Dynamic Changes in Melbourne’s Urban Vegetation Cover—2001 to 2016
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data
2.3. Reclassification Threshold and Accuracy
2.4. Change Calculation and Statistical Test
- Absolute change is the change occurring between the vegetated (V) and non-vegetated (NV) categories. It involves two main processes: gain from non-vegetated to vegetated (NV to V) and loss from vegetated to non-vegetated (V to NV).
- Potential change involves four processes of change: (a) gain from partially vegetated to vegetated (PV to V), (b) gain from non-vegetated to partially vegetated (NV to PV), (c) loss from vegetated to partially vegetated (V to PV), and (d) loss from partially vegetated to non-vegetated (PV to NV).
- Overall change is the change that occurred as the sum of all six processes of change (Figure 1).
3. Results
3.1. Municipality (LGA)-Level Change in Urban Vegetation Cover
3.2. Changes in Vegetation within Public Open Spaces
3.3. Testing the Statistical Significance of Change in Vegetation at the LGA Level
3.4. Testing the Statistical Significance of Change in Urban Vegetation within Public Open Space
4. Discussion
4.1. The Pattern of Change in Urban Vegetation between 2001 and 2016
4.2. Heterogeneity and Homogeneity in the Change of Urban Vegetation
4.3. The Overall Change in Urban Greenspace in Greater Melbourne
4.4. Partially Vegetated Category and Dynamic Change Approach
5. Summary, Conclusions and Recommendation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Jennings, V.; Larson, L.; Yun, J. Advancing sustainability through urban green space: Cultural ecosystem services, equity, and social determinants of health. Int. J. Environ. Res. Public Health 2016, 13, 196. [Google Scholar] [CrossRef] [Green Version]
- Ives, C.D.; Lentini, P.E.; Threlfall, C.G.; Ikin, K.; Shanahan, D.F.; Garrard, G.E.; Bekessy, S.A.; Fuller, R.A.; Mumaw, L.; Rayner, L. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 2016, 25, 117–126. [Google Scholar] [CrossRef]
- Kendal, D.; Williams, N.S.; Williams, K.J. Drivers of diversity and tree cover in gardens, parks and streetscapes in an Australian city. Urban For. Urban Green. 2012, 11, 257–265. [Google Scholar] [CrossRef]
- Smith, R.M.; Thompson, K.; Hodgson, J.G.; Warren, P.H.; Gaston, K.J. Urban domestic gardens (IX): Composition and richness of the vascular plant flora, and implications for native biodiversity. Biol. Conserv. 2006, 129, 312–322. [Google Scholar] [CrossRef]
- Peters, K.; Elands, B.; Buijs, A. Social interactions in urban parks: Stimulating social cohesion? Urban For. Urban Green. 2010, 9, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Adimo, O.A.; Bao, Z. Assessment of aesthetic quality and multiple functions of urban green space from the users’ perspective: The case of Hangzhou Flower Garden, China. Landsc. Urban Plan. 2009, 93, 76–82. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.O.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Jennings, V.; Johnson Gaither, C.; Gragg, R.S. Promoting environmental justice through urban green space access: A synopsis. Environ. Justice 2012, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Sustainable Development Goals 11. Available online: https://sustainabledevelopment.un.org/sdg11 (accessed on 23 July 2021).
- Konijnendijk, C.C.; Ricard, R.M.; Kenney, A.; Randrup, T.B. Defining urban forestry–A comparative perspective of North America and Europe. Urban For. Urban Green. 2006, 4, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Chong, S.; Lobb, E.; Khan, R.; Abu-Rayya, H.; Byun, R.; Jalaludin, B. Neighbourhood safety and area deprivation modify the associations between parkland and psychological distress in Sydney, Australia. BMC Public Health 2013, 13, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, A.Y.; Jim, C.Y. Citizen attitude and expectation towards greenspace provision in compact urban milieu. Land Use Policy 2012, 29, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Grose, M.J. Changing relationships in public open space and private open space in suburbs in south-western Australia. Landsc. Urban Plan. 2009, 92, 53–63. [Google Scholar] [CrossRef]
- Taylor, L.; Hochuli, D.F. Defining greenspace: Multiple uses across multiple disciplines. Landsc. Urban Plan. 2017, 158, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Kendal, D.; Lee, K.; Ramalho, C.; Bowen, K.; Bush, J. Benefits of Urban Green Space in the Australian Context; Clean Air and Urban Landscape Hub: Melbourne, Australia, 2016.
