Spatial Inequality in China’s Housing Market and the Driving Mechanism
Abstract
:1. Introduction
2. Literature Review
2.1. Study on Housing Inequality and Its Influencing Factors between Different Groups of People
2.2. Study on Spatial Differences and Correlation Effects of Housing Market, Especially Housing Prices
2.3. Research Analysis and Review
3. Research Design
3.1. Study Area: China
3.2. Research Methods
3.2.1. Coefficient of Variation: CV
3.2.2. Gini Index: GI
3.2.3. Cluster Analysis: ARCGIS
3.2.4. Geodetector
3.3. Index Selection
3.4. Research Steps
3.5. Data Sources
4. Results
4.1. Inequality Analysis
4.2. Factor Analysis
4.2.1. Construction Area
4.2.2. New Construction Area
4.2.3. Floor Space Completed
4.2.4. Sales Area
4.2.5. Area for Sale
4.2.6. Average Selling Price
4.3. Interaction Analysis
5. Discussion
5.1. Drive Mechanism
5.2. Policy Implication
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
q | p | q | p | q | p | q | p | q | p | q | p | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.84 | 0.00 | 0.82 | 0.00 | 0.79 | 0.00 | 0.83 | 0.00 | 0.10 | 0.11 | 0.58 | 0.00 | |
0.12 | 0.08 | 0.06 | 0.22 | 0.26 | 0.04 | 0.05 | 0.23 | 0.51 | 0.01 | 0.52 | 0.01 | |
0.56 | 0.00 | 0.53 | 0.00 | 0.56 | 0.01 | 0.53 | 0.00 | 0.46 | 0.03 | 0.60 | 0.00 | |
0.81 | 0.00 | 0.83 | 0.00 | 0.73 | 0.00 | 0.81 | 0.00 | 0.17 | 0.11 | 0.58 | 0.00 | |
0.44 | 0.04 | 0.38 | 0.08 | 0.49 | 0.02 | 0.36 | 0.10 | 0.39 | 0.03 | 0.56 | 0.01 | |
0.80 | 0.00 | 0.86 | 0.00 | 0.67 | 0.00 | 0.86 | 0.00 | 0.24 | 0.11 | 0.45 | 0.03 | |
0.51 | 0.02 | 0.50 | 0.02 | 0.54 | 0.00 | 0.56 | 0.01 | 0.50 | 0.01 | 0.60 | 0.00 | |
0.12 | 0.22 | 0.06 | 0.42 | 0.19 | 0.09 | 0.05 | 0.51 | 0.58 | 0.00 | 0.48 | 0.01 | |
0.11 | 0.09 | 0.05 | 0.23 | 0.18 | 0.04 | 0.07 | 0.18 | 0.58 | 0.00 | 0.48 | 0.02 | |
0.79 | 0.00 | 0.76 | 0.00 | 0.73 | 0.00 | 0.81 | 0.00 | 0.10 | 0.11 | 0.52 | 0.00 | |
0.83 | 0.00 | 0.79 | 0.00 | 0.74 | 0.00 | 0.81 | 0.00 | 0.07 | 0.75 | 0.56 | 0.01 | |
0.60 | 0.00 | 0.55 | 0.00 | 0.60 | 0.00 | 0.59 | 0.00 | 0.45 | 0.03 | 0.64 | 0.00 | |
0.54 | 0.00 | 0.50 | 0.01 | 0.56 | 0.01 | 0.52 | 0.01 | 0.46 | 0.03 | 0.62 | 0.00 | |
0.54 | 0.01 | 0.44 | 0.04 | 0.58 | 0.00 | 0.46 | 0.03 | 0.41 | 0.02 | 0.65 | 0.00 | |
0.46 | 0.03 | 0.40 | 0.07 | 0.55 | 0.01 | 0.35 | 0.01 | 0.46 | 0.03 | 0.61 | 0.00 | |
0.61 | 0.00 | 0.69 | 0.00 | 0.39 | 0.03 | 0.64 | 0.00 | 0.05 | 0.27 | 0.13 | 0.07 | |
0.82 | 0.00 | 0.87 | 0.00 | 0.71 | 0.00 | 0.88 | 0.00 | 0.06 | 0.23 | 0.53 | 0.01 | |
0.79 | 0.00 | 0.78 | 0.00 | 0.76 | 0.00 | 0.76 | 0.00 | 0.10 | 0.11 | 0.60 | 0.00 | |
0.64 | 0.00 | 0.68 | 0.00 | 0.61 | 0.00 | 0.58 | 0.00 | 0.15 | 0.05 | 0.54 | 0.00 | |
0.31 | 0.02 | 0.28 | 0.03 | 0.24 | 0.05 | 0.36 | 0.01 | 0.39 | 0.05 | 0.52 | 0.00 | |
0.56 | 0.01 | 0.53 | 0.01 | 0.56 | 0.01 | 0.54 | 0.01 | 0.08 | 0.15 | 0.66 | 0.00 | |
0.65 | 0.00 | 0.66 | 0.00 | 0.57 | 0.00 | 0.65 | 0.00 | 0.03 | 0.34 | 0.44 | 0.04 | |
0.59 | 0.00 | 0.57 | 0.00 | 0.53 | 0.01 | 0.57 | 0.00 | 0.00 | 0.74 | 0.51 | 0.01 |
q | p | q | p | q | p | q | p | q | p | q | p | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.83 | 0.00 | 0.81 | 0.00 | 0.77 | 0.00 | 0.76 | 0.00 | 0.65 | 0.00 | 0.10 | 0.11 | |
0.24 | 0.04 | 0.21 | 0.02 | 0.27 | 0.03 | 0.15 | 0.05 | 0.39 | 0.02 | 0.50 | 0.01 | |
0.72 | 0.00 | 0.59 | 0.00 | 0.62 | 0.00 | 0.55 | 0.00 | 0.68 | 0.00 | 0.46 | 0.02 | |
0.73 | 0.00 | 0.64 | 0.00 | 0.66 | 0.00 | 0.68 | 0.00 | 0.68 | 0.00 | 0.18 | 0.09 | |
0.65 | 0.00 | 0.55 | 0.00 | 0.56 | 0.00 | 0.49 | 0.02 | 0.62 | 0.00 | 0.46 | 0.02 | |
0.70 | 0.00 | 0.68 | 0.00 | 0.65 | 0.00 | 0.75 | 0.00 | 0.16 | 0.04 | 0.05 | 0.24 | |
0.55 | 0.00 | 0.47 | 0.00 | 0.45 | 0.02 | 0.41 | 0.03 | 0.55 | 0.00 | 0.56 | 0.00 | |
0.09 | 0.12 | 0.09 | 0.13 | 0.31 | 0.10 | 0.06 | 0.19 | 0.44 | 0.02 | 0.59 | 0.00 | |
0.29 | 0.02 | 0.23 | 0.05 | 0.31 | 0.05 | 0.19 | 0.08 | 0.44 | 0.04 | 0.63 | 0.00 | |
0.75 | 0.00 | 0.74 | 0.00 | 0.71 | 0.00 | 0.69 | 0.00 | 0.70 | 0.00 | 0.18 | 0.10 | |
0.83 | 0.00 | 0.80 | 0.00 | 0.75 | 0.00 | 0.76 | 0.00 | 0.54 | 0.00 | 0.00 | 0.83 | |
0.66 | 0.00 | 0.58 | 0.00 | 0.61 | 0.00 | 0.56 | 0.00 | 0.63 | 0.00 | 0.48 | 0.02 | |
0.69 | 0.00 | 0.57 | 0.01 | 0.60 | 0.00 | 0.54 | 0.01 | 0.65 | 0.00 | 0.46 | 0.02 | |
