Integrating Spatial Markov Chains and Geographically Weighted Regression-Based Cellular Automata to Simulate Urban Agglomeration Growth: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data for Urban Growth Simulation
2.2.1. Land Use Cover/Change, Subzones, and Ecological Sensitive Areas
2.2.2. Spatial Variables for Evaluating Suitable Urban Growth
2.3. Methodology
2.3.1. Spatial Markov Chain
2.3.2. Geographically Weighted Regression Based on Cellular Automata
3. Results
3.1. Quantity Prediction With the SMC
3.2. Growth Scenario of the SMC-GWRCA Model
4. Discussion
4.1. Spatiotemporal Interaction of Urban Agglomeration
4.2. Geographical Spatial Differentiation in Urban Agglomerations
4.3. Advantages of the SMC-GWRCA for Urban Agglomeration Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Peng, D.; Zhao, J.; Cheng, Y.; Liu, X.; Li, W.; Meng, R.; Xu, X.; Gong, P. Annual 30-m land use/land cover maps of China for 1980–2015 from the integration of AVHRR, MODIS and Landsat data using the BFAST algorithm. Sci. China Ser. D Earth Sci. 2020, 63, 1390–1407. [Google Scholar] [CrossRef]
- McDonald, R.I. Global urbanization: Can ecologists identify a sustainable way forward? Front. Ecol. Environ. 2008, 6, 99–104. [Google Scholar] [CrossRef]
- Seto, K.C.; Sanchezrodriguez, R.; Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Nat. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Shuai, C.; Jiao, L.; Tan, Y.; Song, X. A global perspective on the sustainable performance of urbanization. Sustainability 2016, 8, 783. [Google Scholar] [CrossRef] [Green Version]
- Mulligan, G.F. Revisiting the urbanization curve. Cities 2013, 32, 113–122. [Google Scholar] [CrossRef]
- National Bureau of Statistics, China. Available online: http://www.stats.gov.cn/english/ (accessed on 9 December 2020).
- Cao, S.; Lv, Y.; Zheng, H.; Wang, X. Challenges facing China’s unbalanced urbanization strategy. Land Use Policy 2014, 39, 412–415. [Google Scholar] [CrossRef]
- Cheshmehzangi, A. China’s New-type Urbanisation Plan (NUP) and the foreseeing challenges for decarbonization of cities: A review. Energy Procedia 2016, 104, 146–152. [Google Scholar] [CrossRef]
- Guan, X.; Wei, H.; Lu, S.; Dai, Q.; Su, H. Assessment on the urbanization strategy in China: Achievements, challenges and reflections. Habitat Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Pedroli, B.; Erb, K.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for land system science. Land Use Policy 2012, 29, 899–910. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban. Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash Aari, Z.H. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. Int. J. Appl. Earth Obs. 2016, 52, 380–389. [Google Scholar] [CrossRef]
- Le, Q.B.; Park, S.J.; Vlek, P.L.G.; Cremers, A.B. Land-Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system. I. Structure and theoretical specification. Ecol. Inform. 2008, 3, 135–153. [Google Scholar] [CrossRef]
- Le, Q.B.; Park, S.J.; Vlek, P.L.G. Land Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system: 2. Scenario-based application for impact assessment of land-use policies. Ecol. Inform. 2010, 5, 203–221. [Google Scholar] [CrossRef]
- Li, X.; Gong, P. Urban growth models: Progress and perspective. Sci. Bull. 2016, 61, 1637–1650. [Google Scholar] [CrossRef]
- Okwuashi, O.; Ndehedehe, C.E. Integrating machine learning with Markov chain and cellular automata models for modelling urban land use change. Remote Sens. Appl. Soc. Environ. 2021, 21, 100461. [Google Scholar]
