Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10Be Natural Background Rates: Case Study in the Sonoran Desert, USA
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Test Experiment for Assessing the Effect of Human Activities on CADRs
3.2. Natural Background Sediment Yield Derived from 10Be
3.3. Correlation between Geomorphic Catchment Properties and Background Erosion Rate
3.4. Modern Sediment Yield
3.5. Comparison between Modern Sediment Yield and CADR
1 (1-1). Different approaches to representing the amount of sediment that has moved from its original site | |||||
Agency | Reported term | Unit | Reference | ||
Food and Agriculture Organization of the United Nations | Annual sediment yield | [M L−2 T−1] (t km−2 yr−1) | FAO [76] | ||
U.S. Department of the Interior, Bureau of Reclamation | Sediment yield | [M T−1], [L3 T−1] (tons−1 yr−1), (m3 yr−1) | USBR [77] | ||
U.S. Department of the Interior, Bureau of Reclamation | Sediment yield rate | [M L−2 T−1], [L3 L−2 T−1] (m3 km−2 yr−1) (ac ft mi−2 yr−1) | Strand and Pemberton [78]; USDA [79] | ||
U.S. Department of Agriculture Natural Resources Conservation Service (USDA-NRCS) | Sediment yield | [M T−1] (tons yr−1) | Wischmeier and Smith [80] | ||
EUROPEAN SOIL DATA CENTRE (ESDAC) | Sediment yield | [M T−1] (Pg yr−1) | Borrelli et al. [81] | ||
EUROPEAN SOIL DATA CENTRE (ESDAC) | Area-specific sediment yield | [M L−2 T−1], (Mg ha−1 yr−1) | Borrelli et al. [81] | ||
1 (1-2). Soil erosion and sediment yield models | |||||
Model Name | Reported term | Unit | Reference | ||
Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation (RUSLE) | Average annual soil loss | [M L−2 T−1], (tons acre−1 yr−1) | Wischmeier and Smith [80,82] | ||
Soil and Water Assessment Tool (SWAT) | Sediment yield | [M L−2], (t ha−1), | Arnold et al. [83] | ||
AGricultural Non-Point Source Pollution Model (AGNPS) | Eroded sediments Sediment yield for catchment | [M L−2], (tons acre−1) [M], (tons) | Young et al. [84] | ||
Water Erosion Prediction Project (WEPP) | Average annual soil loss Average annual sediment yield | [M L−2 T−1], (ton acre−1 yr−1) | Laflen et al. [85] | ||
1 (1-3). CADR scholarship comparing the CADR-derived background rate (time scale: 103–105) to the modern rate (time scale: 100–102) | |||||
Approach | Background rate | Modern rate | Unit | References | |
1. Convert the modern area-specific sediment yield (SSY) to the erosion rate using bedrock density (2.6–2.7 g cm−3) | Catchment averaged denudation rate (CADR) | Erosion rate (Area-specific sediment yield / Bedrock density (2.6–2.7 g cm−3)) | [L T−1], (m Myr−1) | Schaller et al. [72]; Bierman et al. [73] | |
2. Convert the CADR to the SSY using bedrock density (2.6–2.7 g cm−3) | Area-specific sediment yield (CADR bedrock density (2.6–2.7 g cm−3)) | Area-specific sediment yield calculated using sediment density (1.x g cm−3) | [M L−2 T−1], (Mg km−2 yr−1) (kg m−2 yr−1) | Hewawasam et al. [74] a; Clapp et al. [75] b Gellis et al. [86] c This study |
4. Results
4.1. Influences of Recent Disturbances on CADRs
4.2. Cosmogenic Nuclide 10Be-Derived CADR
4.3. Acceleration of Erosion by Different Land Uses
5. Discussion
5.1. Soil Erosion in Arid Lands
5.2. Grazing’s Acceleration of Erosion
5.3. Wildfire’s Acceleration of Erosion
5.4. Urbanization’s Acceleration of Erosion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigo-Comino, J.; González, J.M.S. La Edafogeografía: La quinta rama olvidada de la Geografía Física. Cuad. Geográficos 2013, 52, 6–28. [Google Scholar]
- Rodrigo-Comino, J.; Senciales, J.M.; Cerdà, A.; Brevik, E.C. The multidisciplinary origin of soil geography: A review. Earth Sci. Rev. 2018, 177, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil erosion modelling: A bibliometric analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef] [PubMed]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Rojas, M.; Pereira, P.; Brevik, E.C.; Cerdà, A.; Jordán, A. Chapter 6—Soil Mapping and Processes Models for Sustainable Land Management Applied to Modern Challenges; Pereira, P., Brevik, E.C., Muñoz-Rojas, M., Miller, B.A.B.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 151–190. ISBN 978-0-12-805200-6. [Google Scholar]
- Schwilch, G.; Lemann, T.; Berglund, Ö.; Camarotto, C.; Cerdà, A.; Daliakopoulos, I.N.; Kohnová, S.; Krzeminska, D.; Marañón, T.; Rietra, R.; et al. Assessing Impacts of Soil Management Measures on Ecosystem Services. Sustainability 2018, 10, 4416. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; López-Vicente, M.; Kumar, V.; Rodríguez-Seijo, A.; Valkó, O.; Rojas, C.; Pourghasemi, H.R.; Salvati, L.; Bakr, N.; Vaudour, E.; et al. Soil Science Challenges in a New Era: A Transdisciplinary Overview of Relevant Topics. Air Soil Water Res. 2020, 13, 1178622120977491. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Pandey, A.; Bishal, K.C.; Kalura, P.; Chowdary, V.M.; Jha, C.S.; Cerdà, A. A Soil Water Assessment Tool (SWAT) Modeling Approach to Prioritize Soil Conservation Management in River Basin Critical Areas Coupled With Future Climate Scenario Analysis. Air Soil Water Res. 2021, 14, 11786221211021396. [Google Scholar] [CrossRef]