0.60 | 0.00 | 0.46 | 0.03 | 0.54 | 0.01 | 0.49 | 0.02 | 0.55 | 0.00 | 0.45 | 0.01 | |
0.53 | 0.01 | 0.35 | 0.01 | 0.51 | 0.01 | 0.33 | 0.01 | 0.54 | 0.01 | 0.51 | 0.01 | |
0.48 | 0.02 | 0.45 | 0.03 | 0.23 | 0.02 | 0.49 | 0.02 | 0.11 | 0.10 | 0.21 | 0.14 | |
0.79 | 0.00 | 0.78 | 0.00 | 0.73 | 0.00 | 0.79 | 0.00 | 0.51 | 0.01 | 0.05 | 0.26 | |
0.64 | 0.00 | 0.57 | 0.01 | 0.62 | 0.00 | 0.56 | 0.01 | 0.78 | 0.00 | 0.46 | 0.02 | |
0.73 | 0.00 | 0.63 | 0.00 | 0.65 | 0.00 | 0.63 | 0.00 | 0.73 | 0.00 | 0.40 | 0.03 | |
0.09 | 0.23 | 0.07 | 0.29 | 0.14 | 0.14 | 0.06 | 0.30 | 0.47 | 0.03 | 0.77 | 0.00 | |
0.72 | 0.00 | 0.68 | 0.00 | 0.67 | 0.00 | 0.67 | 0.00 | 0.69 | 0.00 | 0.18 | 0.04 | |
0.65 | 0.00 | 0.63 | 0.00 | 0.59 | 0.00 | 0.61 | 0.00 | 0.49 | 0.01 | 0.01 | 0.61 | |
0.78 | 0.00 | 0.80 | 0.00 | 0.73 | 0.00 | 0.72 | 0.00 | 0.57 | 0.00 | 0.01 | 0.61 |
2010 | 0.6786 | 0.6780 | 0.7146 | 0.7183 | 0.7565 | 0.6609 |
2011 | 0.6649 | 0.6383 | 0.6757 | 0.6907 | 0.7278 | 0.5738 |
2012 | 0.6480 | 0.6427 | 0.6983 | 0.6962 | 0.7260 | 0.5308 |
2013 | 0.6428 | 0.6686 | 0.6716 | 0.7102 | 0.6735 | 0.5455 |
2014 | 0.6422 | 0.6638 | 0.6713 | 0.6915 | 0.6989 | 0.5191 |
2015 | 0.6508 | 0.6772 | 0.6941 | 0.7483 | 0.6542 | 0.6131 |
2016 | 0.6732 | 0.7665 | 0.7159 | 0.7744 | 0.6366 | 0.6937 |
2017 | 0.7007 | 0.7832 | 0.7451 | 0.8032 | 0.6495 | 0.6790 |
2018 | 0.7281 | 0.7986 | 0.8227 | 0.8049 | 0.6799 | 0.6495 |
2019 | 0.7260 | 0.7715 | 0.8873 | 0.8022 | 0.7389 | 0.6600 |
Average | 0.6755 | 0.7088 | 0.7296 | 0.7440 | 0.6942 | 0.6125 |
2010 | 0.7052 | 0.7042 | 0.7060 | 0.7117 | 0.7271 | 0.6587 |
2011 | 0.7020 | 0.6962 | 0.7030 | 0.7086 | 0.7174 | 0.6458 |
2012 | 0.6964 | 0.6921 | 0.7047 | 0.7087 | 0.7137 | 0.6359 |
2013 | 0.6952 | 0.7013 | 0.6993 | 0.7111 | 0.6964 | 0.6352 |
2014 | 0.6948 | 0.7005 | 0.6994 | 0.7085 | 0.7013 | 0.6285 |
2015 | 0.6954 | 0.7011 | 0.6999 | 0.7204 | 0.6898 | 0.6412 |
2016 | 0.7007 | 0.7193 | 0.7078 | 0.7272 | 0.6845 | 0.6565 |
2017 | 0.7063 | 0.7273 | 0.7158 | 0.7372 | 0.6870 | 0.6559 |
2018 | 0.7122 | 0.7330 | 0.7287 | 0.7396 | 0.6936 | 0.6526 |
2019 | 0.7119 | 0.7268 | 0.7436 | 0.7386 | 0.7026 | 0.6523 |
Average | 0.7020 | 0.7102 | 0.7108 | 0.7212 | 0.7013 | 0.6463 |
References
- Montagnoli, A.; Nagayasu, J. UK house price convergence clubs and spillovers. J. Hous. Econ. 2015, 30, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.K.; Wang, S.L.; Cheng, C.H. Change of Housing Inequality in Urban China and Its Decomposition: 1989–2011. Soc. Indic. Res. 2016, 129, 29–45. [Google Scholar] [CrossRef]
- Evans, B.P.; Glavatskiy, K.; Harre, M.S.; Prokopenko, M. The impact of social influence in Australian real estate: Market forecasting with a spatial agent-based model. J. Econ. Interact. Coord. 2021, 1–53. [Google Scholar] [CrossRef]
- Ratcliffe, P. Housing inequality and ‘race’: Some critical reflections on the concept of ‘social exclusion’. Ethn. Racial Stud. 1999, 22, 1–22. [Google Scholar] [CrossRef]
- De Silva, S.; Elmelech, Y. Housing Inequality in the United States: Explaining the White-Minority Disparities in Homeownership. Hous. Stud. 2012, 27, 1–26. [Google Scholar] [CrossRef]
- Medina, R.M.; Byrne, K.; Brewer, S.; Nicolosi, E.A. Housing inequalities: Eviction patterns in Salt Lake County, Utah. Cities 2020, 104, 102804. [Google Scholar] [CrossRef]
- Krivo, L.J. Immigrant characteristics and Hispanic-Anglo housing inequality. Demography 1995, 32, 599–615. [Google Scholar] [CrossRef]
- Uehara, E.S. Race, Gender, And Housing Inequality—An Exploration of The Correlates of Low-Quality Housing among Clients Diagnosed with Severe and Persistent Mental-Illness. J. Health Soc. Behav. 1994, 35, 309–321. [Google Scholar] [CrossRef]
- Filandri, M.; Olagnero, M. Housing Inequality and Social Class in Europe. Hous. Stud. 2014, 29, 977–993. [Google Scholar] [CrossRef]
- Lux, M.; Sunega, P.; Katrnak, T. Classes and Castles: Impact of Social Stratification on Housing Inequality in Post-Socialist States. Eur. Sociol. Rev. 2013, 29, 274–288. [Google Scholar] [CrossRef]