- Xu, X.; Du, Z.; Zhang, H. Integrating the system dynamic and cellular automata models to predict land use and land cover change. Int. J. Appl. Earth Obs. 2016, 52, 568–579. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Helbich, M.; Kainz, W.; Darvishi Boloorani, A. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Cunha, E.R.D.; Santos, C.A.G.; Silva, R.M.D.; Bacani, V.M.; Pott, A. Future scenarios based on a CA-Markov land use and land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy 2021, 101, 105141. [Google Scholar] [CrossRef]
- Rahnama, M.R. Forecasting land-use changes in Mashhad Metropolitan area using Cellular Automata and Markov chain model for 2016–2030. Sustain. Cities Soc. 2021, 64, 102548. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Palmate, S.S.; Pandey, A.; Mishra, S.K. Modelling spatiotemporal land dynamics for a trans-boundary river basin using integrated Cellular Automata and Markov Chain approach. Appl. Geogr. 2017, 82, 11–23. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.; Lv, L. A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecol. Model. 2012, 233, 11–19. [Google Scholar] [CrossRef]
- Rasmussen, L.V.; Rasmussen, K.; Reenberg, A.; Proud, S. A system dynamics approach to land use changes in agro-pastoral systems on the desert margins of Sahel. Agric. Syst. 2012, 107, 56–64. [Google Scholar] [CrossRef]
- Liu, X.; Ou, J.; Li, X.; Ai, B. Combining system dynamics and hybrid particle swarm optimization for land use allocation. Ecol. Model. 2013, 257, 11–24. [Google Scholar] [CrossRef]
- Sušnik, J.; Masia, S.; Indriksone, D.; Brēmere, I.; Vamvakeridou-Lydroudia, L. System dynamics modelling to explore the impacts of policies on the water-energy-food-land-climate nexus in Latvia. Sci. Total Environ. 2021, 775, 145827. [Google Scholar] [CrossRef]
- He, C.; Okada, N.; Zhang, Q.; Shi, P.; Zhang, J. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Appl. Geogr. 2006, 26, 323–345. [Google Scholar] [CrossRef]
- Honti, G.; Dörgő, G.; Abonyi, J. Review and structural analysis of system dynamics models in sustainability science. J. Clean Prod. 2019, 240, 118015. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, Q.; Tang, B.; Yeung, S.; Hu, Y.; Cheung, G. A system dynamics model for the sustainable land use planning and development. Habitat Int. 2009, 33, 15–25. [Google Scholar] [CrossRef]
- Hermanns, T.; Helming, K.; Schmidt, K.; König, H.J.; Faust, H. Stakeholder strategies for sustainability impact assessment of land use scenarios: Analytical framework and identifying land use claims. Land 2015, 4, 778–806. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zheng, X.; Wang, H. Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecol. Model. 2020, 417, 108924. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 2020, 6, e5092. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.W.; Munkhnasan, L.; Lee, W. Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Mustafa, A.; Ebaid, A.; Omrani, H.; McPhearson, T. A multi-objective Markov Chain Monte Carlo cellular automata model: Simulating multi-density urban expansion in NYC. Comput. Environ. Urban. Syst. 2021, 87, 101602. [Google Scholar] [CrossRef]
- He, Q.; Zeng, C.; Xie, P.; Tan, S.; Wu, J. Comparison of urban growth patterns and changes between three urban agglomerations in China and three metropolises in the USA from 1995 to 2015. Sustain. Cities Soc. 2019, 50, 101649. [Google Scholar] [CrossRef]