- Granger, D.E.; Schaller, M. Cosmogenic Nuclides and Erosion at the Watershed Scale. Elements 2014, 10, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Luyten, E.; Veyret-Picot, M.; Deckers, J.; Haile, M.; Govers, G. Impact of road building on gully erosion risk: A case study from the northern Ethiopian highlands. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Gr. 2002, 27, 1267–1283. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Deckers, J.; Haile, M.; Lang, A. Human impact on the environment in the Ethiopian and Eritrean highlands—a state of the art. Earth Sci. Rev. 2004, 64, 273–320. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process. 2007, 21, 2325–2336. [Google Scholar] [CrossRef]
- García-Orenes, F.; Cerdà, A.; Mataix-Solera, J.; Guerrero, C.; Bodí, M.B.; Arcenegui, V.; Zornoza, R.; Sempere, J.G. Effects of agricultural management on surface soil properties and soil–water losses in eastern Spain. Soil Tillage Res. 2009, 106, 117–123. [Google Scholar] [CrossRef]
- Maetens, W.; Vanmaercke, M.; Poesen, J.; Jankauskas, B.; Jankauskiene, G.; Ionita, I. Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: A meta-analysis of plot data. Prog. Phys. Geogr. 2012, 36, 599–653. [Google Scholar] [CrossRef]
- Taye, G.; Poesen, J.; Van Wesemael, B.; Vanmaercke, M.; Teka, D.; Deckers, J.; Goosse, T.; Maetens, W.; Nyssen, J.; Hallet, V.; et al. Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi-arid Northern Ethiopia. Phys. Geogr. 2013, 34, 236–259. [Google Scholar] [CrossRef] [Green Version]
- Taye, G.; Vanmaercke, M.; Poesen, J.; Van Wesemael, B.; Tesfaye, S.; Teka, D.; Nyssen, J.; Deckers, J.; Haregeweyn, N. Determining RUSLE P- and C-factors for stone bunds and trenches in rangeland and cropland, North Ethiopia. Land Degrad. Dev. 2018, 29, 812–824. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.; Zhang, H.; Yang, L.; Yu, Y.; Chen, J. Effects of crop rotation and rainfall on water erosion on a gentle slope in the hilly loess area, China. CATENA 2014, 123, 205–214. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Govers, G.; Verstraeten, G. Quantifying human impacts on catchment sediment yield: A continental approach. Glob. Planet. Chang. 2015, 130, 22–36. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Panagos, P.; Vanwalleghem, T.; Hayas, A.; Foerster, S.; Borrelli, P.; Rossi, M.; Torri, D.; Casali, J.; Borselli, L.; et al. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth Sci. Rev. 2021, 218, 103637. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Senciales, J.M.; Ramos, M.C.; Martínez-Casasnovas, J.A.; Lasanta, T.; Brevik, E.C.; Ries, J.B.; Ruiz Sinoga, J.D. Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 2017, 296, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. Global sediment yields from urban and urbanizing watersheds. Earth Sci. Rev. 2017, 168, 73–80. [Google Scholar] [CrossRef]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. A suburban sediment budget: Coarse-grained sediment flux through hillslopes, stormwater systems and streams. Earth Surf. Process. Landf. 2019, 44, 2600–2614. [Google Scholar] [CrossRef]
- Russell, K. Potential sediment supply fluxes associated with greenfield residential construction. Anthropocene 2021, 35, 100300. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, Z.; Zhang, X.; Yu, Y. Influence of Landscape Pattern Changes on Runoff and Sediment in the Dali River Watershed on the Loess Plateau of China. Land 2019, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Barrena-González, J.; Rodrigo-Comino, J.; Gyasi-Agyei, Y.; Pulido Fernández, M.; Cerdà, A. Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates. Land 2020, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Heimsath, A.M.; Dietrich, W.E.; Nishiizumi, K.; Finkel, R.C. The soil production function and landscape equilibrium. Nature 1997, 388, 358–361. [Google Scholar] [CrossRef]
- Kelly, M.A.; Lowell, T.V.; Hall, B.L.; Schaefer, J.M.; Finkel, R.C.; Goehring, B.M.; Alley, R.B.; Denton, G.H. A 10Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: Implications for seasonality during lateglacial time. Quat. Sci. Rev. 2008, 27, 2273–2282. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.R. Dirt: The Erosion of Civilizations; University of California Press: Berkeley, CA, USA, 2012; ISBN 0520272900. [Google Scholar]
- Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landf. 2018, 43, 64–84. [Google Scholar] [CrossRef]
- Jeong, A.; Cheung, S.Y.; Walker, I.J.; Dorn, R.I. Urban Geomorphology of an Arid City: Case Study of Phoenix, Arizona. In Urban Geomorphology Landforms and Processes in Cities; Thornbush, M.J., Allen, C.D., Eds.; Elsevier: Oxford, UK, 2018; pp. 177–204. ISBN 978-0-12-811951-8. [Google Scholar]
- Jeong, A.; Dorn, R.I. Soil erosion from urbanization processes in the Sonoran Desert, Arizona, USA. Land Degrad. Dev. 2019, 30, 226–238. [Google Scholar] [CrossRef]
- Cerdá, A.; Doerr, S.H. Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation. Int. J. Wildl. Fire 2005, 14, 423–437. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. CATENA 2008, 74, 256–263. [Google Scholar] [CrossRef]
- Mekuria, W.; Veldkamp, E.; Haile, M.; Nyssen, J.; Muys, B.; Gebrehiwot, K. Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. J. Arid. Environ. 2007, 69, 270–284. [Google Scholar] [CrossRef]
- Nearing, M.A.; Xie, Y.; Liu, B.; Ye, Y. Natural and anthropogenic rates of soil erosion. Int. Soil Water Conserv. Res. 2017, 5, 77–84. [Google Scholar] [CrossRef]
- Western Regional Climate Center. Cooperative Climatological Data Summaries. Available online: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?az6486 (accessed on 22 July 2021).
- Climate Office of Arizona. Climate of Phoenix Summary. Available online: https://azclimate.asu.edu/climate/climate-of-phoenix-summary/ (accessed on 22 January 2021).