- Soaita, A.M. Overcrowding and ‘underoccupancy’ in Romania: A case study of housing inequality. Environ. Plan. A Econ. Space 2014, 46, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Bodnar, J.; Borocz, J. Housing advantages for the better connected? Institutional segmentation, settlement type and social network effects in Hungary’s late state-socialist housing inequalities. Soc. Forces 1998, 76, 1275–1304. [Google Scholar]
- Zhao, W.; Ge, J.H. Dual institutional structure and housing inequality in transitional urban China. Res. Soc. Stratif. Mobil. 2014, 37, 23–41. [Google Scholar] [CrossRef]
- Sato, H. Housing inequality and housing poverty in urban China in the late 1990s. China Econ. Rev. 2006, 17, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Grander, M. The inbetweeners of the housing markets—Young adults facing housing inequality in Malmo, Sweden. Hous. Stud. 2021, 1–18. [Google Scholar] [CrossRef]
- Niu, G.; Zhao, G.C. State, market, and family: Housing inequality among the young generation in urban China. J. Hous. Built Environ. 2021, 36, 89–111. [Google Scholar] [CrossRef]
- Coulter, R.; Bayrakdar, S.; Berrington, A. Longitudinal life course perspectives on housing inequality in young adulthood. Geogr. Compass 2020, 14, e12488. [Google Scholar] [CrossRef]
- Hoolachan, J.; McKee, K. Inter-generational housing inequalities: ‘Baby Boomers’ versus the ‘Millennials’. Urban Stud. 2019, 56, 210–225. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Huang, Y.Q.; Wang, F.L. A relay race: Intergenerational transmission of housing inequality in urban China. Hous. Stud. 2020, 35, 1088–1109. [Google Scholar] [CrossRef]
- Wah, C.K. Excluding the disadvantaged—Housing inequalities in Hong Kong. Third World Plan. Rev. 2001, 23, 79–96. [Google Scholar] [CrossRef]
- Goulden, R. Housing, Inequality, and Economic Change in Syria. Br. J. Middle East. Stud. 2011, 38, 187–202. [Google Scholar] [CrossRef]
- Vesselinov, E. The continuing ‘wind of change’ in the Balkans: Sources of housing inequality in Bulgaria. Urban Stud. 2004, 41, 2601–2619. [Google Scholar] [CrossRef]
- He, S.J.; Liu, Y.T.; Wu, F.L.; Webster, C. Social Groups and Housing Differentiation in China’s Urban Villages: An Institutional Interpretation. Hous. Stud. 2010, 25, 671–691. [Google Scholar] [CrossRef]
- Hoekstra, M.S.; Hochstenbach, C.; Bontje, M.A.; Musterd, S. Shrinkage and housing inequality: Policy responses to population decline and class change. J. Urban Aff. 2020, 42, 333–350. [Google Scholar] [CrossRef]
- Gentile, M. The “Soviet” factor: Exploring perceived housing inequalities in a midsized city in the Donbas, Ukraine. Urban Geogr. 2015, 36, 696–720. [Google Scholar] [CrossRef]
- Alonso, W. Location and Land Use: Towards a General Theory of Land Rent; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Muth, R.F. Cities and Housing: The Spatial Pattern of Urban Residential Land Use; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Papageorgiou, G.J.; Casetti, E. Spatial Equilibrium Residential Land Values in a Multicenter Setting. J. Reg. Sci. 1971, 11, 385–389. [Google Scholar] [CrossRef]
- Fujita, M.; Ogawa, H. Multiple Equilibria and Structural Transition of Non-Monocentric Urban Configurations. Reg. Sci. Urban Econ. 1982, 12, 161–196. [Google Scholar] [CrossRef]
- Morali, O.; Yilmaz, N. An Analysis of Spatial Dependence in Real Estate Prices. J. Real Estate Financ. Econ. 2020, 1–23. [Google Scholar] [CrossRef]
- Wong, S.K.; Yiu, C.Y.; Chau, K.W. Trading Volume-Induced Spatial Autocorrelation in Real Estate Prices. J. Real Estate Financ. Econ. 2013, 46, 569–608. [Google Scholar] [CrossRef] [Green Version]
- De Bruyne, K.; Van Hove, J. Explaining the spatial variation in housing prices: An economic geography approach. Appl. Econ. 2013, 45, 1673–1689. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rous, J.J. House price convergence: Evidence from US state and metropolitan area panels. J. Hous. Econ. 2012, 21, 169–186. [Google Scholar] [CrossRef]
- Tomal, M. House Price Convergence on the Primary and Secondary Markets: Evidence from Polish Provincial Capitals. Real Estate Manag. Valuat. 2019, 27, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Tomal, M. Spillovers Across House Price Convergence Clubs: Evidence from the Polish Housing Market. Real Estate Manag. Valuat. 2020, 28, 13–20. [Google Scholar] [CrossRef]