- Rupprecht, C.D.; Byrne, J.A. Informal urban greenspace: A typology and trilingual systematic review of its role for urban residents and trends in the literature. Urban For. Urban Green. 2014, 13, 597–611. [Google Scholar] [CrossRef] [Green Version]
- Koc, C.B.; Osmond, P.; Peters, A. Towards a comprehensive green infrastructure typology: A systematic review of approaches, methods and typologies. Urban Ecosyst. 2017, 20, 15–35. [Google Scholar]
- Dobbs, C.; Nitschke, C.; Kendal, D. Assessing the drivers shaping global patterns of urban vegetation landscape structure. Sci. Total Environ. 2017, 592, 171–177. [Google Scholar] [CrossRef]
- Luck, G.W.; Smallbone, L.T.; O’Brien, R. Socio-economics and vegetation change in urban ecosystems: Patterns in space and time. Ecosystems 2009, 12, 604. [Google Scholar] [CrossRef]
- Roman, L.A.; Pearsall, H.; Eisenman, T.S.; Conway, T.M.; Fahey, R.T.; Landry, S.; Vogt, J.; van Doorn, N.S.; Grove, J.M.; Locke, D.H. Human and biophysical legacies shape contemporary urban forests: A literature synthesis. Urban For. Urban Green. 2018, 31, 157–168. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.-C. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Schulz, J.J.; Cayuela, L.; Rey-Benayas, J.M.; Schröder, B. Factors influencing vegetation cover change in Mediterranean Central Chile (1975–2008). Appl. Veg. Sci. 2011, 14, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Belcher, R.N. Global Changes in Urban Vegetation Cover. Remote Sens. 2020, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Corbane, C.; Martino, P.; Panagiotis, P.; Aneta, F.J.; Michele, M.; Sergio, F.; Marcello, S.; Daniele, E.; Gustavo, N.; Thomas, K. The grey-green divide: Multi-temporal analysis of greenness across 10,000 urban centres derived from the Global Human Settlement Layer (GHSL). Int. J. Digit. Earth 2020, 13, 101–118. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Qian, Y.; Pickett, S.T.; Li, W.; Han, L. The rapid but “invisible” changes in urban greenspace: A comparative study of nine Chinese cities. Sci. Total Environ. 2018, 627, 1572–1584. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, W.; Wang, J.; Qian, Y. From quantity to quality: Enhanced understanding of the changes in urban greenspace. Landsc. Ecol. 2019, 34, 1145–1160. [Google Scholar] [CrossRef]
- Czekajlo, A.; Coops, N.C.; Wulder, M.A.; Hermosilla, T.; Lu, Y.; White, J.C.; van den Bosch, M. The urban greenness score: A satellite-based metric for multi-decadal characterization of urban land dynamics. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102210. [Google Scholar] [CrossRef]
- Qureshi, S.; Kazmi, S.J.H.; Breuste, J.H. Ecological disturbances due to high cutback in the green infrastructure of Karachi: Analyses of public perception about associated health problems. Urban For. Urban Green. 2010, 9, 187–198. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover change in US cities. Urban For. Urban Green. 2012, 11, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Caccetta, P.; Devereux, D.; Amati, M.; Boruff, B.; Kaspar, J.; Phelan, K.; Saunders, A. Land Surface Temperature and Urban Heat Island Estimates for Australian Urban Centres, 2nd ed.; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2017. [Google Scholar]
- Amati, M.; Boruff, B.; Caccetta, P.; Devereux, D.; Kaspar, J.; Phelan, K.; Saunders, A. Where Should All the Trees Go? Investigating the Impact of Tree Canopy Cover on Socioeconomic Status and Wellbeing in LGA’s; Innovation Australia Ltd.: Melbourne, Australia, 2017. [Google Scholar]
- Hurley, J.; Saunders, M.A.; Both, A.; Sun, C.; Boruff, B.; Duncan, J.; Amati, M.; Caccetta, P. Urban Vegetation Cover Change in Melbourne 2014–2018; Centre for Urban Research, RMIT University: Melbourne, Australia, 2019. [Google Scholar]
- Australian Bureau of Statistics Population Projections, Australia, 2017 (Base)—2066; Australian Bureau of Statistics: Canberra, Australia, 2020.
- May, A.; Swain, S. The Encyclopedia of Melbourne; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Ives, C.D.; Beilin, R.; Gordon, A.; Kendal, D.; Hahs, A.K.; McDonnell, M.J. Local assessment of Melbourne: The biodiversity and social-ecological dynamics of Melbourne, Australia. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 385–407. [Google Scholar]
- Land Conservation Council, Victoria. Melbourne Area, District 2 Review: Descriptive Report; Land Conservation Council: Melbourne, Australia, 1991.
- Steffen, W.; Hughes, L.; Perkins, S. Heatwaves: Hotter, Longer, More Often. Climate Council of Australia: Sydney, Australia. 2014. Available online: https://www.climatecouncil.org.au/heatwaves-report (accessed on 23 July 2021).