- Vaezi, A.R.; Abbasi, M.; Keesstra, S.; Cerdà, A. Assessment of soil particle erodibility and sediment trapping using check dams in small semi-arid catchments. CATENA 2017, 157, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S.; Abdo, H.G.; Szabo, S.; Pham, Q.B.; Holb, I.J.; Linh, N.T.; Anh, D.T.; Alsafadi, K.; Mokhtar, A.; Kbibo, I.; et al. Estimating Human Impacts on Soil Erosion Considering Different Hillslope Inclinations and Land Uses in the Coastal Region of Syria. Water 2020, 12, 2786. [Google Scholar] [CrossRef]
- Allen, C.D. Micrometeorology of a Smooth and Rugose Biological Soil Crust near Coon Bluff, Arizona. J. Ariz. Nev. Acad. Sci. 2005, 38, 21–28. [Google Scholar] [CrossRef]
- Allen, C.D. Biogeomorphology and biological soil crusts: A symbiotic research relationship. Géomorphol. Relief Process. Environ. 2010, 16, 347–358. [Google Scholar]
- Nagy, M.L.; Pérez, A.; Garcia-Pichel, F. The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol. Ecol. 2005, 54, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Raga, M.; Palencia, C.; Keesstra, S.; Jordán, A.; Fraile, R.; Angulo-Martínez, M.; Cerdà, A. Splash erosion: A review with unanswered questions. Earth Sci. Rev. 2017, 171, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Vanmaercke, M.; Makanzu Imwangana, F.; Cogels, S.; Dewitte, O.; Trefon, T.; Bielders, C.; Poesen, J.; Wazi Nandefo, R.; Mbalanda Lawunda, W. Prevention and Mitigation of Urban Gullies: Lessons learned from Failures and Successes. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–13 April 2018; p. 7126. [Google Scholar]
- Bartley, R.; Poesen, J.; Wilkinson, S.; Vanmaercke, M. A review of the magnitude and response times for sediment yield reductions following the rehabilitation of gullied landscapes. Earth Surf. Process. Landf. 2020, 45, 3250–3279. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Martínez-Hernández, C.; Iserloh, T.; Cerdà, A. Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields. Pedosphere 2018, 28, 617–631. [Google Scholar] [CrossRef] [Green Version]
- Esmali Ouri, A.; Golshan, M.; Janizadeh, S.; Cerdà, A.; Melesse, A.M. Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques. Land 2020, 9, 368. [Google Scholar] [CrossRef]
- Humphrey, R.R. The role of fire in the desert and desert grassland areas of Arizona. In Proceedings of the Tall Timbers Fire Ecology Conference, Tallahassee, FL, USA, 14–15 March 1963; Volume 2, pp. 45–62. [Google Scholar]
- Brooks, M.L. Plant invasions and fire regimes. In General Technical Report RMRS-GTR-42; US Forest Service: Ogden, UT, USA, 2008; Volume 6, pp. 33–45. [Google Scholar]
- D’Antonio, C.M.; Vitousek, P.M. Biological Invasions by Exotic Grasses, the Grass/Fire Cycle, and Global Change. Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [Google Scholar] [CrossRef]
- Brooks, M.L.; Chambers, J.C. Resistance to Invasion and Resilience to Fire in Desert Shrublands of North America. Rangel. Ecol. Manag. 2011, 64, 431–438. [Google Scholar] [CrossRef]
- Gober, P.; Trapido-Lurie, B. Metropolitan Phoenix: Place Making and Community Building in the Desert; University of Pennsylvania Press: Philadelphia, PA, USA, 2006; ISBN 0812219279. [Google Scholar]
- Jeong, A. Sediment accumulation expectations for growing desert cities: A realistic desired outcome to be used in constructing appropriately sized sediment storage of flood control structures. Environ. Res. Lett. 2019, 14, 125005. [Google Scholar] [CrossRef] [Green Version]
- Foster, M.A.; Anderson, R.S. Assessing the effect of a major storm on 10BE concentrations and inferred basin-averaged denudation rates. Quat. Geochronol. 2016, 34, 58–68. [Google Scholar] [CrossRef]
- Seong, Y.B.; Larson, P.H.; Dorn, R.I.; Yu, B.Y. Evaluating process domains in small arid granitic watersheds: Case study of Pima Wash, South Mountains, Sonoran Desert, USA. Geomorphology 2016, 255, 108–124. [Google Scholar] [CrossRef]
- Nishiizumi, K.; Kohl, C.P.; Shoemaker, E.M.; Arnold, J.R.; Klein, J.; Fink, D.; Middleton, R. In situ10Be-26Al exposure ages at Meteor Crater, Arizona. Geochim. Cosmochim. Acta 1991, 55, 2699–2703. [Google Scholar] [CrossRef] [Green Version]
- Jeong, A.; Lee, J.I.; Seong, Y.B.; Balco, G.; Yoo, K.-C.; Yoon, H.I.; Domack, E.; Rhee, H.H.; Yu, B.Y. Late Quaternary deglacial history across the Larsen B embayment, Antarctica. Quat. Sci. Rev. 2018, 189, 134–148. [Google Scholar] [CrossRef]
- Nishiizumi, K.; Imamura, M.; Caffee, M.W.; Southon, J.R.; Finkel, R.C.; McAninch, J. Absolute calibration of 10Be AMS standards. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 258, 403–413. [Google Scholar] [CrossRef]
- Balco, G.; Stone, J.O.; Lifton, N.A.; Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 2008, 3, 174–195. [Google Scholar] [CrossRef]
- Lal, D. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 1991, 104, 424–439. [Google Scholar] [CrossRef]
- Stone, J.O. Air pressure and cosmogenic isotope production. J. Geophys. Res. Solid Earth 2000, 105, 23753–23759. [Google Scholar] [CrossRef]
- Heisinger, B.; Lal, D.; Jull, A.J.T.; Kubik, P.; Ivy-Ochs, S.; Neumaier, S.; Knie, K.; Lazarev, V.; Nolte, E. Production of selected cosmogenic radionuclides by muons: 1. Fast muons. Earth Planet. Sci. Lett. 2002, 200, 345–355. [Google Scholar] [CrossRef]
- Heisinger, B.; Lal, D.; Jull, A.J.T.; Kubik, P.; Ivy-Ochs, S.; Knie, K.; Nolte, E. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet. Sci. Lett. 2002, 200, 357–369. [Google Scholar] [CrossRef]
- Polyakov, V.O.; Nearing, M.A.; Nichols, M.H.; Scott, R.L.; Stone, J.J.; McClaran, M.P. Long-term runoff and sediment yields from small semiarid watersheds in southern Arizona. Water Resour. Res. 2010, 46, W09512. [Google Scholar] [CrossRef] [Green Version]
- Leopold, L.B. Hydrology for Urban Land Planning: A Guidebook on the Hydrologic Effects of Urban Land Use; US Department of the Interior, Geological Survey: Washington, DC, USA, 1968; Volume 554.