- Cook, S. The convergence of regional house prices in the UK. Urban Stud. 2003, 40, 2285–2294. [Google Scholar] [CrossRef]
- Cook, S. β-convergence and the Cyclical Dynamics of UK Regional House Prices. Urban Stud. 2012, 49, 203–218. [Google Scholar] [CrossRef]
- Abbott, A.; De Vita, G. Pairwise Convergence of District-level House Prices in London. Urban Stud. 2012, 49, 721–740. [Google Scholar] [CrossRef]
- Abbott, A.; De Vita, G. Testing for long-run convergence across regional house prices in the UK: A pairwise approach. Appl. Econ. 2013, 45, 1227–1238. [Google Scholar] [CrossRef] [Green Version]
- Holmes, M.J.; Grimes, A. Is there long-run convergence among regional house prices in the UK? Urban Stud. 2008, 45, 1531–1544. [Google Scholar] [CrossRef] [Green Version]
- Holmes, M.J.; Otero, J.; Panagiotidis, T. Investigating regional house price convergence in the United States: Evidence from a pair-wise approach. Econ. Model. 2011, 28, 2369–2376. [Google Scholar] [CrossRef] [Green Version]
- Holmes, M.J.; Otero, J.; Panagiotidis, T. A Pair-wise Analysis of Intra-city Price Convergence within the Paris Housing Market. J. Real Estate Financ. Econ. 2017, 54, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Miles, W. House price convergence in the euro zone: A pairwise approach. Econ. Syst. 2020, 44, 100782. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Chen, J.; Wang, Z. Spatial heterogeneity in spillover effect of air pollution on housing prices: Evidence from China. Cities 2021, 113, 103145. [Google Scholar] [CrossRef]
- Churchill, S.A.; Inekwe, J.; Ivanovski, K. House price convergence: Evidence from Australian cities. Econ. Lett. 2018, 170, 88–90. [Google Scholar] [CrossRef]
- Montanes, A.; Olmos, L. Convergence in US house prices. Econ. Lett. 2013, 121, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Sim, S.-H. Investigating the Convergence of Regional House Sales-Prices in Korea. J. Korean Data Anal. Soc. 2015, 17, 53–67. [Google Scholar]
- Blanco, F.; Martin, V.; Vazquez, G. Regional house price convergence in Spain during the housing boom. Urban Stud. 2016, 53, 775–798. [Google Scholar] [CrossRef]
- Zelazowski, K. Price Convergence in the Regional Housing Markets in Poland. Real Estate Manag. Valuat. 2019, 27, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Moscone, F.; Tosetti, E.; Canepa, A. Real estate market and financial stability in US metropolitan areas: A dynamic model with spatial effects. Reg. Sci. Urban Econ. 2014, 49, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Mosciaro, M. The real estate/financial complex in Brazil and Italy: Tools for the financial production of urban space. Scr. Nova-Rev. Electron. Geogr. Cienc. Soc. 2021, 25, 59–81. [Google Scholar] [CrossRef]
- Lukas, M.; Lopez-Morales, E. Real estate production, geographies of mobility and spatial contestation: A two-case study in Santiago de Chile. J. Transp. Geogr. 2018, 67, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Shatkin, G. The real estate turn in policy and planning: Land monetization and the political economy of peri-urbanization in Asia. Cities 2016, 53, 141–149. [Google Scholar] [CrossRef]
- Susewind, R. Spatial Segregation, Real Estate Markets and the Political Economy of Corruption in Lucknow, India. J. South Asian Dev. 2015, 10, 267–291. [Google Scholar] [CrossRef]
- Ramos, G.C.D. Real Estate Industry as an Urban Growth Machine: A Review of the Political Economy and Political Ecology of Urban Space Production in Mexico City. Sustainability 2019, 11, 1980. [Google Scholar] [CrossRef] [Green Version]
- Dube, J.; Legros, D. A spatio-temporal measure of spatial dependence: An example using real estate data. Pap. Reg. Sci. 2013, 92, 19–30. [Google Scholar] [CrossRef]
- Barreca, A.; Curto, R.; Rolando, D. Urban Vibrancy: An Emerging Factor that Spatially Influences the Real Estate Market. Sustainability 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Jun, M.J. The effects of Seoul’s greenbelt on the spatial distribution of population and employment, and on the real estate market. Ann. Reg. Sci. 2012, 49, 619–642. [Google Scholar] [CrossRef]