- Fitawok, M.B.; Derudder, B.; Minale, A.S.; Van Passel, S.; Adgo, E.; Nyssen, J. Modeling the impact of urbanization on land-use change in Bahir Dar City, Ethiopia: An integrated Cellular Automata–Markov Chain Approach. Land 2020, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Agovino, M.; Crociata, A.; Sacco, P.L. Proximity effects in obesity rates in the US: A Spatial Markov Chains approach. Soc. Sci. Med. 2019, 220, 301–311. [Google Scholar] [CrossRef]
- Agovino, M.; Crociata, A.; Sacco, P.L. Location matters for pro-environmental behavior: A spatial Markov Chains approach to proximity effects in differentiated waste collection. Ann. Reg. Sci. 2016, 56, 295–315. [Google Scholar] [CrossRef]
- Surya, B.; Ahmad, D.N.A.; Sakti, H.H.; Sahban, H. Land use change, spatial interaction, and sustainable development in the metropolitan urban areas, South Sulawesi Province, Indonesia. Land 2020, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban. Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Cao, Y.; Wan, N.; Zhang, H.; Zhang, X.; Zhou, Q. Linking environmental regulation and economic growth through technological innovation and resource consumption: Analysis of spatial interaction patterns of urban agglomerations. Ecol. Indic. 2020, 112, 106062. [Google Scholar] [CrossRef]
- Huang, Y.; Hong, T.; Ma, T. Urban network externalities, agglomeration economies and urban economic growth. Cities 2020, 107, 102882. [Google Scholar] [CrossRef]
- Hu, T.; Peng, J.; Liu, Y.; Wu, J.; Li, W.; Zhou, B. Evidence of green space sparing to ecosystem service improvement in urban regions: A case study of China’s Ecological Red Line policy. J. Clean Prod. 2020, 251, 119678. [Google Scholar] [CrossRef]
- Yang, X.; Bai, Y.; Che, L.; Qiao, F.; Xie, L. Incorporating ecological constraints into urban growth boundaries: A case study of ecologically fragile areas in the Upper Yellow River. Ecol. Indic. 2021, 124, 107436. [Google Scholar] [CrossRef]
- Batty, M. Geosimulation and urban modeling. In International Encyclopedia of Human Geography, 2nd ed.; Kobayashi, A., Ed.; Elsevier: Oxford, UK, 2020; pp. 119–125. [Google Scholar]
- Li, X. Emergence of bottom-up models as a tool for landscape simulation and planning. Landsc. Urban. Plan. 2011, 100, 393–395. [Google Scholar] [CrossRef]
- Saxena, A.; Jat, M.K. Land suitability and urban growth modeling: Development of SLEUTH-Suitability. Comput. Environ. Urban. Syst. 2020, 81, 101475. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Chen, G.; Guo, S.; Yao, Y. Mixed-cell cellular automata: A new approach for simulating the spatio-temporal dynamics of mixed land use structures. Landsc. Urban. Plan. 2021, 205, 103960. [Google Scholar] [CrossRef]
- Guzman, L.A.; Escobar, F.; Peña, J.; Cardona, R. A cellular automata-based land-use model as an integrated spatial decision support system for urban planning in developing cities: The case of the Bogotá region. Land Use Policy 2020, 92, 104445. [Google Scholar] [CrossRef]
- Munshi, T.; Zuidgeest, M.; Brussel, M.; van Maarseveen, M. Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities 2014, 39, 68–86. [Google Scholar] [CrossRef]
- Basse, R.M.; Charif, O.; Bódis, K. Spatial and temporal dimensions of land use change in cross border region of Luxembourg. Development of a hybrid approach integrating GIS, cellular automata and decision learning tree models. Appl. Geogr. 2016, 67, 94–108. [Google Scholar] [CrossRef]