- Schultz, M.; Clevers, J.G.; Carter, S.; Verbesselt, J.; Avitabile, V.; Quang, H.V.; Herold, M. Performance of vegetation indices from Landsat time series in deforestation monitoring. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 318–327. [Google Scholar] [CrossRef]
- Ramsey, S.; Mavoa, S. Annual Normalized Difference Vegetation Index time-series data for Australian statistical areas. OSF Prepr. 2021. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Baker, C.; Lawrence, R.L.; Montagne, C.; Patten, D. Change detection of wetland ecosystems using Landsat imagery and change vector analysis. Wetlands 2007, 27, 610–619. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. Available online: https://qgis.org/en/site/ (accessed on 20 April 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 23 July 2021).
- State Government of Victoria. Melbourne’s Urban Growth; The State of Victoria Department of Environment, Land, Water and Planning: Melbourne, Australia, 2017.
- Bureau of Meteorology. 120 Years of Australian Rainfall. Available online: http://www.bom.gov.au/climate/history/rainfall/ (accessed on 30 March 2020).
- May, P.B.; Livesley, S.J.; Shears, I. Managing and monitoring tree health and soil water status during extreme drought in Melbourne, Victoria. Arboric. Urban 2013, 39, 136–145. [Google Scholar]
- Woodland, M. Melbourne’s residential development: What’s really going on? Plan. News 2016, 42, 16. [Google Scholar]
- Hall, T. Goodbye to the backyard?—The minimisation of private open space in the Australian outer-suburban estate. Urban Policy Res. 2010, 28, 411–433. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Morgenroth, J.; Conway, T. Redeveloping the urban forest: The effect of redevelopment and property-scale variables on tree removal and retention. Urban For. Urban Green. 2018, 35, 192–201. [Google Scholar] [CrossRef]
- Stanford, H.; Bush, J. Trees, Townhouses and Apartments: The effect of development density on private property tree distribution in Melbourne. In Proceedings of the 8th State of Australian Cities National Conference, Adelaide, Australia, 28–30 November 2017. [Google Scholar]
- Kaspar, J.; Kendal, D.; Sore, R.; Livesley, S. Random point sampling to detect gain and loss in tree canopy cover in response to urban densification. Urban For. Urban Green. 2017, 24, 26–34. [Google Scholar] [CrossRef]
- Croeser, T.; Ordóñez, C.; Threlfall, C.; Kendal, D.; van der Ree, R.; Callow, D.; Livesley, S.J. Patterns of tree removal and canopy change on public and private land in the City of Melbourne. Sustain. Cities Soc. 2020, 56, 102096. [Google Scholar] [CrossRef]
- Brunner, J.; Cozens, P. ‘Where have all the trees gone?’Urban consolidation and the demise of urban vegetation: A case study from Western Australia. Plan. Pract. Res. 2013, 28, 231–255. [Google Scholar] [CrossRef]
- Furlong, C.; Phelan, K.; Dodson, J. Greening the West. Centre for Urban Research (CUR), RMIT University: Melbourne, Australia. 2017. Available online: https://apo.org.au/sites/default/files/resource-files/2017-10/apo-nid114376.pdf (accessed on 23 July 2021).
- City of Melbourne. Urban Forest Strategy: Making a Great City Greener 2012–2032; City of Melbourne: Melbourne, Australia, 2012.
- State of Victoria, P. Living Links Strategic Plan 2019-24; Port Phillip & Westernport Catchment Management Authority: Frankston, Australia, 2019.
- Mornington Peninsula Landcare Network. Linking the Morinington Peninsula Landscape(LMPL). Available online: https://lmpl.org.au/peninsula-wide-biolinks/ (accessed on 27 March 2020).
- The Nature Conservancy. Resilient Melbourne. Living Melbourne: Our Metropolitan Urban Forest Technical Report; The Nature Conservancy: Melbourne, Australia, 2019. [Google Scholar]
- Aram, F.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.B.; Van Den Bosch, M.; Maruthaveeran, S.; van den Bosch, C.K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 2014, 17, 305–327. [Google Scholar] [CrossRef]
- Haaland, C.; van Den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Australian Rainfall Deciles; Australian Government: Melbourne, Australia, 2020.
