Equation for Calculating Evapotranspiration of Technical Soils for Urban Planting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Set-Up
2.2. Test Series
2.3. Equation Development
2.4. Comparison with the Radiation Equation by Makkink
3. Results
3.1. Equation for Calculating Evapotranspiration
3.2. Comparison with the Equation of Radiation by Makkink
- 1.
- Determination of the evapotranspiration equivalent of extraterrestrial radiation Ra using an auxiliary table [20].To calculate Ra, global radiation r of 50 W/m² has to be converted to mm/day. Therefore, W/m² are transformed to J/cm² = 216 J/cm².According to the auxiliary table, extraterrestrial radiation Ra is about 0.88 mm/day.
- 2.
- Identification of the relation between average monthly sunshine duration n and the maximum sunshine duration N.
- 3.
- Calculation of total radiation Rs, using the following equation.
- 4.
- While using another auxiliary table [20], the following value is defined by an average monthly temperature of T = 25 °C.
- 5.
- Using the average monthly wind velocity Um = 1 Bft and relative air humidity Rhm = 50%, the coefficient b is determined using the equation mentioned below:
- 6.
- The following radiation equation by Makkink calculated the evapotranspiration (ETP) using the already determined parameters in (a) to (e):
4. Discussion
5. Conclusions
- Due to the extreme condition for plantings in cities, new solutions for technical soils with specific features concerning their composition (e.g., water retention capacity, water permeability, pollutant retention, carrying capacity) are needed.
- Already existing well-known equations for calculating evapotranspiration cannot be used for technical soils because of their poor transferability.
- Newly developed and easily applicable equations for calculating evapotranspiration of different technical soils and plants were presented.
- There are large differences in results concerning evapotranspiration of the new equations and well-known ones.
- While using the presented method, easily applicable equations can be established for all kinds of technical soils and plants.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dankers, R.; Hiederer, R. Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario. JRC Sci. Tech. Rep. 2008, 1–66. [Google Scholar]
- Valipour, M.; Bateni, S.M.; Jun, C. Global Surface Temperature: A New Insight. Climate 2021, 9, 81. [Google Scholar] [CrossRef]
- Stoffel, M.; Stephenson, D.B.; Haywood, J.M. Antipyretic Medication for a Feverish Planet. Earth Syst. Environ. 2020, 4, 757–762. [Google Scholar] [CrossRef]
- Voigt, A.; Lampert, M.; Breuste, J. Anpassung an den Klimawandel als Aufgabe für eine ökologisch orientierte Stadtentwicklung. SIR Mitt. Ber. 2009, 38, 181–190. [Google Scholar]
- Liu, Y.; Xiao, J.; Ju, W.; Xu, K.; Zhou, Y.; Zhao, Y. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ. Res. Lett. 2016, 11, 1–14. [Google Scholar] [CrossRef]
- Li, G.; Zhang, F.; Jing, Y.; Liu, Y.; Sun, G. Science of the Total Environment Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Sci. Total. Environ. 2017, 597, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Grimm, K. Integratives Regenwassermanagement: Motivenbericht; Magistrat der Stadt Wien; Wiener Umweltschutzabteilung–MA 22: Vienna, Austria, 2010; pp. 1–104. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56 Crop Evaporation: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; pp. 1–300. [Google Scholar]
- Murata, T.; Kawai, N. Degradation of the urban ecosystem function due to soil sealing: Involvement in the heat island phenomenon and hydrologic cycle in the Tokyo metropolitan area. Soil Sci. Plant Nutr. 2018, 64, 145–155. [Google Scholar] [CrossRef]
- Elhaus, D. Erosionsgefährdung; Geologischer Dienst NRW: Krefeld, Germany, 2015; pp. 1–32. [Google Scholar]
- Fohrer, N.; Bormann, H.; Miegel, K.; Casper, M.; Bronstert, A.; Schumann, A.; Weiler, M. Hydrologie, 1st ed.; Fohrer, N., Ed.; Haupt: Bern, Switzerland, 2016; ISBN 978-3-8252-4513-9. [Google Scholar]
