Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design
Abstract
:1. Introduction
2. Defining Spatial Scale Mismatches
2.1. Problems of Fit
2.2. Spatial Scale in Environmental Governance
2.3. Spatial Scale in Ecology
2.4. Spatial Scale Mismatches—SSMs
3. The Landscape-Scale Perspective and FAB Conservation
3.1. Functional Agri-Biodiversity (FAB)
3.2. The Landscape Scale
3.2.1. Pollination
3.2.2. Pest Control
3.2.3. Soil Production and Nitrogen Fixation
3.2.4. Farmland Birds
4. Two Policy Strategies: Collective Action and Spatial Planning Intervention
5. The European Union Agri-Biodiversity Conservation Policy
5.1. Overview of the EU Common Agricultural Policy
5.2. The Proposed CAP Measures Relevant for FAB Conservation: Scope and Spatial Perspective
5.2.1. Enhanced Conditionality
5.2.2. Eco-Schemes
5.2.3. Agri-Environmental-Climate Measures—AECMs
5.2.4. Natura 2000 and Water Framework Directive Payments
5.2.5. Cooperation Measure
6. The Landscape-Scale Perspective in the Post-2020 CAP Proposal
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CAP | Common Agricultural Policy |
SSM | Spatial Scale Mismatch |
FAB | Functional Agri-Biodiversity |
AECM | Agri-Environmental Climate Measure |
SMR | Statutory Management Requirements |
GAEC | Good Agricultural and Environmental Condition of land |
1 | Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Preamble, n. 33. |
2 | It is worth noting that this also applies beyond services related to food and fibers provision. Indeed, a wide range of services in agriculture are best understood from a landscape perspective, notably cultural services such as educational, aesthetic and other non-material benefits that originate from the particular interplay between humans and the biological community occurring on farmland [14,83]. |
3 | Common farmland birds in EU and UK—Common bird—population index 1990–2017, available at https://www.eea.europa.eu/data-and-maps/daviz/common-birds-in-europe-population-index-6#tab-googlechartid_googlechartid_googlechartid_chart_4121 (accessed on 1 March 2021). |
4 | Eurostat Farmland Bird Index, available at http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_bio2&lang=en (accessed on 1 May 2021). |
5 | Conference of the Parties of the Convention of Biological Diversity—Decision 14/8 of 30 November 2018. |
6 | More information available at https://www.europarl.europa.eu/factsheets/en/sheet/104/the-common-agricultural-policy-in-figures (accessed on 1 June 2021). |
7 | EU Commission Regulation proposal COM/2018/392 final— 2018/0216 (COD), available at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A392%3AFIN (accessed on 1 May 2021). |
8 | Total farm holdings in 2016 were 10.5 million. Eurostat, 2018. Available at: https://ec.europa.eu/eurostat/documents/3217494/9455154/KS-FK-18-001-EN-N.pdf/a9ddd7db-c40c-48c9-8ed5-a8a90f4faa3f?t=1558692068000 (accessed on 1 June 2021). |
9 | See Overview of the rural development programmes 2014–2020, available at https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/rdp-2014-20-list_en.pdf (accessed on 1 June 2021). |
10 | For data on the physical size of farms in the EU, see https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Small_and_large_farms_in_the_EU_-_statistics_from_the_farm_structure_survey&oldid=406560 (accessed on 1 July 2021). |
References
- Tanentzap, A.J.; Lamb, A.; Walker, S.; Farmer, A. Resolving Conflicts between Agriculture and the Natural Environment. PLoS Biol. 2015, 13, e1002242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altieri, M.A.; Toledo, V.M. The Agroecological Revolution in Latin America: Rescuing Nature, Ensuring Food Sovereignty and Empowering Peasants. J. Peasant. Stud. 2011, 38, 587–612. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing Pesticide Use While Preserving Crop Productivity and Profitability on Arable Farms. Nat. Plants 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Vos, C.C.; Zonneveld, J.I.S. Patterns and Processes in a Landscape under Stress: The Study Area. In Landscape Ecology of a Stressed Environment; Vos, C.C., Opdam, P., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 1–27. [Google Scholar] [CrossRef]
- Geertsema, W.; Opdam, P.; Kropff, M. Plant Strategies and Agricultural Landscapes: Survival in Spatially and Temporally Fragmented Habitat. Landsc. Ecol. 2002, 17, 263–279. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape Perspectives on Agricultural Intensification and Biodiversity – Ecosystem Service Management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Haenke, S.; Kovács-Hostyánszki, A.; Fründ, J.; Batáry, P.; Jauker, B.; Tscharntke, T.; Holzschuh, A. Landscape Configuration of Crops and Hedgerows Drives Local Syrphid Fly Abundance. J. Appl. Ecol. 2014, 51, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Weissteiner, C.J.; García-Feced, C.; Paracchini, M.L. A New View on EU Agricultural Landscapes: Quantifying Patchiness to Assess Farmland Heterogeneity. Ecol. Indic. 2016, 61, 317–327. [Google Scholar] [CrossRef]
- European Commission. EU Biodiversity Strategy for 2030—COM(2020) 380 Final; Brussels. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (accessed on 1 June 2021).
