Linking Ecosystem Service Supply–Demand Risks and Regional Spatial Management in the Yihe River Basin, Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Collection and Collation
2.3. Research Framework
2.4. Evaluation and Mapping of Ecosystem Services Supply and Demand
2.4.1. Selection of Ecosystem Services
2.4.2. Water Yield
Water Yield Supply
Water Yield Demand
2.4.3. Carbon Sequestration
Carbon Sequestration Supply
Carbon Sequestration Demand
2.4.4. Food Production
Food Production Supply
Food Production Demand
2.4.5. Soil Conservation
2.5. Ecosystem Service Supply–Demand Ratio
2.6. Risk Levels of Ecosystem Service Supply and Demand
3. Results
3.1. Spatial-Temporal Changes in the Ecosystem Service Supply and Demand
3.1.1. Water Yield Supply and Demand
3.1.2. Carbon Sequestration Supply and Demand
3.1.3. Food Production Supply and Demand
3.1.4. Soil Conservation Supply and Demand
3.2. Supply and Demand Matching of Ecosystem Services
3.2.1. Supply and Demand Matching of Individual Ecosystem Services
3.2.2. Supply and Demand Matching of Comprehensive Ecosystem Services
3.3. Supply–Demand Risks of Four Ecosystem Services
3.3.1. Supply–Demand Risks at the Grid-Scale
3.3.2. Supply–Demand Risks at the Sub-Basin Scale
3.3.3. Supply–Demand Risks in the Entire Basin
3.4. Spatial Management Zoning Based on Ecosystem Service Supply–Demand Risks
4. Discussion
4.1. Framework of Supply–Demand Risks Evaluation System of Ecosystem Services
4.2. Factors Affecting Supply–Demand Risks of Ecosystem Services
4.3. Policy Enlightenment
4.4. Limitations of the Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bukhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem services supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Redhead, J.W.; May, L.; Oliver, T.H.; Hamel, P.; Sharp, R.; Bullock, J.M. National scale evaluation of the invest nutrient retention model in the United Kingdom. Sci. Total Environ. 2018, 610–611, 666–677. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Zhao, S.; Hou, X.; Xu, J.; Dong, S.; Liu, G. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Daily, G. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Wang, R.; Ouyang, Z. Social-Economic-Natural Complex Ecosystem and Sustainability. Bull. Chin. Acad. Sci. 2012, 27, 254, 337–345, 403, 404. (In Chinese) [Google Scholar]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Wang, Y. Evolution of ecosystem services and its driving factors in the upper reaches of the Fenhe River watershed, China. Acta Ecol. Sin. 2018, 38, 7886–7898. (In Chinese) [Google Scholar]
- Wang, Z. Evolving landscape-urbanization relationships in contemporary China. Landsc. Urban Plan. 2018, 171, 30–41. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Wang, C. Spatial-temporal Variations in the Supply-demand Balance of Key Ecosystem Services in Hubei Province. Resour. Environ. Yangtze Basin 2019, 28, 2080–2091. (In Chinese) [Google Scholar]
- Sun, Z.; Liu, Z.; He, C.; Wu, J. Multi-scale analysis of ecosystem service trade-offs in urbanizing drylands of China: A case study in the Hohhot-Baotou-Ordos-Yulin region. Acta Ecol. Sin. 2016, 36, 4881–4891. (In Chinese) [Google Scholar]
- Hu, C.; Guo, X.; Lian, G.; Zhang, Z. Effects of land use change on ecosystem service value in rapid urbanization areas in Yangtze River Delta: A case study of Jiaxing City. Resour. Environ. Yangtze Basin 2017, 26, 333–340. [Google Scholar]
- Ma, C.; Wang, X.; Zhang, Y.; Li, S. Emergy analysis of ecosystem services supply and flow in Beijing ecological conservation area. Acta Geogr. Sin. 2017, 72, 974–985. (In Chinese) [Google Scholar]
- Ou, W.; Wang, H.; Tao, Y. A land cover-based assessment of ecosystem services supply and demand dynamics in the Yangtze River Delta region. Acta Ecol. Sin. 2018, 38, 6337–6347. (In Chinese) [Google Scholar]
- Jing, Y.; Chen, L.; Sun, R. A theoretical research framework for ecological security pattern construction based on ecosystem services supply and demand. Acta Ecol. Sin. 2018, 38, 4121–4131. (In Chinese) [Google Scholar]