- Zhang, W.; Huang, B. Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization. Environ. Sci. Pollut. Res. 2015, 22, 4475–4490. [Google Scholar] [CrossRef]
- Li, J.; Deng, J.; Gu, Q.; Wang, K.; Ye, F.; Xu, Z.; Jin, S. The accelerated urbanization process: A threat to soil resources in eastern China. Sustainability 2015, 7, 7137–7155. [Google Scholar] [CrossRef] [Green Version]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Li, P.; Mu, X.; Holden, J.; Wu, Y.; Irvine, B.; Wang, F.; Gao, P.; Zhao, G.; Sun, W. Comparison of soil erosion models used to study the Chinese Loess Plateau. Earth Sci. Rev. 2017, 170, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Schaller, M.; Von Blanckenburg, F.; Hovius, N.; Kubik, P.W. Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth Planet. Sci. Lett. 2001, 188, 441–458. [Google Scholar] [CrossRef]
- Bierman, P.R.; Reuter, J.M.; Pavich, M.; Gellis, A.C.; Caffee, M.W.; Larsen, J. Using cosmogenic nuclides to contrast rates of erosion and sediment yield in a semi-arid, arroyo-dominated landscape, Rio Puerco Basin, New Mexico. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Gr. 2005, 30, 935–953. [Google Scholar] [CrossRef]
- Hewawasam, T.; von Blanckenburg, F.; Schaller, M.; Kubik, P. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 2003, 31, 597–600. [Google Scholar] [CrossRef]
- Clapp, E.M.; Bierman, P.R.; Nichols, K.K.; Pavich, M.; Caffee, M. Rates of sediment supply to arroyos from upland erosion determined using in situ produced cosmogenic 10 Be and 26 Al. Quat. Res. 2001, 55, 235–245. [Google Scholar] [CrossRef]
- Food and Agriculture Organization AQUASTAT. Global River Sediment Yields Database. Available online: http://www.fao.org/nr/water/aquastat/sediment/index.stm (accessed on 9 February 2019).
- U. S. Department of the Interior Bureau of Reclamation Reclamation Library/Glossary. Available online: https://www.usbr.gov/library/glossary/ (accessed on 12 July 2019).
- Strand, R.I.; Pemberton, E.L. Reservoir Sedimentation: Technical Guideline for Bureau of Reclamation; Bureau of Reclamation: Denver, CO, USA, 1982.
- U.S. Department of Agriculture Soil Conservation Service. Sediment Sources, Yields, Ratios. Chapter 6 in National Engineering Handbook, Section 3, Sedimentation; U.S. Department of Agriculture Soil Conservation Service: Washington, DC, USA, 1983.
- Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses from cropland. USDA Agric. Handb. 1965, 282. [Google Scholar]
- Borrelli, P.; Van Oost, K.; Meusburger, K.; Alewell, C.; Lugato, E.; Panagos, P. A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes. Environ. Res. 2018, 161, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; Agriculture Handbook No. 537; U.S. Department of Agriculture: Washington, DC, USA, 1978.
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Young, R.A.; Onstad, C.A.; Bosch, D.D.; Anderson, W.P. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 1989, 44, 168–173. [Google Scholar]
- Laflen, J.M.; Lane, L.J.; Foster, G.R. WEPP: A new generation of erosion prediction technology. J. Soil Water Conserv. 1991, 46, 34–38. [Google Scholar]
- Gellis, A.C.; Pavich, M.J.; Bierman, P.R.; Clapp, E.M.; Ellevein, A.; Aby, S. Modern sediment yield compared to geologic rates of sediment production in a semi-arid basin, New Mexico: Assessing the human impact. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Gr. 2004, 29, 1359–1372. [Google Scholar] [CrossRef]
- Larson, P.H.; Dorn, R.I.; Skotnicki, S.J.; Seong, Y.B.; Jeong, A.; DePonty, J. Impact of drainage integration on basin geomorphology and landform evolution: A case study along the Salt and Verde rivers, Sonoran Desert, USA. Geomorphology 2020, 371, 107439. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Broeckx, J.; Nyssen, J. Sediment yield in Africa. Earth Sci. Rev. 2014, 136, 350–368. [Google Scholar] [CrossRef] [Green Version]
- Vanmaercke, M.; Poesen, J.; Maetens, W.; de Vente, J.; Verstraeten, G. Sediment yield as a desertification risk indicator. Sci. Total Environ. 2011, 409, 1715–1725. [Google Scholar] [CrossRef] [Green Version]