- Deeb, M.; Groffman, P.M.; Blouin, M.; Perl Egendorf, S.; Vergnes, A.; Vasenev, V.; Cao, D.L.; Walsh, D.; Morin, T.; Séré, G. Using constructed soils for green infrastructure Challenges and limitations. Soil 2020, 6, 413–434. [Google Scholar] [CrossRef]
- Morel, J.L.; Chenu, C.; Lorenz, K. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J. Soils Sediments 2015, 15, 1659–1666. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Wadzuk, B.; Traver, R. Evapotranspiration in green stormwater infrastructure systems. Sci. Total Environ. 2019, 688, 797–810. [Google Scholar] [CrossRef]
- Yilmaz, D.; Cannavo, P.; Séré, G.; Vidal-Beaudet, L.; Legret, M.; Damas, O.; Peyneau, P.E. Physical properties of structural soils containing waste materials to achieve urban greening. J. Soils Sediments 2018, 18, 442–455. [Google Scholar] [CrossRef]
- Austrian Standards ÖNORM B 2506-3: Regenwasser-Sickeranlagen für Abläufe von Dachflächen und Befestigten Flächen-Teil 3: Filtermaterialien-Anforderungen und Prüfmethoden; Austrian Standards Institute: Vienna, Austria, 2018; pp. 1–26.
- Austrian Standards ÖNORM B2506-1: Regenwasser-Sickeranlagen für Abläufe von Dachflächen und befestigten Flächen-Teil 1 Anwendung, Hydraulische Bemessung, Bau und Betrieb; Austrian Standards Institute: Vienna, Austria, 2013; pp. 1–22.
- FLL. Empfehlungen für Baumpflanzungen Teil 2: Standortvorbereitungen für Neupflanzungen Pflanzgruben und Wurzelraumerweiterung, Bauweisen und Substrate; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V.: Bonn, Germany, 2010; pp. 1–64. [Google Scholar]
- Weiss, O.; Scharf, B.; Pitha, U. Evapotranspiration of Technical Substrates Methodology for Calculating Evapotranspiration of Technical Substrates. J. Ecol. Eng. 2019, 20, 28–37. [Google Scholar] [CrossRef]
- Schrödter, H. Verdunstung Anwendungsorientierte Meßverfahren und Bestimmungsmethoden, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 1–190. [Google Scholar]
- Valipour, M. Ability of Box-Jenkins Models to Estimate of Reference Potential Evapotranspiration (A Case Study: Mehrabad Synoptic Station, Tehran, Iran). IOSR J. Agric. Vet. Sci. 2012, 1, 1–11. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N.; Lazzara, P.; Ferrara, R.M. Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: Multiannual and local evaluations. Agric. Water Manag. 2012, 115, 285–296. [Google Scholar] [CrossRef]
- Jacobs, A.F.G.; De Bruin, H.A.R. Makkink’s equation for evapotranspiration applied to unstressed maize. Hydrol. Process. 1998, 12, 1063–1066. [Google Scholar] [CrossRef]
- Climate Service Center Germany. Verdunstung. Available online: https://www.climate-service-center.de/products_and_publications/publications/detail/063226/ (accessed on 3 May 2021).
- Hoermann, G. Speichermodelle zum Bodenwasserhaushalt. Simpel 2005, 1–61. [Google Scholar]
- Jhajharia, D.; Dinpashoh, Y.; Kahya, E.; Singh, V.P.; Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of northeast India. Hydrol. Process. 2012, 26, 421–435. [Google Scholar] [CrossRef]
- Weiler, E.W.; Nover, L.; Nultsch, W. Allgemeine und Molekulare Botanik, 1st ed.; Georg Thieme: Stuttgart, Germany, 2008; ISBN 3131476613. [Google Scholar]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Fiedler, H. Böden und Bodenfunktionen in Ökosystemen, Landschaften und Ballungsgebieten; Expert Verlag: Renningen, Germany, 2001. [Google Scholar]
- Tan, C.L.; Wong, N.H.; Jusuf, S.K.; Chiam, Z.Q. Impact of plant evapotranspiration rate and shrub albedo on temperature reduction in the tropical outdoor environment. Build. Environ. 2015, 94, 206–217. [Google Scholar] [CrossRef]
- Kaiser, D.; Köhler, M.; Schmidt, M.; Wolf, F. Increasing Evapotranspiration on Extensive Green Roofs by Changing Substrate Depths, Construction, and Additional Irrigation. Buildings 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Tukimat, N.N.A.; Harun, S.; Shahid, S. Comparison of different methods in estimating potential évapotranspiration at Muda Irrigation Scheme of Malaysia. J. Agricuktural Rural Dev. Trop. Subtrop. 2012, 113, 77–85. [Google Scholar]
- Nolz, R.; (Institute for Soil Physics and Rural Water Management (SoPhy), University of Natural Ressources and Life Sciences Vienna, Austria). Personal communication, 2017.