- Ceccato, V.; Wilhelmsson, M. Do crime hot spots affect housing prices? Nord. J. Criminol. 2020, 21, 84–102. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Wilhelmsson, M. Park proximity, crime and apartment prices. Int. J. Hous. Mark. Anal. 2018, 11, 669–686. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, C.; Marmolejo, C. Polycentrism impact on the spatial distribution of values Real estate: An analysis for the metropolitan area of Barcelona. Rev. Constr. 2011, 10, 78–88. [Google Scholar] [CrossRef]
- Zaniewski, K.J. Housing Inequalities Under Socialism—A Geographic Perspective. Stud. Comp. Communism 1989, 22, 291–306. [Google Scholar] [CrossRef]
- Akpinar, F. Class Dimension of Housing Inequalities in The New Era of Liberalization: A Case Study in Ankara (1). METU J. Fac. Archit. 2008, 25, 39–69. [Google Scholar]
- Koramaz, T.K.; Dokmeci, V. Spatial Determinants of Housing Price Values in Istanbul. Eur. Plan. Stud. 2012, 20, 1221–1237. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Jiang, L.W. Housing Inequality in Transitional Beijing. Int. J. Urban Reg. Res. 2009, 33, 936–956. [Google Scholar] [CrossRef]
- Liu, Y.T.; He, S.J.; Wu, F.L. Housing Differentiation Under Market Transition in Nanjing, China. Prof. Geogr. 2012, 64, 554–571. [Google Scholar] [CrossRef]
- Symmes, L.R.; Salinas, A.C.; Cabello, F.C. Normative Inequality in Verticalized Areas in Santiago De Chile. Transit Towards the Conformation of a Public Space Deducted from The Real Estate Business? Andamios 2019, 16, 127–149. [Google Scholar]
- Cesaroni, G.; Venturini, G.; Paglione, L.; Angelici, L.; Sorge, C.; Marino, C.; Davoli, M.; Agabiti, N. Mortality inequalities in Rome: The role of individual education and neighbourhood real estate market. Epidemiol. Prev. 2020, 44, 31–37. [Google Scholar] [CrossRef]
- Norris, M.; Shiels, P. Housing inequalities in an enlarged European Union: Patterns, drivers, implications. J. Eur. Soc. Policy 2007, 17, 65–76. [Google Scholar] [CrossRef]
- Gu, H.Y.; Liu, Z.X.; Weng, Y.L. Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach. Phys. A Stat. Mech. Its Appl. 2017, 471, 460–472. [Google Scholar] [CrossRef]
- Tan, M.J.; Guan, C.H. Are people happier in locations of high property value? Spatial temporal analytics of activity frequency, public sentiment and housing price using twitter data. Appl. Geogr. 2021, 132, 102474. [Google Scholar] [CrossRef]
- Su, S.L.; He, S.J.; Sun, C.X.; Zhang, H.; Hu, L.R.; Kang, M.J. Do landscape amenities impact private housing rental prices? A hierarchical hedonic modeling approach based on semantic and sentimental analysis of online housing advertisements across five Chinese megacities. Urban For. Urban Green. 2021, 58, 126968. [Google Scholar] [CrossRef]
- Hu, L.R.; He, S.J.; Han, Z.X.; Xiao, H.; Su, S.L.; Weng, M.; Cai, Z.L. Monitoring housing rental prices based on social media:An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy 2019, 82, 657–673. [Google Scholar] [CrossRef]
- He, S.J.; Liu, L.; Yang, G.B.; Wang, F.L. Housing differentiation and housing poverty in Chinese low-income urban neighborhoods under the confluence of State-market forces. Urban Geogr. 2017, 38, 729–751. [Google Scholar] [CrossRef]
- Wang, J.; Kuffer, M.; Pfeffer, K. The role of spatial heterogeneity in detecting urban slums. Comput. Environ. Urban Syst. 2019, 73, 95–107. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Qi, J. The Key Factors Driving the Development of New Towns by Mother Cities and Regions: Evidence from China. ISPRS Int. J. Geo-Inf. 2021, 10, 223. [Google Scholar] [CrossRef]
- Guan, X.Y.; Wang, S.L.; Gao, Z.Y.; Lv, Y.; Fu, X.J. Spatio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district. Acta Ecol. Sin. 2012, 32, 198–206. [Google Scholar]
- Zhang, R.F. Theory and Application of Spatial Variability; Science Press: Beijing, China, 2005; pp. 13–14. [Google Scholar]
- Ruan, B.Q.; Xu, F.R.; Jiang, R.F. Analysis on spatial and temporal variability of groundwater level based on spherical sampling model. J. Hydraul. Eng. 2008, 39, 573–579. [Google Scholar]
- Liu, X.N.; Huang, F.; Wang, P. Spatial Analysis Principle and Method of GIS; Science Press: Beijing, China, 2008; pp. 199–206. [Google Scholar]