- Harel, M.-A.; Mudd, S.M.; Attal, M. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology 2016, 268, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Pulido, M.; Schnabel, S.; Lavado Contador, J.F.; Lozano-Parra, J.; Gómez-Gutiérrez, Á.; Brevik, E.C.; Cerdà, A. Reduction of the frequency of herbaceous roots as an effect of soil compaction induced by heavy grazing in rangelands of SW Spain. CATENA 2017, 158, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Pulido, M.; Barrena-González, J.; Badgery, W.; Rodrigo-Comino, J.; Cerdà, A. Sustainable grazing. Curr. Opin. Environ. Sci. Heal. 2018, 5, 42–46. [Google Scholar] [CrossRef]
- Antoneli, V.; Rebinski, E.A.; Bednarz, J.A.; Rodrigo-Comino, J.; Keesstra, S.D.; Cerdà, A.; Pulido Fernández, M. Soil Erosion Induced by the Introduction of New Pasture Species in a Faxinal Farm of Southern Brazil. Geosciences 2018, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Billi, P.; Vanmaercke, M.; et al. Analysis of long-term gully dynamics in different agro-ecology settings. CATENA 2019, 179, 160–174. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Poesen, J.; Tsubo, M.; Borrelli, P.; Panagos, P.; Vanmaercke, M.; Broeckx, J.; Yasuda, H.; et al. Land susceptibility to water and wind erosion risks in the East Africa region. Sci. Total Environ. 2020, 703, 135016. [Google Scholar] [CrossRef]
- Dastgheyb Shirazi, S.S.; Ahmadi, A.; Abdi, N.; Toranj, H.; Khaleghi, M.R. Long-term grazing exclosure: Implications on water erosion and soil physicochemical properties (case study: Bozdaghin rangelands, North Khorasan, Iran). Environ. Monit. Assess. 2021, 193, 51. [Google Scholar] [CrossRef] [PubMed]
- Whitley, D.S. Rock Art Dating and the Peopling of the Americas. J. Archaeol. 2013, 2013, 713159. [Google Scholar] [CrossRef]
- Whitley, D.S.; Dorn, R.I. New Perspectives on the Clovis vs. Pre-Clovis Controversy. Am. Antiq. 1993, 58, 626–647. [Google Scholar] [CrossRef]
- McAuliffe, J.R.; Van Devender, T.R. A 22,000-year record of vegetation change in the north-central Sonoran Desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 141, 253–275. [Google Scholar] [CrossRef]
- Staley, S.E.; Fawcett, P.J.; Anderson, R.S.; Jiménez-Moreno, G. Early Pleistocene−to−present paleoclimate archive for the American Southwest from Stoneman Lake, Arizona, USA. GSA Bull. 2021. [Google Scholar] [CrossRef]
- Cerdà, A. The Role of Fire in Achieving the Sustainable Development Goals of the United Nations. Multidiscip. Digit. Publ. Inst. Proc. 2019, 30, 65. [Google Scholar] [CrossRef]
- Dindaroglu, T.; Babur, E.; Yakupoglu, T.; Rodrigo-Comino, J.; Cerdà, A. Evaluation of geomorphometric characteristics and soil properties after a wildfire using Sentinel-2 MSI imagery for future fire-safe forest. Fire Saf. J. 2021, 122, 103318. [Google Scholar] [CrossRef]
- Fernández-Raga, M.; Gutiérrez, E.G.; Keesstra, S.D.; Tárrega, R.; Nunes, J.P.; Marcos, E.; Rodrigo-Comino, J. Determining the potential impacts of fire and different land uses on splash erosion in the margins of drylands. J. Arid Environ. 2021, 186, 104419. [Google Scholar] [CrossRef]
- Portenga, E.W.; Rood, D.H.; Bishop, P.; Bierman, P.R. A late holocene onset of aboriginal burning in southeastern Australia. Geology 2016, 44, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Wolman, M.G. A cycle of sedimentation and erosion in urban river channels. Geogr. Ann. Ser. A Phys. Geogr. 1967, 49, 385–395. [Google Scholar] [CrossRef]
- Roberts, W.P.; Pierce, J.W. Sediment yield in the Patuxent River (Md.) undergoing urbanization, 1968–1969. Sediment. Geol. 1974, 12, 179–197. [Google Scholar] [CrossRef]
- Cerdà, A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur. J. Soil Sci. 2001, 52, 59–68. [Google Scholar] [CrossRef]
- Seong, Y.B.; Dorn, R.I.; Yu, B.Y. Evaluating the life expectancy of a desert pavement. Earth Sci. Rev. 2016, 162, 129–154. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.L.; King, K.A. Environmental Contaminant Investigation of Water Quality, Sediment and Biota of the Upper Gila River Basin, Arizona; U.S. Fish and Wildlife Service Arizona Ecological Services State Office: Phoenix, AZ, USA, 1994.
- Zhuo, X.; Boone, C.G.; Shock, E.L. Soil lead distribution and environmental justice in the Phoenix metropolitan region. Environ. Justice 2012, 5, 206–213. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.-X.; Ren, Y.; Luo, X.-S.; Zhu, Y.-G. Urban soil and human health: A review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Pribadi, D.O.; Vollmer, D.; Pauleit, S. Impact of peri-urban agriculture on runoff and soil erosion in the rapidly developing metropolitan area of Jakarta, Indonesia. Reg. Environ. Chang. 2018, 18, 2129–2143. [Google Scholar] [CrossRef]