- Rienow, A.; Goetzke, R. Supporting SLEUTH–Enhancing a cellular automaton with support vector machines for urban growth modeling. Comput. Environ. Urban. Syst. 2015, 49, 66–81. [Google Scholar] [CrossRef]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Sci. Total Environ. 2019, 646, 320–335. [Google Scholar] [CrossRef]
- Xing, W.; Qian, Y.; Guan, X.; Yang, T.; Wu, H. A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation. Comput. Geosci. 2020, 137, 104430. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.K.; Ghosh, S.; Mitra, D.; Ghosh, T.; et al. Application of Cellular automata and Markov-chain model in geospatial environmental modeling—A review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
- Saganeiti, L.; Mustafa, A.; Teller, J.; Murgante, B. Modeling urban sprinkling with cellular automata. Sustain. Cities Soc. 2021, 65, 102586. [Google Scholar] [CrossRef]
- Gao, C.; Feng, Y.; Tong, X.; Lei, Z.; Chen, S.; Zhai, S. Modeling urban growth using spatially heterogeneous cellular automata models: Comparison of spatial lag, spatial error and GWR. Comput. Environ. Urban. Syst. 2020, 81, 101459. [Google Scholar] [CrossRef]
- Chen, S.; Feng, Y.; Tong, X.; Liu, S.; Xie, H.; Gao, C.; Lei, Z. Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression. Sci. Total Environ. 2020, 712, 136509. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hui, E.C.M.; Zhao, P.; Long, H. Land use policy for urbanization in China. Habitat Int. 2018, 77, 40–42. [Google Scholar] [CrossRef]
- Surhone, L.M.; Timpledon, M.T.; Marseken, S.F. Nomenclature of Territorial Units for Statistics; Springer: London, UK, 2010; pp. 75–82. [Google Scholar]
- Wang, H.; Stephenson, S.R.; Qu, S. Modeling spatially non-stationary land use/cover change in the lower Connecticut River Basin by combining geographically weighted logistic regression and the CA-Markov model. Int. J. Geogr. Inf. Sci. 2019, 33, 1313–1334. [Google Scholar] [CrossRef]
- Feng, Y.; Tong, X. Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules. GIScience Remote Sens. 2018, 55, 678–698. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; He, X.; Zhang, J.; Huang, J.; Chen, D.; Han, Y. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 2018, 18, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, Y.; Dorpe, P. Improvement of figure of merit for gold nanobar array plasmonic sensors. Plasmonics 2011, 6, 665–671. [Google Scholar]
Index | Cities | Total Quantity | Subregion | Quantity |
---|---|---|---|---|
1 | GZ | 3152.88 | GZ-1 | 589.23 |
GZ-2 | 488.7 | |||
GZ-3 | 500.85 | |||
GZ-4 | 399.96 | |||
GZ-5 | 413.37 | |||
GZ-6 | 565.2 | |||
GZ-7 | 195.57 | |||
2 | SZ | 1434.96 | / | / |
3 | ZH | 712.17 | ZH-1 | 278.28 |
ZH-2 | 433.89 | |||
4 | FS | 2057.22 | FS-1 | 910.08 |
FS-2 | 593.82 | |||
FS-3 | 303.12 | |||
FS-4 | 250.2 | |||
5 | HZ | 1419.39 | HZ-1 | 356.94 |
HZ-2 | 386.19 | |||
HZ-3 | 244.53 | |||
HZ-4 | 302.85 | |||
HZ-5 | 128.88 | |||
6 | DG | 1864.71 | / | / |
7 | ZS | 844.29 | / | / |
8 | JM | 1660.68 | JM-1 | 297.63 |
JM-2 | 312.12 | |||
JM-3 | 240.3 | |||
JM-4 | 366.39 | |||
JM-5 | 233.37 | |||
JM-6 | 210.87 | |||
9 | ZQ | 1084.41 | ZQ-1 | 226.35 |
ZQ-2 | 256.68 | |||
ZQ-3 | 187.38 | |||
ZQ-4 | 82.35 | |||
ZQ-5 | 98.1 | |||
ZQ-6 | 145.08 | |||
ZQ-7 | 88.47 | |||
10 | HK | 442.8 | / | / |
11 | MO | 26.1 | / | / |
12 | GBA | 14,699.61 | / | / |
Subregion | Quantity in 1995 | Quantity in 2015 | Maximum for Growth | Quantity in 2050 | ||
---|---|---|---|---|---|---|
Predicted with MC | Predicted with SMC | Difference between MC and SMC | ||||
GZ-1 | 216.63 | 355.32 | 655.83 | 494.01 | 589.23 | 95.22 |