- Miyamoto, S.; Chacon, A.; Hossain, M.; Martinez, L. Soil salinity of urban turf areas irrigated with saline water I. Spatial variability. Landsc. Urban Plan. 2005, 71, 233–241. [Google Scholar]
- She, D.L.; Shao, M.A.; Yu, S.G. Spatial Variability of Soil Water Content on a Cropland-grassland Mixed Slope Land in the Loess Plateau, China. Trans. Chin. Soc. Agric. Mach. 2010, 41, 57–63. [Google Scholar]
- Li, S.M. Housing inequalities under market deepening: The case of Guangzhou, China. Environ. Plan. A 2012, 44, 2852–2866. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhao, S.; Yan, Y.; Han, J. Industrial Land Change in Chinese Silk Road Cities and Its Influence on Environments. Land. 2021, 10, 806. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Bergeaud, A.; Ray, S. Adjustment Costs and Factor Demand: New Evidence from Firms’ Real Estate. Econ. J. 2021, 131, 70–100. [Google Scholar] [CrossRef]
- Yan, Z.L. Empirical Researches on Macroeconomic Influence factors in Real Estate Based on Data Mining (DM). Agro Food Ind. Hi-Tech 2017, 28, 2729–2732. [Google Scholar]
- Carrasco-Gallego, J.A. Real Estate, Economic Stability and the New Macro-Financial Policies. Sustainability 2021, 13, 236. [Google Scholar] [CrossRef]
- McMillan, A.; Chakraborty, A. Who Buys Foreclosed Homes? How Neighborhood Characteristics Influence Real Estate-Owned Home Sales to Investors and Households. Hous. Policy Debate 2016, 26, 766–784. [Google Scholar] [CrossRef]
- Warsame, A.; Wigren, R.; Wilhelmsson, M.; Yang, Z. The Impact of Competition, Subsidies and Taxes on Production and Construction Cost: The Case of the Swedish Housing Construction Market. ISRN Econ. 2013, 2013, 868914. [Google Scholar] [CrossRef] [Green Version]
- Oikarinen, E.; Falkenbach, H. Foreign investors’ influence on the real estate market capitalization rate evidence from a small open economy. Appl. Econ. 2017, 49, 3141–3155. [Google Scholar] [CrossRef]
- Sun, L.J.; Zhang, S.X. External dependent economy and structural real estate bubbles in China. China World Econ. 2008, 16, 34–50. [Google Scholar] [CrossRef]
- Hardie, I.W.; Narayan, T.A.; Gardner, B.L. The joint influence of agricultural and nonfarm factors on real estate values: An application to the Mid-Atlantic region. Am. J. Agric. Econ. 2001, 83, 120–132. [Google Scholar] [CrossRef]
- Franses, P.H.; De Groot, B. Do commercial real estate prices have predictive content for GDP? Appl. Econ. 2013, 45, 4379–4384. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Leung, C.K.Y.; Zeng, Z.X. Real Estate, the External Finance Premium and Business Investment: A Quantitative Dynamic General Equilibrium Analysis. Real Estate Econ. 2012, 40, 167–195. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.N.; Huang, J.T.; Chiang, T.F. Empirical study of the local government deficit, land finance and real estate markets in China. China Econ. Rev. 2015, 32, 57–67. [Google Scholar] [CrossRef]
- Ren, H.H.; Folmer, H.; Van der Vlist, A.J. What role does the real estate-construction sector play in China’s regional economy? Ann. Reg. Sci. 2014, 52, 839–857. [Google Scholar] [CrossRef]
- Bischoff, O. Explaining regional variation in equilibrium real estate prices and income. J. Hous. Econ. 2012, 21, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, L.J.; Chen, T.T.; Li, V. Where will China’s real estate market go under the economy’s new normal? Cities 2016, 55, 42–48. [Google Scholar] [CrossRef]
- Bashar, O.H.M.N. An Intra-City Analysis of House Price Convergence and Spatial Dependence. J. Real Estate Financ. Econ. 2020. [Google Scholar] [CrossRef]
- Zalejska-Jonsson, A.; Wilkinson, S.J.; Wahlund, R. Willingness to Pay for Green Infrastructure in Residential Development—A Consumer Perspective. Atmosphere 2020, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.D.; Huang, Y.Q. Housing Consumption and Housing Inequality in Chinese Cities During the First Decade of the Twenty-First Century. Hous. Stud. 2014, 29, 291–311. [Google Scholar] [CrossRef]
- Liu, T.Y.; Su, C.W.; Chang, H.L.; Chu, C.C. Convergence of Regional Housing Prices in China. J. Urban. Plan. Dev. 2018, 144, 04018015. [Google Scholar] [CrossRef]