- Langemeyer, J.; Madrid-Lopez, C.; Mendoza Beltran, A.; Villalba Mendez, G. Urban agriculture—A necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 2021, 210, 104055. [Google Scholar] [CrossRef]
- Scharenbroch, B.; Day, S.; Trammell, T.; Pouyat, R. Urban soil carbon storage. In Urban Soils; CRC Press: Boca Raton, FL, USA, 2017; pp. 137–154. ISBN 1315154250. [Google Scholar]
- Vasenev, V.; Kuzyakov, Y. Urban soils as hot spots of anthropogenic carbon accumulation: Review of stocks, mechanisms and driving factors. Land Degrad. Dev. 2018, 29, 1607–1622. [Google Scholar] [CrossRef]
- Sanderman, J.; Berhe, A.A. The soil carbon erosion paradox. Nat. Clim. Chang. 2017, 7, 317–319. [Google Scholar] [CrossRef]
- Richter, D.D. Game Changer in Soil Science. The Anthropocene in soil science and pedology. J. Plant Nutr. Soil Sci. 2020, 183, 5–11. [Google Scholar] [CrossRef]
- Cendrero, A.; Forte, L.M.; Remondo, J.; Cuesta-Albertos, J.A. Anthropocene Geomorphic Change. Climate or Human Activities? Earth’s Future 2020, 8, e2019EF001305. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Haile, M.; Deckers, J. Dynamics of soil erosion rates and controlling factors in the Northern Ethiopian Highlands—towards a sediment budget. Earth Surf. Process. Landf. 2008, 33, 695–711. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo Comino, J.; Iserloh, T.; Lassu, T.; Cerdà, A.; Keestra, S.D.; Prosdocimi, M.; Brings, C.; Marzen, M.; Ramos, M.C.; Senciales, J.M.; et al. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Sci. Total Environ. 2016, 565, 1165–1174. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Sci. Total Environ. 2017, 574, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecol. Eng. 2017, 108, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Rodrigo-Comino, J. Analyzing Regional Geographic Challenges: The Resilience of Chinese Vineyards to Land Degradation Using a Societal and Biophysical Approach. Land 2021, 10, 227. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus actual soil erosion rates in Europe. Earth Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Pereira, P.; Brevik, E.; Giménez-Morera, A.; Fernández-Raga, M.; Pulido, M.; di Prima, S.; et al. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. J. Environ. Manag. 2017, 202, 268–275. [Google Scholar] [CrossRef] [Green Version]
Sample ID | Latitude (°N) | Longitude (°W) | Elevation (m asl) | Production Rate (Atoms g−1 yr−1) a | Blank-Corrected [10Be] ± 1σ (105 Atoms g−1) b | 10Be Erosion rate ± 1σ (m Myr−1) c | 10Be Sediment Yield ± 1σ (Mg km−2 yr−1) d | Timescale ± 1σ (kyr) e |
---|---|---|---|---|---|---|---|---|
CAPC01 | 33.7494 | 112.1136 | 489 | 5.81 | 3.04 ± 0.04 | 11.0 ± 0.1 | 29.8 ± 0.3 | 53.7 ± 0.6 |
CAPC02 | 33.7512 | 112.0984 | 527 | 5.92 | 2.37 ± 0.03 | 14.5 ± 0.2 | 39.2 ± 0.5 | 40.8 ± 0.5 |
CAPC03 | 33.7526 | 112.01078 | 508 | 5.87 | 2.42 ± 0.03 | 14.1 ± 0.2 | 38.1 ± 0.5 | 42.0 ± 0.5 |
Sample ID | Latitude. (°N) | Longitude (°W) | Mean Lat. a (°N) | Mean Long. a (°W) | Elevation (m asl) | Avg. Basin Slope (°) | Production Rate (Atoms g−1 yr−1) b | Blank-Corrected [10Be] ± 1σ (105 Atoms g−1) c | 10Be Erosion Rate ± 1σ (m Myr−1) | 10 Be Sediment Yield ± 1σ (Mg km−2 yr−1) | Timescale ± 1σ (kyr) d |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Cigar | 33.685 | 112.534 | 33.696 | 112.547 | 462 | 0.4 | 5.88 | 5.85 ± 0.06 | 7.1 ± 0.6 | 19.3 ± 1.5 | 99.5 ± 1.1 |
2. Saguaro | 33.801 | 112.204 | 33.816 | 112.197 | 496 | 0.7 | 6.04 | 3.74 ± 0.05 | 12.1 ± 0.9 | 32.7 ± 2.4 | 62.0 ± 0.8 |
3. Cline | 33.856 | 112.149 | 33.867 | 112.152 | 568 | 1.2 | 6.39 | 6.46 ± 0.08 | 6.9 ± 0.6 | 18.7 ± 1.5 | 101.1 ± 1.2 |
4. Anthem | 33.851 | 112.102 | 33.870 | 112.117 | 611 | 6.2 | 6.59 | 2.62 ± 0.04 | 19.4 ± 1.4 | 52.2 ± 3.8 | 39.7 ± 0.6 |
5. Anthem 2 | 33.852 | 112.100 | 33.857 | 112.097 | 586 | 1.8 | 6.46 | 1.89 ± 0.03 | 27.0 ± 1.9 | 73.0 ± 5.2 | 29.3 ± 0.5 |
6. Pepe | 33.786 | 112.160 | 33.792 | 112.150 | 495 | 0.6 | 6.03 | 5.19 ± 0.06 | 8.4 ± 0.6 | 22.6 ± 1.7 | 86.0 ± 1.0 |
7. Bronco | 33.775 | 112.117 | 33.783 | 112.117 | 496 | 0.6 | 6.03 | 4.17 ± 0.05 | 10.7 ± 0.8 | 28.9 ± 2.2 | 69.2 ± 0.8 |