- ZAMG. Witterungsübersicht für das Jahr 2015. Available online: https://www.zamg.ac.at/zamgWeb/klima/klimarueckblick/archive/2015/wiewars15.pdf (accessed on 3 May 2021).
- Kuttler, W. Das Ruhrgebiet im Wandel Bestandsaufnahme und Prognose. UNIKATE 2010, 38, 41–51. [Google Scholar]
- Orlik, A.; (Section Climatology, Division Customer Service, ZAMG Zentralanstalt für Meteorologie und Geodynamik). Personal communication, 2018.
- Hottinger Baldwin Messtechnik GmbH (HBM) Data Sheet PW10A Single Point Load Cell. Available online: https://www.hbm.com/fileadmin/mediapool/hbmdoc/technical/B02190.pdf (accessed on 27 May 2021).
- Graf, R. Pflanzen für Versickerungsflächen Weiterführende Vegetationsuntersuchungen an einer Versuchsfläche in Ober-Grafendorf/Niederösterreich. Master’s Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2018; pp. 1–163. [Google Scholar]
- Lübke, K. Dezentrales Regenwassermanagement in der Stadt Multifunktionale Sickerflächen. Master‘s Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2019; pp. 1–200. [Google Scholar]
- Weiss, O. Evapotranspiration von Technischen Substraten. Master’s Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2017; pp. 1–139. [Google Scholar]
- FLL. Dachbegrünungsrichtlinien; Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau e.V.: Bonn, Germany, 2018; pp. 1–118. [Google Scholar]
- Cristea, N.C.; Kampf, S.K.; Burges, S.J. Revised Coefficients for Priestley-Taylor and Makkink-Hansen Equations for Estimating Daily Reference Evapotranspiration. J. Hydrol. Eng. 2013, 18, 1289–1300. [Google Scholar] [CrossRef] [Green Version]
- Kos, B. Untersuchungen zu Baumsubstraten und Straßenbäumen Mittels Ausgewählter Geotechnischer und Vegetationstechnischer Methoden im Rahmen des SAVE Projekts der Stadt Wien Research of tree Substrates and Street-Trees with Geotechnical and Vegetation- Techn. Master’s Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2017. [Google Scholar]
- Jim, C.Y. Assessing climate-adaptation effect of extensive tropical green roofs in cities. Landsc. Urban Plan. 2015, 138, 54–70. [Google Scholar] [CrossRef]
- Jim, C.Y.; Tsang, S.W. Modeling the heat diffusion process in the abiotic layers of green roofs. Energy Build. 2011, 43, 1341–1350. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, Y.; Qiu, G.Y. Quantifying the evapotranspiration rate and its cooling effects of urban hedges based on three-temperature model and infrared remote sensing. Remote Sens. 2019, 11, 202. [Google Scholar] [CrossRef] [Green Version]
- Gros, A.; Bozonnet, E.; Inard, C.; Musy, M. Simulation tools to assess microclimate and building energy A case study on the design of a new district. Energy Build. 2016, 114, 112–122. [Google Scholar] [CrossRef]
- Huttner, S. Further Development and Application of the 3D Microclimate Simulation ENVI-Met; Johannes Gutenberg-Universitat in Mainz: Mainz, Germany, 2012; Volume 147. [Google Scholar]