- Castillo-Eguskitza, N.; Martín-López, B.; Onaindia, M. A comprehensive assessment of ecosystem services: Integrating supply, demand and interest in the urdaibai biosphere reserve. Ecol. Indic. 2018, 93, 1176–1189. [Google Scholar] [CrossRef]
- Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, I.; Drakou, E.G.; Martín-Lopez, B.; McPhearson, T.; Boyanova, K.; et al. A blueprint for mapping and modelling ecosystem services. Ecosyst. Serv. 2013, 4, 4–14. [Google Scholar] [CrossRef]
- Geijzendorffer, I.R.; Martín-López, B.; Roche, P.K. Improving the identification of mismatches in ecosystem services assessments. Ecol. Indic. 2015, 52, 320–331. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Angermeier, P.L.; Bennett, E.M. Capacity, pressure, demand, and flow: A conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex. 2013, 15, 114–121. [Google Scholar] [CrossRef]
- Martín-López, B.; Iniesta-Arandia, I.; García-Llorente, M.; Palomo, I.; Casado-Arzuaga, I.; Del Amo, D.G.; González, J.A. Uncovering ecosystem service bundles through social preferences. PLoS ONE 2012, 7, e38970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Fan, W.; Wang, X.; Lu, N.; Dong, X.; Zhao, Y.; Ya, X.; Zhao, Y. Integrating supply and social demand in ecosystem services assessment: A review. Ecosyst. Serv. 2017, 25, 15–27. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands-Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Baró, F.; Haase, D.; Gómez-Baggethun, E.; Frantzeskaki, N. Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. Ecol. Indic. 2015, 55, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Bukvareva, E.; Zamolodchikov, D.; Kraev, G.; Grunewald, K.; Narykov, A. Supplied, demanded and consumed ecosystem services: Prospects for national assessment in Russia. Ecol. Indic. 2017, 78, 351–360. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, T.; Lin, Y.; Kong, X.; He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 2019, 657, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Xie, M.; Zhang, Q.; Wang, M.; Guo, X. Ecosystem services demand assessment regarding disaster vulnerability and supply-demand spatial matching. Acta Ecol. Sin. 2018, 38, 6422–6431. (In Chinese) [Google Scholar]
- Shi, Y.; Shi, D. Study on the balance of ecological service supply and demand in Dongting Lake ecological economic zone. Geogr. Res. 2018, 37, 1714–1723. (In Chinese) [Google Scholar]
- Huang, Z.; Wang, F.; Cao, W. Dynamic analysis of an ecological security pattern relying on the relationship between ecosystem service supply and demand: A case study on the Xiamen-Zhangzhou-Quanzhou city cluster. Acta Ecol. Sin. 2018, 38, 4327–4340. (In Chinese) [Google Scholar]
- Wu, P.; Lin, H.; Tian, L. Construction of ecological security pattern based on:A case study in Xiongan New Area, Hebei Province, China. J. Saf. Sci. Technol. 2018, 14, 5–11. (In Chinese) [Google Scholar]
- Luo, Z.; Zuo, Q.; Shao, Q. A new framework for assessing river ecosystem health with consideration of human service demand. Sci. Total Environ. 2018, 640, 442–453. [Google Scholar] [CrossRef]
- Górriz-Mifsud, E.; Varela, E.; Piqué, M.; Prokofieva, I. Demand and supply of ecosystem services in a Mediterranean forest: Computing payment boundaries. Ecosyst. Serv. 2016, 17, 53–63. [Google Scholar] [CrossRef]
- Uthes, S.; Matzdorf, B. Budgeting for government-financed PES: Does ecosystem service demand equal ecosystem service supply? Ecosyst. Serv. 2016, 17, 255–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Zhang, Y.; Mei, M. Urban Ecological Importance Assessment Based on Ecological Function and Ecological Demand:A Case Study of Changsha. Resour. Environ. Yangtze Basin 2018, 27, 2358–2367. (In Chinese) [Google Scholar]
- Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gómez-Baggethun, E. Mapping ecosystem service capacity, flow and demand for landscape and urban planning: A case study in the Barcelona metropolitan region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Baró, F.; Gómez-Baggethun, E.; Haase, D. Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Palomo-Campesino, S.; Palomo, I.; Moreno, J.; González, J. Characterising the rural-urban Pgradient through the participatory mapping of ecosystem services: Insights for landscape planning. One Ecosyst. 2018, 3, e24487. [Google Scholar] [CrossRef] [Green Version]
- Wilkerson, M.L.; Mitchell, M.G.; Shanahan, D.; Wilson, K.A.; Ives, C.D.; Lovelock, C.E.; Rhodes, J.R. The role of socio-economic factors in planning and managing urban ecosystem services. Ecosyst. Serv. 2018, 31, 102–110. [Google Scholar] [CrossRef]
- Wang, M.; Bai, Z.; Dong, X. Land Consolidation Zoning in Shaanxi Province based on the Supply and Demand of Ecosystem Services. Chin. Land Sci. 2018, 32, 73–80. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Gu, K.; Yang, Q.; Cheng, F.; Chu, J.; Chen, X. Spatial Differentiation of Anhui Province Based on the Relationship between Supply and Demand of Ecosystem Services. J. Ecol. Rural Environ. 2018, 34, 577–583. (In Chinese) [Google Scholar]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Serna-Chavez, H.M.; Schulp, C.; Bodegom, P.V.; Bouten, W.; Verburg, P.H.; Davidson, M.D. A quantitative framework for assessing spatial flows of ecosystem services. Ecol. Indic. 2014, 39, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–12. [Google Scholar] [CrossRef]
- Boithias, L.; Acuna, V.; Vergonos, L.; Ziv, G.; Marce, R.; Sabater, S. Assessment of the water supply:demand ratios in a mediterranean basin under different global change scenarios and mitigation alternatives. Sci. Total Environ. 2014, 470–471, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Wu, W.; Tang, H.; Yang, P.; You, L.; Shibasaki, R. Scenario-based assessment of future food security. Int. J. Geogr. Inf. Sci. 2011, 21, 3–17. [Google Scholar] [CrossRef]
- Stuerck, J.; Poortinga, A.; Verburg, P.H. Mapping ecosystem services: The supply and demand of flood regulation services in Europe. Ecol. Indic. 2014, 38, 198–211. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, H.; Peng, J.; Wu, J. A review of ecosystem services supply and demand. Acta. Geogr. Sin. 2017, 72, 1277–1289. (In Chinese) [Google Scholar]
- Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Sharp, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K.; et al. VEST 2.5.3 User’s Guide, the Natural Capital Project; Stanford University: Stanford, CA, USA, 2013. [Google Scholar]
- Maron, M.; Mitchell, M.; Runting, R.K.; Rhodes, J.R.; Mace, G.M.; Keith, D.A.; Watson, E.M. Towards a threat assessment framework for ecosystem services. Trends Ecol. Evol. 2017, 32, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Munns, W.R.; Poulsen, V.; Gala, W.R.; Marshall, S.J.; Rea, A.W.; Sorensen, M.T.; von Stackelberg, K. Ecosystem services in risk assessment and management. Integr. Environ. Assess. Manag. 2017, 13, 62–73. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, J.; Zhang, Z.; Liu, K.; Gao, X.; Wang, Z. Regional spatial management based on supply-demand risk of ecosystem services: A case study of the fenghe river watershed. Int. J. Environ. Res. Public Health 2020, 17, 4112. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, C.; Wang, C.; Li, P. Supply and demand matching of ecosystem services in loess hilly region: A case study of Lanzhou. Acta Geogr. Sin. 2019, 74, 1921–1937. (In Chinese) [Google Scholar]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Health Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Potter, C.