8. Circle | 33.771 | 112.061 | 33.772 | 112.062 | 538 | 6.5 | 6.23 | 2.61 ± 0.06 | 18.5 ± 1.4 | 50.0 ± 3.7 | 41.9 ± 1.0 |
9. Charlie | 33.774 | 111.949 | 33.778 | 111.931 | 674 | 1.2 | 6.89 | 1.83 ± 0.03 | 29.6 ± 2.1 | 79.9 ± 5.7 | 26.5 ± 0.5 |
10. Rock | 33.760 | 111.877 | 33.762 | 111.868 | 771 | 2.6 | 7.39 | 1.29 ± 0.07 | 45.4 ± 4.0 | 122.4 ± 10.8 | 17.5 ± 1.0 |
11. Cave Creek | 33.822 | 111.860 | 33.824 | 111.857 | 864 | 1.9 | 7.92 | 5.99 ± 0.07 | 9.2 ± 0.7 | 24.9 ± 1.9 | 75.6 ± 0.8 |
12. Buckhorn | 33.772 | 111.727 | 33.787 | 111.760 | 743 | 1.5 | 7.24 | 2.62 ± 0.04 | 21.0 ± 1.5 | 56.7 ± 4.1 | 36.2 ± 0.5 |
13. The Rocks | 33.736 | 111.841 | 33.744 | 111.835 | 825 | 2.2 | 7.69 | 1.38 ± 0.03 | 43.9 ± 3.1 | 118.4 ± 8.5 | 17.9 ± 0.4 |
14. 128th St | 33.720 | 111.806 | 33.718 | 111.814 | 816 | 1.7 | 7.64 | 1.25 ± 0.03 | 48.2 ± 3.4 | 130.1 ± 9.3 | 16.4 ± 0.4 |
15. 128th St 2 | 33.716 | 111.791 | 33.715 | 111.798 | 783 | 1.7 | 7.45 | 1.35 ± 0.03 | 43.7 ± 3.2 | 118.1 ± 8.6 | 18.1 ± 0.5 |
16. Asher Hills | 33.730 | 111.705 | 33.737 | 111.747 | 671 | 1.3 | 6.87 | 2.63 ± 0.04 | 19.9 ± 1.4 | 53.8 ± 3.9 | 38.3 ± 0.6 |
17. Gold Cyn | 33.368 | 111.515 | 33.373 | 111.498 | 513 | 0.6 | 6.06 | 3.33 ± 0.05 | 13.8 ± 1.0 | 37.3 ± 2.8 | 54.9 ± 0.8 |
18. Peralta | 33.335 | 111.430 | 33.345 | 111.417 | 577 | 2.0 | 6.36 | 1.34 ± 0.03 | 38.7 ± 2.7 | 104.6 ± 7.3 | 21.0 ± 0.5 |
CADR | Mean Slope | Mean Elevation | Relief | Drainage Area | Drainage Density | |
---|---|---|---|---|---|---|
CADR | 1 | |||||
Mean slope | 0.75 ** | 1 | ||||
Mean elevation | 0.63 ** | 0.8 ** | 1 | |||
Relief | 0.09 | 0.2 | 0.29 | 1 | ||
Drainage area | –0.25 | –0.31 | –0.19 | 0.44 | 1 | |
Drainage density | 0.34 | 0.25 | 0.42 | –0.2 | –0.49 * | 1 |
1. CADR | 2. Mean slope | |||
---|---|---|---|---|
Granitic | Non-Granitic | Granitic | Non-Granitic | |
Mean | 88.06 | 42.13 | 1.76 | 0.98 |
Variance | 1567.79 | 941.61 | 0.21 | 0.36 |
Observations | 8 | 8 | 8 | 8 |
Hypothesized Mean Difference | 0 | 0 | ||
df | 13 | 13 | ||
t Stat | 2.59 | 2.91 | ||
P(T ≤ t) one-tail | 0.011 | 0.006 | ||
t Critical one-tail | 1.77 | 1.77 | ||
P(T ≤ t) two-tail | 0.022 | 0.012 | ||
t Critical two-tail | 2.16 | 2.16 |
Sample ID | Time Period | Field Description of Dominant Land Use a | Land Use b | Different Rock Types | MAP (mm) (I30) (mm) | Ad (km2) | At (m2) | Modern SSY c ± 1σ (Mg km−2 yr−1) | Modern SSY d ± 1σ (Mg km−2 yr−1) | Background SSY ± 1σ (Mg km−2 yr−1) | Minimum Acceleration | Maximum Acceleration | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | ||||||||||||
1. Cigar | 1990–2004 | grazing | C | metamorphic, | 207(20.9) | 170(15.4) | 2.6 | 6000 | 77.3 ± 3.8 | 89.2 ± 9.7 | 19.3 ± 1.5 | 4.0 | 4.6 |
2005–2009 | grazing and off-road vehicle use | C | basalt, granite | 89.6 ± 3.2 | 102.4 ± 9.8 | 4.6 | 5.3 | ||||||
2. Saguaro | 1990–2004 | grazing | G | metamorphic, | 222(25.1) | 181(14.1) | 1.4 | 5800 | 41.4 ± 3.2 | 48.7 ± 7.6 | 32.7 ± 2.4 | 1.3 | 1.5 |
2005–2009 | grazing & pipeline construction | C | basalt, granite | 126.7 ± 4.6 | 143.2 ± 26.0 | 3.9 | 4.4 | ||||||
3. Cline | 1989–1995 | Some construction | C | metamorphic, | 222(25.1) | 181(14.1) | 1.5 | 9500 | 44.4 ± 5.4 | 52.0 ± 6.9 | 18.7 ± 1.5 | 2.4 | 2.8 |
1996–2003 | commercial construction | C | basalt, granite | 92.7 ± 3.1 | 103.7 ± 6.4 | 5.0 | 5.6 | ||||||
2003–2004 | subdivision construction | C | 160 ± 10.9 | 174.7 ± 25.4 | 8.6 | 9.4 | |||||||
4. Anthem | 1989–1992 | grazing | G | metavolcanic | 222(25.1) | 181(14.1) | 0.88 | 3000 | 121.4 ± 15.8 | 136.7 ± 14.6 | 52.2 ± 3.8 | 2.3 | 2.6 |
1993–1997 | after wildfire | F1 | 309.3 ± 27.4 | 334.0 ± 25.4 | 5.9 | 6.4 | |||||||
5. Anthem 2 | 1989–1992 | grazing | G | metavolcanic | 222(25.1) | 181(14.1) | 0.58 | 2700 | 67.1 ± 2.9 | 77.5 ± 7.1 | 73.0 ± 5.2 | 0.9 | 1.1 |
1993–1995 | after wildfire period 1 | F1 | 254 ± 24.6 | 276.7 ± 45.8 | 3.5 | 3.8 | |||||||
1996–1998 | after wildfire period 2 | F2 | 308.6 ± 58.4 | 330.9 ± 32.8 | 4.2 | 4.5 | |||||||
1999–2002 | after wildfire period 3 | F2 | 146 ± 20.0 | 156.2 ± 14.9 | 2.0 | 2.1 | |||||||
2002 | housing | C | 230.1 ± 12.8 | 255.7 ± 41.4 | 3.2 | 3.5 | |||||||
2006–2008 | after subdivision built | S | 12.9 ± 0.6 | 15.9 ± 4.0 | 0.2 | 0.2 | |||||||
6. Pepe | 1989–2008 | grazing and ongoing house construction | G | metamorphic, basalt, granite | 222(22.8) | 181(11.5) | 0.99 | 3300 | 31.3 ± 3.7 | 38.4 ± 10.0 | 22.6 ± 1.7 | 1.4 | 1.7 |
