, 10(6), 619. https://doi.org/10.3390/land10060619