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Shi, Q.; Lu, F.; Chen, H.; Zhang, L.; Wu, R.; Liang, X. Temporal-spatial patterns and factors affecting indirect carbon emissions from urban consumption in the Central Plains Economic Region. Resour. Sci. 2018, 40, 1297–1306. (In Chinese) [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Xiao, Y.; Ouyang, Z.; Xu, W.; Xiao, Y.; Xiao, Q. GIS-based spatial analysis of soil erosion and soil conservation in Chongqing, China. Acta Ecol. Sin. 2015, 35, 7130–7138. (In Chinese) [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Planning, Science and Education Administration Predicting Rainfall Erosion Losses: A Guide to Conservation, Agricultural Handbook; Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Peng, J.; Liu, Y.; Liu, Z.; Yang, Y. Mapping spatial non-stationarity of human-natural factors associated with agricultural landscape multifunctionality in beijing-tianjin-hebei region, China. Agric. Ecosyst. Environ. 2017, 246, 221–233. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, X.; Yu, Y.; Cao, J. The Changes of Ecosystem Services Supply-demand and Responses to Rocky Desertification in Xiaojiang Basin during 2005–2015. J. Soil Water Conserv. 2019, 33, 139–150. (In Chinese) [Google Scholar]
- Zhang, P.; Liu, S.; Zhou, Z.; Liu, C.; Xu, L.; Gao, X. Supply and demand measurement and spatio-temporal evolution of ecosystem services in Beijing-Tianjin-Hebei Region. Acta Ecol. Sin. 2021, 41, 3354–3367. (In Chinese) [Google Scholar]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Bai, Y.; Juha, M.A.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for spatial–temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Ben, Z.; Kenneth, J.B.; Brian, V.; Ferdinando, V. Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: A case study in the Puget Sound, Washington, USA. Landsc. Urban Plan. 2016, 149, 31–42. [Google Scholar]
- Yang, L.; Dong, L.; Zhang, L.; He, B.I.; Zhang, Y. Quantitative assessment of carbon sequestration service supply and demand and service flows: A case study of the Yellow River Diversion Project South Line. Resour. Sci. 2019, 41, 557–571. (In Chinese) [Google Scholar]
- Zhang, J.; Zhao, T.; Liang, D. Analysis on Spatial Differences of Forest Ecosystem Services in Funiu Mountain Region. Ecol. Environ. Sci. 2020, 29, 1285–1291. (In Chinese) [Google Scholar]
- Bastian, O.; Syrbe, R.U.; Rosenberg, M.; Rahe, D.; Grunewald, K. The five pillar EPPS framework for quantifying, mapping and managing ecosystem services. Ecosyst. Serv. 2013, 4, 15–24. [Google Scholar] [CrossRef]
- Wei, H.J.; Liu, H.M.; Xu, Z.H.; Ren, J.H.; Lu, N.C.; Fan, W.G.; Zhang, P.; Dong, X.B. Linking ecosystem services supply, social demand and human well-being in a typical mountain–oasis–desert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Ji, Z.; Xu, Y.; Wei, H. Identifying Dynamic Changes in Ecosystem Services Supply and Demand for Urban Sustainability: Insights from a Rapidly Urbanizing City in Central China. Sustainability 2020, 12, 3428. [Google Scholar] [CrossRef] [Green Version]
Data Type | Data Layout | Sources of Data | Data Usage |
---|---|---|---|
Land use/land cover remote sensing monitoring data | Raster data in 2000, 2008 and 2018 with a spatial resolution of 30 m | Resource and Environment Science and Data Center (http://www.resdc.cn/, accessed on 10 October 2020) | Model basic input data in the simulation process of water yield, carbon sequestration and soil conservation supply |
Digital elevation model (DEM) | Raster data with a spatial resolution of 30 m | Data obtained from the geospatial data cloud (http://www.gscloud.cn/, accessed on 10 October 2020) | Model basic input data in the simulation process of soil conservation supply |
Precipitation | Table data in in 2000, 2008 and 2018 | China Meteorological Data Service Center (http://data.cma.cn/, accessed on 10 October 2020) | Model input data in the simulation process of water yield, carbon sequestration and soil conservation supply |
Temperature | Table data in 2000, 2008 and 2018 | Sharing Platform National Earth System Science Data Center (http://www.geodata.cn/, accessed on 10 October 2020) | Model input data in the simulation process of water yield and carbon sequestration supply |
Normalized Difference Vegetation Index (NDVI) | Raster data in 2000, 2008 and 2018 with a spatial resolution of 30 m | Earth Big Data Science Engineering Data Sharing Service System (http://databank.casearth.cn/, accessed on 10 October 2020) | Model input data in the simulation process of food production and carbon sequestration supply |