- De la Barrera, F.; Henríquez, C. Vegetation cover change in growing urban agglomerations in Chile. Ecol. Indic. 2017, 81, 265–273. [Google Scholar] [CrossRef]
- Dinda, S.; Chatterjee, N.D.; Ghosh, S. An integrated simulation approach to the assessment of urban growth pattern and loss in urban green space in Kolkata, India: A GIS-based analysis. Ecol. Indic. 2021, 121, 107178. [Google Scholar] [CrossRef]
Year | Date Range Used to Calculate Median NDVI | Temporal Change |
---|---|---|
2001 | 1 July 2000–30 June 2002 | T1 (2001–2006) T2 (2006–2011) T3 (2011–2016) |
2006 | 1 July 2005–30 June 2007 | |
2011 | 1 July 2010–30 June 2012 | |
2016 | 1 January 2015–December 2016 |
Metro Partnership Regions | NDVI Threshold Value | Accuracy (Percent) | |||||
---|---|---|---|---|---|---|---|
Non-Vegetated (NV) | Partially Vegetated (PV) | Vegetated (G) | 2001 | 2006 | 2011 | 2016 | |
Eastern | <0.38 | 0.38–0.45 | >0.45 | 89.27 | 86.30 | 85.84 | 81.51 |
Inner | <0.20 | 0.20–0.25 | >0.25 | 86.85 | 89.64 | 86.45 | 86.06 |
Inner South East | <0.30 | 0.30–0.38 | >0.38 | 90.17 | 89.13 | 89.37 | 84.54 |
Northern | <0.30 | 0.30–0.35 | >0.35 | 95.99 | 92.90 | 95.17 | 93.62 |
Southern | <0.30 | 0.30–0.40 | >0.40 | 93.10 | 88.51 | 93.68 | 93.10 |
Western | <0.25 | 0.25 0.32 | >0.32 | 95.07 | 90.14 | 97.89 | 93.96 |
Local Government Areas (LGA) | Gross Gain 2001–2016 (Ha) | Gross Loss 2001–2016 (Ha) | Net Change 2001–2016 (Ha) | Net Change 2001–2016 (Percent) | Cumulative Change 2001–2016 (Percent) |
---|---|---|---|---|---|
Bayside | 3.69 | 204.21 | −200.52 | −4.27% | −2.70% |
Hobsons Bay | 69.21 | 530.28 | −461.07 | −5.67% | −4.72% |
Hume | 197.01 | 4984.2 | −4787.19 | −7.52% | −7.16% |
Melbourne | 103.95 | 269.64 | −165.69 | −3.61% | −3.26% |
Mornington Peninsula | 218.88 | 697.68 | −478.8 | −0.52% | −0.73% |
Whitehorse | 27.72 | 405.45 | −377.73 | −4.63% | −3.18% |
Change | Description | Factor | p-Value (LGA) | p-Value (Open Space) |
---|---|---|---|---|
Total absolute change | Gain (non-vegetated to vegetated) + loss (vegetated to non-vegetated) | Time Period | 0.169 | 0.176 |
Site | 2.53 × 10−6 *** | 0.135 | ||
Net absolute change | Gain (non-vegetated to vegetated)—loss (vegetated to non-vegetated) | Time Period | 0.016 * | 0.625 |
Site | 0.275 | 0.146 | ||
Total dynamic change | Sum of all gains and losses (six processes) | Time Period | 0.169 | 0.655 |
Site | 2.38 × 10−6 *** | 0.116 | ||
Net change | All gains − All losses | Time Period | 0.002 ** | |
Site | 0.374 | |||
Total potential change | Gain in potential vegetation ((partially vegetated to vegetated) + (non-vegetated to partially vegetated)) + loss in potential vegetation ((vegetated to partially vegetated) + (partially vegetated to non-vegetated)) | Time Period | 0.103 | 0.331 |
Site | 1.65 × 10−6 *** | 0.050 * | ||
Net potential change | Gain in potential vegetation ((partially vegetated to vegetated) + (non-vegetated to partially vegetated))—loss in potential vegetation ((vegetated to partially vegetated) + (partially vegetated to non-vegetated)) | Time period (Significant) | 0.003 ** | 0.025 * |
Site (Non-significant) | 0.342 | 0.642 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timalsina, B.; Mavoa, S.; Hahs, A.K. Dynamic Changes in Melbourne’s Urban Vegetation Cover—2001 to 2016. Land 2021, 10, 814. https://doi.org/10.3390/land10080814
Timalsina B, Mavoa S, Hahs AK. Dynamic Changes in Melbourne’s Urban Vegetation Cover—2001 to 2016. Land. 2021; 10(8):814. https://doi.org/10.3390/land10080814
Chicago/Turabian StyleTimalsina, Bhuban, Suzanne Mavoa, and Amy K. Hahs. 2021. "Dynamic Changes in Melbourne’s Urban Vegetation Cover—2001 to 2016" Land 10, no. 8: 814. https://doi.org/10.3390/land10080814
APA StyleTimalsina, B., Mavoa, S., & Hahs, A. K. (2021). Dynamic Changes in Melbourne’s Urban Vegetation Cover—2001 to 2016. Land, 10(8), 814. https://doi.org/10.3390/land10080814