GZ-2 | 156.78 | 271.26 | 488.7 | 385.74 | 488.70 | 102.96 |
GZ-3 | 161.73 | 317.61 | 500.85 | 473.49 | 500.85 | 27.36 |
GZ-4 | 55.35 | 144.81 | 542.34 | 234.27 | 399.96 | 165.69 |
GZ-5 | 82.17 | 238.77 | 738 | 395.37 | 413.37 | 18 |
GZ-6 | 118.71 | 236.7 | 1124.55 | 354.69 | 565.20 | 210.51 |
GZ-7 | 53.01 | 104.04 | 997.29 | 155.07 | 195.57 | 40.5 |
SZ | 652.32 | 1084.23 | 1434.96 | 1434.96 | 1434.96 | 0 |
ZH-1 | 107.1 | 180.9 | 278.28 | 254.7 | 278.28 | 23.58 |
ZH-2 | 105.75 | 258.84 | 862.47 | 411.93 | 433.89 | 21.96 |
FS-1 | 316.35 | 666.09 | 1144.17 | 1015.83 | 910.08 | −05.75 |
FS-2 | 148.95 | 375.03 | 751.59 | 601.11 | 593.82 | −7.29 |
FS-3 | 42.21 | 145.98 | 698.67 | 249.75 | 303.12 | 53.37 |
FS-4 | 49.41 | 118.71 | 682.2 | 188.01 | 250.20 | 62.19 |
HZ-1 | 149.13 | 255.78 | 1104.03 | 362.43 | 356.94 | −5.49 |
HZ-2 | 175.05 | 285.75 | 802.35 | 396.45 | 386.19 | −10.26 |
HZ-3 | 110.79 | 163.71 | 1641.87 | 216.63 | 244.53 | 27.9 |
HZ-4 | 90.27 | 198.81 | 1740.96 | 307.35 | 302.85 | −4.5 |
HZ-5 | 25.47 | 58.23 | 958.95 | 90.99 | 128.88 | 37.89 |
DG | 593.64 | 1363.05 | 2031.93 | 2031.93 | 1864.71 | −167.22 |
ZS | 200.7 | 554.4 | 1473.66 | 908.1 | 844.29 | −63.81 |
JM-1 | 72.09 | 155.52 | 369.54 | 238.95 | 297.63 | 58.68 |
JM-2 | 107.55 | 185.4 | 983.34 | 263.25 | 312.12 | 48.87 |
JM-3 | 47.43 | 110.79 | 773.82 | 174.15 | 240.30 | 66.15 |
JM-4 | 158.22 | 269.46 | 2067.66 | 380.7 | 366.39 | −14.31 |
JM-5 | 98.64 | 157.77 | 1284.48 | 216.9 | 233.37 | 16.47 |
JM-6 | 73.35 | 134.91 | 1070.19 | 196.47 | 210.87 | 14.4 |
ZQ-1 | 41.85 | 68.49 | 339.39 | 95.13 | 226.35 | 131.22 |
ZQ-2 | 40.59 | 120.87 | 814.23 | 201.15 | 256.68 | 55.53 |
ZQ-3 | 55.71 | 122.85 | 1254.87 | 189.99 | 187.38 | −2.61 |
ZQ-4 | 17.01 | 50.13 | 862.74 | 83.25 | 82.35 | −0.9 |
ZQ-5 | 23.04 | 52.56 | 866.88 | 82.08 | 98.10 | 16.02 |
ZQ-6 | 45.09 | 101.88 | 1577.43 | 158.67 | 145.08 | −13.59 |
ZQ-7 | 24.93 | 56.25 | 1176.48 | 87.57 | 88.47 | 0.9 |
HK | 252.09 | 293.67 | 442.8 | 335.25 | 442.80 | 107.55 |
MO | 14.04 | 24.12 | 26.1 | 26.1 | 26.10 | 0 |
GBA | 4683.15 | 9282.69 | 34,563.6 | 13,692.42 | 14,699.61 | 1007.19 |
SMC-GWRCA | SMC-OLRCA | MC-GWRCA | MC-OLRCA | |
---|---|---|---|---|
FOM | 0.6881 | 0.6336 | 0.6021 | 0.5830 |
PA | 81.53% | 79.10% | 75.16% | 72.77% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xie, D.; Zhang, X.; Ma, S. Integrating Spatial Markov Chains and Geographically Weighted Regression-Based Cellular Automata to Simulate Urban Agglomeration Growth: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area. Land 2021, 10, 633. https://doi.org/10.3390/land10060633
Zhao Y, Xie D, Zhang X, Ma S. Integrating Spatial Markov Chains and Geographically Weighted Regression-Based Cellular Automata to Simulate Urban Agglomeration Growth: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area. Land. 2021; 10(6):633. https://doi.org/10.3390/land10060633
Chicago/Turabian StyleZhao, Yabo, Dixiang Xie, Xiwen Zhang, and Shifa Ma. 2021. "Integrating Spatial Markov Chains and Geographically Weighted Regression-Based Cellular Automata to Simulate Urban Agglomeration Growth: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area" Land 10, no. 6: 633. https://doi.org/10.3390/land10060633
APA StyleZhao, Y., Xie, D., Zhang, X., & Ma, S. (2021). Integrating Spatial Markov Chains and Geographically Weighted Regression-Based Cellular Automata to Simulate Urban Agglomeration Growth: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area. Land, 10(6), 633. https://doi.org/10.3390/land10060633