- Hunt, W.F.; Lord, B.; Loh, B.; Sia, A. Plant Selection for Bioretention Systems and Stormwater Treatment Practices, 1st ed.; Springer: Singapore; Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; ISBN 9789812872449. [Google Scholar]
- Embrén, B.; Alvem, B.M.; Stal, Ö.; Orvesten, A. Planting Pits in the City of Stockholm An Handbook; City of Stockholm: Stockholm, Sweden, 2009; pp. 1–83. [Google Scholar]
Type of Photosynthesis | C3 | CAM |
---|---|---|
Optimum in temperature | 30–40 °C | 20–35 °C |
Coefficient of transpiration | <350 | 30–50 |
Parameters | Specific Data of Used Load Cells |
---|---|
type | PW10AC3MR |
maximum capacity (Emax) | 100 kg |
minimum capacity (Emin) | 0 kg |
minimum verification interval (vmin) | 10 g |
max. platform size | 600 × 500 mm |
sensitivity (Cn) | 2.0 +−0.2 mV/V |
Repetitions | ||
---|---|---|
CAM Plants | C3 Plants | No Plants |
A_Sedum A | A_Geranium A | AA |
A_Sedum B | A_Geranium B | AB |
A_Sedum C | A_Geranium C | AC |
B_Sedum A | B_Geranium A | BA |
B_Sedum B | B_Geranium B | BB |
B_Sedum C | B_Geranium C | BC |
CA | ||
CB | ||
CC | ||
DA | ||
DB | ||
DC | ||
EA | ||
EB | ||
EC | ||
FA | ||
FB | ||
FC |
Radiation Equation by Makkink | Newly Developed Equation |
---|---|
average monthly air temperature (T) extraterrestrial radiation (Ra) | average monthly air temperature (T) |
average monthly sunshine duration (n) | |
maximum sunshine duration (N) | |
monthly wind velocity (Um) | |
relative air humidity (Rhm) | |
input value using an auxiliary table |
Type of Substrate | ETP (mm/day) | ETP (mm/month) |
---|---|---|
A non-planted (E1) | 3.43 | 102.92 |
A (Sedum floriferum) (E2) | 3.15 | 94.50 |
A (Geranium x cantabrigiense) (E3) | 4.55 | 136.42 |
B non-planted (E4) | 4.31 | 129.30 |
B (Sedum floriferum) (E5) | 4.00 | 119.93 |
B (Geranium x cantabrigiense) (E6) | 4.40 | 131.98 |
C non-planted (E7) | 5.58 | 167.46 |
D non-planted (E8) | 4.05 | 121.47 |
E non-planted (E9) | 2.59 | 77.63 |
F non-planted (E10) | 4.55 | 136.58 |
Parameter | Data |
---|---|
global radiation (r) | 50 W/m2 |
sunshine duration (n) | 12 h |
maximum sunshine duration (N) average monthly air temperature (T) | 12 h 25 °C |
relative air humidity (Rhm) | 50% |
average monthly wind velocity (Um) | 1 Bft (equates 0.51–2.06 m/s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiss, O.; Minixhofer, P.; Scharf, B.; Pitha, U. Equation for Calculating Evapotranspiration of Technical Soils for Urban Planting. Land 2021, 10, 622. https://doi.org/10.3390/land10060622
Weiss O, Minixhofer P, Scharf B, Pitha U. Equation for Calculating Evapotranspiration of Technical Soils for Urban Planting. Land. 2021; 10(6):622. https://doi.org/10.3390/land10060622
Chicago/Turabian StyleWeiss, Oliver, Pia Minixhofer, Bernhard Scharf, and Ulrike Pitha. 2021. "Equation for Calculating Evapotranspiration of Technical Soils for Urban Planting" Land 10, no. 6: 622. https://doi.org/10.3390/land10060622
APA StyleWeiss, O., Minixhofer, P., Scharf, B., & Pitha, U. (2021). Equation for Calculating Evapotranspiration of Technical Soils for Urban Planting. Land, 10(6), 622. https://doi.org/10.3390/land10060622