- Zhang, F.; Morley, B. The convergence of regional house prices in China. Appl. Econ. Lett. 2014, 21, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Zhang, X.; Li, X.T.; Dong, J.C. Heterogeneous convergence of regional house prices and the complexity in China. Zbornik Radova Ekonomskog Fakulteta u Rijeci Proc. Rij. Fac. Econ. 2015, 33, 325–348. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, X.L.; Chen, J.; Zhang, Y.Y. Do double-edged swords cut both ways? Housing inequality and haze pollution in Chinese cities. Sci. Total. Environ. 2020, 719, 137404. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Wu, Y.; Li, H.J. Vocational Status, Hukou and Housing Migrants in the New Century: Evidence from a Multi-city Study of Housing Inequality. Soc. Indic. Res. 2018, 139, 309–325. [Google Scholar] [CrossRef]
- Tuofu, H.; Qingyun, H.; Dongxiao, Y.; Xiao, O.Y. Evaluating the Impact of Urban Blue Space Accessibility on Housing Price: A Spatial Quantile Regression Approach Applied in Changsha, China. Front. Environ. Sci. 2021, 9, 696626. [Google Scholar] [CrossRef]
- Dube, J.; Abdel-Halim, M.; Devaux, N. Evaluating the Impact of Floods on Housing Price Using a Spatial Matching Difference-In-Differences (SM-DID) Approach. Sustainability 2021, 13, 804. [Google Scholar] [CrossRef]
- Liu, G.W.; Wang, X.Z.; Gu, J.P.; Liu, Y.; Zhou, T. Temporal and spatial effects of a ‘Shan Shui’ landscape on housing price: A case study of Chongqing, China. Habitat Int. 2019, 94, 102068. [Google Scholar] [CrossRef]
- Su, S.L.; Zhang, J.Y.; He, S.J.; Zhang, H.; Hu, L.R.; Kang, M.J. Unraveling the impact of TOD on housing rental prices and implications on spatial planning: A comparative analysis of five Chinese megacities. Habitat Int. 2021, 107, 102309. [Google Scholar] [CrossRef]
- Su, S.L.; Zhang, H.; Wang, M.; Weng, M.; Kang, M.J. Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications. J. Transport. Geogr. 2021, 90, 102939. [Google Scholar] [CrossRef]
- Zaniewski, K.J. Housing Inequalities Under Socialism—The Case of Poland. Geoforum 1991, 22, 39–53. [Google Scholar] [CrossRef]
- Wang, F.Y.; Ran, G.H. Excessive Financial Support, Real Estate Development and Macroeconomic Growth: Evidence from China. Emerg. Mark. Financ. Trade 2019, 55, 2437–2447. [Google Scholar] [CrossRef]
- Wilhelmsson, M. What role does the housing market play for the macroeconomic transmission mechanism? J. Risk Financ. Manag. 2020, 13, 112. [Google Scholar] [CrossRef]
- Cerutti, E.; Dagher, J.; Dell’Ariccia, G. Housing finance and real-estate booms: A cross-country perspective. J. Hous. Econ. 2017, 38, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Golob, K.; Bastic, M.; Psunder, I. Analysis of Impact Factors on the Real Estate Market: Case Slovenia. Inz. Ekon. -Eng. Econ. 2012, 23, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.J.; Giaccotto, C.; Santerre, R.E. Is the Real Estate Sector More Responsive to Economy-Wide or Housing Market Conditions? An Exploratory Analysis. J. Real Estate Financ. Econ. 2015, 51, 541–554. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Y.M.; Chen, J. Urbanization, informality and housing inequality in indigenous villages: A case study of Guangzhou. Land Use Policy 2016, 58, 32–42. [Google Scholar] [CrossRef]
- Liu, T.Y.; Su, C.W.; Chang, H.L.; Chu, C.C. Is urbanization improving real estate investment? A cross-regional study of China. Rev. Dev. Econ. 2018, 22, 862–878. [Google Scholar] [CrossRef]
- Logan, J.R.; Bian, Y.J.; Bian, F.Q. Housing inequality in urban China in the 1990s. Int. J. Urban Reg. Res. 1999, 23, 7–25. [Google Scholar] [CrossRef]
- Hansen, J.L.; Formby, J.P.; Smith, W.J. The Measurement and Trend of Housing Inequality in the United-States, 1978–1985. Appl. Econ. 1994, 26, 1021–1028. [Google Scholar] [CrossRef]
- Tsai, I.C. House price convergence in euro zone and non-euro zone countries. Econ. Syst. 2018, 42, 269–281. [Google Scholar] [CrossRef]
- Fernandez, M.D.; Marron, M.L.; Rodriguez, P.M. Does the population determine the dynamics of the real estate activity? An analysis of cointegration for the Spanish case. Investig. Econ. 2016, 75, 103–124. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.R.; Hui, E.C.M.; Sun, J.X. Population Aging, Mobility, and Real Estate Price: Evidence from Cities in China. Sustainability 2018, 10, 3140. [Google Scholar] [CrossRef] [Green Version]