7. Bronco | 1989–1998 | grazing | G | metamorphic, | 222(22.8) | 181(11.5) | 0.45 | 4100 | 37.4 ± 5.4 | 43.7 ± 8.0 | 28.9 ± 2.2 | 1.3 | 1.5 |
1999–2003 | road construction | C | basalt, granite | 112.5 ± 11.2 | 137.4 ± 32.4 | 3.9 | 4.8 | ||||||
8. Circle | 1990–2010 | grazing | G | metamorphic | 222(22.8) | 181(11.5) | 0.6 | 5000 | 42.5 ± 4.1 | 51.0 ± 13.7 | 50.0 ± 3.7 | 0.9 | 1.0 |
2010–2013 | road construction | C | 112.3 ± 4.9 | 128.5 ± 31.1 | 2.2 | 2.6 | |||||||
9. Charlie | 1989–2004 | house construction | C | granitic | 276(40.4) | 237(28.0) | 0.91 | 10500 | 235.6 ± 11.1 | 264.3 ± 49.1 | 79.9 ± 5.7 | 2.9 | 3.3 |
10. Rock | 1989–1992 | grazing | G | granitic | 276(40.4) | 237(28.0) | 0.54 | 2800 | 45.7 ± 3.5 | 53.6 ± 8.8 | 122.4 ± 10.8 | 0.4 | 0.4 |
1992–1997 | after wildfire period 1 | F1 | 199 ± 14.3 | 224.0 ± 25.3 | 1.6 | 1.8 | |||||||
1998–2003 | after wildfire period 2 | F2 | 159.3 ± 24.9 | 175.7 ± 11.7 | 1.3 | 1.4 | |||||||
2004–2009 | after wildfire period 3 | F2 | 85 ± 17.2 | 90.9 ± 9.3 | 0.7 | 0.7 | |||||||
11. Cave Creek | 1989–1992 | grazing | G | granitic | 276(15.4) | 237(22.9) | 0.19 | 1200 | 89.1 ± 10.8 | 102.2 ± 15.4 | 24.9 ± 1.9 | 3.6 | 4.1 |
1992–1999 | after wildfire | F1 | 242.6 ± 39.8 | 258.5 ± 18.0 | 9.7 | 10.4 | |||||||
2000–2003 | house construction | C | 114.3 ± 8.7 | 128.8 ± 23.6 | 4.6 | 5.2 | |||||||
2010–2013 | after subdivision built | S | 12.7 ± 0.5 | 14.7 ± 3.0 | 0.5 | 0.6 | |||||||
12. Buckhorn | 1989–1999 | grazing | C | granitic | 305(40.4) | 260(28.0) | 4.4 | 4100 | 91.6 ± 5.4 | 106.2 ± 17.1 | 56.7 ± 4.1 | 1.6 | 1.9 |
2000–2002 | house construction | C | 115.7 ± 15.2 | 133.4 ± 17.4 | 2.0 | 2.4 | |||||||
13. The Rocks | 1989–1996 | house construction | C | granitic | 310(40.4) | 248(28.0) | 2.36 | 6500 | 212.9 ± 28.0 | 227.6 ± 25.7 | 118.4 ± 8.5 | 1.8 | 1.9 |
1996–1998 | after subdivision built | S | 15.8 ± 1.0 | 17.8 ± 4.6 | 0.1 | 0.2 | |||||||
14. 128th St | 1989–1994 | grazing | G | granitic | 310(40.4) | 248(28.0) | 0.85 | 7000 | 94.7 ± 13.6 | 110.3 ± 27.1 | 130.1 ± 9.3 | 0.7 | 0.8 |
1995–2000 | after wildfire | F1 | 302.3 ± 10.8 | 342.0 ± 40.4 | 2.3 | 2.6 | |||||||
2001–2008 | road construction | C | 141.3 ± 7.4 | 159.9 ± 29.4 | 1.1 | 1.2 | |||||||
15. 128th St 2 | 1989–1994 | grazing | G | granitic | 310(40.4) | 248(28.0) | 0.31 | 2200 | 94.5 ± 12.4 | 109.5 ± 45.9 | 118.1 ± 8.6 | 0.8 | 0.9 |
1995–2000 | after wildfire | F1 | 250 ± 15.9 | 278.7 ± 94.4 | 2.1 | 2.4 | |||||||
2001–2008 | road construction | F2 | 135.7 ± 12.2 | 149.1 ± 48.4 | 1.1 | 1.3 | |||||||
16. AsherHills | 1989–2001 | grazing | C | granitic | 310(17.5) | 248(18.4) | 2.1 | 9800 | 125.9 ± 11.6 | 140.5 ± 27.6 | 53.8 ± 3.9 | 2.3 | 2.6 |
2002–2007 | house construction | C | 182.6 ± 7.9 | 199.1 ± 15.0 | 3.4 | 3.7 | |||||||
17. Gold Cyn | 1989–2009 | cattle grazing & house construction | C | ignimbrite, granitic | 254(23.2) | 209(17.9) | 5.1 | 18000 | 45.3 ± 2.5 | 57.3 ± 13.1 | 37.3 ± 2.8 | 1.2 | 1.5 |
18. Peralta | 1989–2000 | grazing | G | ignimbrite, | 254(23.2) | 209(17.9) | 0.78 | 2800 | 44.7 ± 3.0 | 52.2 ± 3.8 | 104.6 ± 7.3 | 0.4 | 0.5 |
2001–2005 | subdivision construction | C | granitic, breccia | 61.5 ± 3.9 | 77.4 ± 6.8 | 0.6 | 0.7 | ||||||
2006–2009 | after subdivision built | S | 6.2 ± 0.4 | 8.7 ± 2.8 | 0.1 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, A.; Dorn, R.I.; Seong, Y.-B.; Yu, B.-Y. Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10Be Natural Background Rates: Case Study in the Sonoran Desert, USA. Land 2021, 10, 834. https://doi.org/10.3390/land10080834
Jeong A, Dorn RI, Seong Y-B, Yu B-Y. Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10Be Natural Background Rates: Case Study in the Sonoran Desert, USA. Land. 2021; 10(8):834. https://doi.org/10.3390/land10080834
Chicago/Turabian StyleJeong, Ara, Ronald I. Dorn, Yeong-Bae Seong, and Byung-Yong Yu. 2021. "Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10Be Natural Background Rates: Case Study in the Sonoran Desert, USA" Land 10, no. 8: 834. https://doi.org/10.3390/land10080834
APA StyleJeong, A., Dorn, R. I., Seong, Y. -B., & Yu, B. -Y. (2021). Acceleration of Soil Erosion by Different Land Uses in Arid Lands above 10Be Natural Background Rates: Case Study in the Sonoran Desert, USA. Land, 10(8), 834. https://doi.org/10.3390/land10080834