Soil texture, organic matter content and effective rooting depth | Raster data with a spatial resolution of 1000 m | Chinese soil dataset based on the Harmonized World Soil Database | Model input data in the simulation process of water yield supply and soil conservation supply and demand |
Spatial distribution data of soil types | Raster data with a spatial resolution of 1000 m | Resource and Environment Science and Data Center (http://www.resdc.cn/, accessed on 10 October 2020) | Model input data in the simulation process of soil conservation supply and demand |
Socio-economic data, such as population, food production, and energy consumption | Table and text data in 2000, 2008 and 2018 | Statistical yearbooks of cities and counties | Calculating the demand for food production and carbon sequestration |
Chemical nitrogen fertilizer and compound fertilizer | Text data in 2000, 2008 and 2018 | Statistical yearbooks of cities and counties | Model input data in the simulation process of carbon sequestration supply |
Water consumption data | Text data in 2000, 2008 and 2018 | Henan Water Resources Bulletin | Calculating the demand for water yield |
Supply–Demand Ratio | Trend of Supply–Demand Ratio | Supply Trend | Risk Level | Grade Code |
---|---|---|---|---|
R < 0 | Rt < 0 | Critically endangered | Ⅰ | |
R < 0 | Rt ≥ 0 | St < 0 | Endangered | Ⅱ |
R < 0 | Rt ≥ 0 | St ≥ 0 | Stable but undersupplied | Ⅲ |
R ≥ 0 | Rt < 0 | Vulnerable | Ⅳ | |
R ≥ 0 | Rt ≥ 0 | Secure | Ⅴ |
Water Yield | 2000 | 2008 | 2018 | CR2000–2008 | CR2008–2018 | CR2000–2018 |
---|---|---|---|---|---|---|
Total supply | 1071 | 877 | 902 | −18.11% | 2.85% | −15.78% |
Total demand | 432 | 431 | 577 | −0.23% | 33.87% | 33.56% |
Carbon Sequestration | 2000 | 2008 | 2018 | CR2000–2008 | CR2008–2018 | CR2000–2018 |
---|---|---|---|---|---|---|
Total Supply | 4.10 × 108 | 3.97 × 108 | 4.08 × 108 | −3.17% | 2.77% | −0.49% |
Total Demand | 7.12 × 105 | 1.63 × 106 | 2.42 × 106 | 128.93% | 48.47% | 239.89% |
Food Production | 2000 | 2008 | 2018 | CR2000–2008 | CR2008–2018 | CR2000–2018 |
---|---|---|---|---|---|---|
Total Supply | 15.50 × 108 | 22.03 × 108 | 21.90 × 108 | 42.13% | −0.59% | 41.29% |
Total Demand | 9.32 × 108 | 9.35 × 108 | 11.60 × 108 | 0.32% | 24.06% | 24.46% |
Soil Conservation | 2000 | 2008 | 2018 | CR2000–2008 | CR2008–2018 | CR2000–2018 |
---|---|---|---|---|---|---|
Total Supply | 9.47 × 1011 | 9.46 × 1011 | 9.48 × 1011 | −0.11% | 0.21% | 0.11% |
Total Demand | 5.33 × 109 | 5.52 × 109 | 5.37 × 109 | 3.56% | −2.72% | 0.75% |
Year | Entire Basin | Upstream | Midstream | Downstream |
---|---|---|---|---|
2000 | 0.2937 | 0.5207 | 0.1585 | 0.0120 |
2008 | 0.2825 | 0.5095 | 0.1461 | 0.0011 |
2018 | 0.2771 | 0.5134 | 0.1401 | −0.0208 |
Reference Indicators | WY | CS | FP | SC |
---|---|---|---|---|
R | >0 | >0 | >0 | >0 |
Rt | <0 | <0 | >0 | <0 |
St | <0 | <0 | >0 | >0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Zhang, L.; Wei, H.; Cai, E.; Xue, D.; Liu, M. Linking Ecosystem Service Supply–Demand Risks and Regional Spatial Management in the Yihe River Basin, Central China. Land 2021, 10, 843. https://doi.org/10.3390/land10080843
Meng Q, Zhang L, Wei H, Cai E, Xue D, Liu M. Linking Ecosystem Service Supply–Demand Risks and Regional Spatial Management in the Yihe River Basin, Central China. Land. 2021; 10(8):843. https://doi.org/10.3390/land10080843
Chicago/Turabian StyleMeng, Qingxiang, Likun Zhang, Hejie Wei, Enxiang Cai, Dong Xue, and Mengxue Liu. 2021. "Linking Ecosystem Service Supply–Demand Risks and Regional Spatial Management in the Yihe River Basin, Central China" Land 10, no. 8: 843. https://doi.org/10.3390/land10080843
APA StyleMeng, Q., Zhang, L., Wei, H., Cai, E., Xue, D., & Liu, M. (2021). Linking Ecosystem Service Supply–Demand Risks and Regional Spatial Management in the Yihe River Basin, Central China. Land, 10(8), 843. https://doi.org/10.3390/land10080843