Graphical Representation | Description | Interaction |
---|---|---|
q(∩) < Min(q(), q()) | Weaken, non-linear | |
Min(q(),q()) < q(∩) < Max(q()), q()) | Weaken, uni- | |
q(∩) > Max(q(), q()) | Enhance, bi- | |
q(∩) = q() + q() | Independent | |
q(∩) > q() + q() | Enhance, non-linear |
Variable. | Index | Code | Type |
---|---|---|---|
Dependent Variable () | Construction Area | Supply | |
New Construction Area | |||
Floor Space Completed | |||
Sales Area | Demand | ||
Area for Sale | |||
Average Selling Price | Price | ||
Independent Variable () | Gross Domestic Product (GDP) | Economic driving force | |
Per Capita GDP | |||
Revenue | |||
Expenditure | |||
Amount of Loan | |||
Permanent Resident Population | Social driving force | ||
Floating Population | |||
Urbanization Rate | |||
Per Capita Disposable Income of Residents | |||
Total Retail Sales of Consumer Goods | |||
Added Value of Secondary Industry | Structural adjustment driving force | ||
Added Value of Tertiary Industry | |||
Output Value of Financial Industry | |||
Export | |||
Import | |||
Number of Medical Institutions | Service and Infrastructure driving force | ||
Number of Medical Beds | |||
Number of Buses | |||
Length of Bus Line | |||
Urban Rail Transit Line Length (Metro and Light Rail) | |||
Urban Green Area | |||
Number of City Parks | |||
City Park Area |
Number of Factor Pairs | Strength of Interaction Effect | Factors with Significant Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|
Total | High | Medium | Low | Min | Max | Average | |||
2019 | 190 | 89 | 53 | 48 | 0.59 | 0.98 | 0.85 | ||
153 | 67 | 59 | 27 | 0.56 | 0.97 | 0.86 | |||
231 | 49 | 118 | 64 | 0.28 | 0.98 | 0.82 | |||
190 | 83 | 64 | 43 | 0.45 | 0.99 | 0.85 | |||
66 | 17 | 26 | 23 | 0.41 | 0.70 | 0.59 | |||
231 | 12 | 90 | 129 | 0.59 | 0.98 | 0.76 | |||
2010 | 210 | 86 | 74 | 50 | 0.34 | 0.98 | 0.86 | ||
210 | 41 | 85 | 84 | 0.29 | 0.97 | 0.80 | |||
210 | 12 | 95 | 103 | 0.38 | 0.94 | 0.78 | |||
190 | 20 | 94 | 76 | 0.41 | 0.97 | 0.80 | |||
231 | 8 | 96 | 127 | 0.53 | 0.98 | 0.78 | |||
91 | 2 | 18 | 71 | 0.49 | 0.93 | 0.67 |
Supply | Demand | Price | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2010 | 2019 | 2010 | 2019 | 2010 | |||||||
1 | 0.82 | 0.80 | 0.88 | 0.70 | 0.66 | 0.77 | ||||||
2 | 0.80 | 0.79 | 0.86 | 0.69 | 0.65 | 0.63 | ||||||
3 | 0.79 | 0.77 | 0.83 | 0.68 | 0.64 | 0.59 | ||||||
4 | 0.79 | 0.76 | 0.81 | 0.68 | 0.62 | 0.56 | ||||||
5 | 0.78 | 0.73 | 0.81 | 0.68 | 0.61 | 0.51 | ||||||
6 | 0.78 | 0.69 | 0.81 | 0.67 | 0.60 | 0.50 | ||||||
7 | 0.76 | 0.68 | 0.76 | 0.65 | 0.60 | 0.48 | ||||||
8 | 0.65 | 0.67 | 0.65 | 0.65 | 0.60 | 0.46 | ||||||
9 | 0.63 | 0.67 | 0.64 | 0.65 | 0.58 | 0.46 | ||||||
10 | 0.58 | 0.65 | 0.58 | 0.62 | 0.58 | 0.46 | ||||||
11 | 0.56 | 0.62 | 0.58 | 0.60 | 0.56 | 0.46 | ||||||
12 | 0.56 | 0.62 | 0.57 | 0.59 | 0.56 | 0.45 | ||||||
13 | 0.55 | 0.62 | 0.54 | 0.56 | 0.54 | 0.40 | ||||||
14 | 0.55 | 0.61 | 0.53 | 0.55 | 0.53 | 0.18 | ||||||
15 | 0.53 | 0.59 | 0.52 | 0.52 | 0.52 | |||||||
16 | 0.52 | 0.54 | 0.51 | 0.49 | 0.52 | |||||||
17 | 0.52 | 0.49 | 0.49 | 0.48 | 0.52 | |||||||
18 | 0.50 | 0.46 | 0.49 | 0.47 | 0.51 | |||||||
19 | 0.47 | 0.39 | 0.43 | 0.46 | 0.48 | |||||||
20 | 0.28 | 0.28 | 0.40 | 0.44 | 0.48 | |||||||
21 | 0.26 | 0.24 | 0.37 | 0.44 | 0.45 | |||||||
22 | 0.18 | 0.37 | 0.43 | 0.44 | ||||||||
23 | 0.36 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhao, K.; Zhang, P. Spatial Inequality in China’s Housing Market and the Driving Mechanism. Land 2021, 10, 841. https://doi.org/10.3390/land10080841
Zhao S, Zhao K, Zhang P. Spatial Inequality in China’s Housing Market and the Driving Mechanism. Land. 2021; 10(8):841. https://doi.org/10.3390/land10080841
Chicago/Turabian StyleZhao, Sidong, Kaixu Zhao, and Ping Zhang. 2021. "Spatial Inequality in China’s Housing Market and the Driving Mechanism" Land 10, no. 8: 841. https://doi.org/10.3390/land10080841
APA StyleZhao, S., Zhao, K., & Zhang, P. (2021). Spatial Inequality in China’s Housing Market and the Driving Mechanism. Land, 10(8), 841. https://doi.org/10.3390/land10080841