- WWF. Living Planet Report 2020: Bending the Curve of Biodiversity Loss; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Ehrlich, P.R.; Wilson, E. Biodiversity Studies: Science and Policy. Science 1991, 253, 758–762. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment; Technical Report; World Resources Institute, Island Press: Washington, DC, USA, 2005.
- European Court of Auditors. Biodiversity on Farmland: CAP Contribution Has Not Halted the Decline; Technical Report; Publications Office: Luxembourg, 2020. [Google Scholar]
- Lakner, S.; Holst, C.; Dittrich, A.; Hoyer, C.; Pe’er, G. Impacts of the EU’s Common Agricultural Policy on Biodiversity and Ecosystem Services: Drivers, Risks, and Societal Responses. In Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 383–389. [Google Scholar] [CrossRef]
- Pe’er, G.; Dicks, L.V.; Visconti, P.; Arlettaz, R.; Báldi, A.; Benton, T.G.; Collins, S.; Dieterich, M.; Gregory, R.D.; Hartig, F.; et al. EU Agricultural Reform Fails on Biodiversity. Science 2014, 344, 1090–1092. [Google Scholar] [CrossRef] [PubMed]
- Pe’er, G.; Lakner, S.; Müller, R.; Passoni, G.; Bontzorlos, V.; Moreira, F.; Azam, C.; Berger, J.; Bezak, P.; Bonn, A.; et al. Is the CAP Fit for Purpose? An Evidence-Based Fitness Check Assessment; Technical Report; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig: Leipzig, Germany, 2017. [Google Scholar]
- Kleijn, D.; Berendse, F.; Smit, R.; Gilissen, N. Agri-Environment Schemes Do Not Effectively Protect Biodiversity in Dutch Agricultural Landscapes. Nature 2001, 413, 723–725. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Rundlöf, M.; Scheper, J.; Smith, H.G.; Tscharntke, T. Does Conservation on Farmland Contribute to Halting the Biodiversity Decline? Trends Ecol. Evol. 2011, 26, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Peeters, A.; Lefebvre, O.; Balogh, L. A Green Deal for Implementing Agroecological Systems: Reforming the Common Agricultural Policy of the European Union. Landbauforschung 2021, 70, 83–93. [Google Scholar] [CrossRef]
- Young, O.R. The Institutional Dimensions of Environmental Change: Fit, Interplay, and Scale; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar] [CrossRef]
- Cumming, G.S.; Cumming, D.H.M.; Redman, C. Scale mismatches in social-ecological systems: Causes, consequences, and solutions. Ecol. Soc. 2006, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, C.; Goulard, M.; Balent, G. The Spatial Scale Mismatch between Ecological Processes and Agricultural Management: Do Difficulties Come from Underlying Theoretical Frameworks? Agric. Ecosyst. Environ. 2010, 139, 455–462. [Google Scholar] [CrossRef]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.Y.; Iverson, A.L.; Batary, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity Conservation in Agriculture Requires a Multi-Scale Approach. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paloniemi, R.; Apostolopoulou, E.; Primmer, E.; Grodzinska-Jurcak, M.; Henle, K.; Ring, I.; Kettunen, M.; Tzanopoulos, J.; Potts, S.; van den Hove, S.; et al. Biodiversity Conservation across Scales: Lessons from a Science–Policy Dialogue. Nat. Conserv. 2012, 2, 7–19. [Google Scholar] [CrossRef]
- Lefebvre, M.; Espinosa, M.; y Paloma, S.G.; Paracchini, M.L.; Piorr, A.; Zasada, I. Agricultural Landscapes as Multi-Scale Public Good and the Role of the Common Agricultural Policy. J. Environ. Plan. Manag. 2015, 58, 2088–2112. [Google Scholar] [CrossRef] [Green Version]
- Sayles, J.S.; Baggio, J.A. Social–Ecological Network Analysis of Scale Mismatches in Estuary Watershed Restoration. Proc. Natl. Acad. Sci. USA 2017, 114, E1776–E1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland Biodiversity: Is Habitat Heterogeneity the Key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Oliver, T.; Roy, D.B.; Hill, J.K.; Brereton, T.; Thomas, C.D. Heterogeneous Landscapes Promote Population Stability. Ecol. Lett. 2010, 13, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, L.; Wilson, R.J.; Maclean, I.M.D. Old Concepts, New Challenges: Adapting Landscape-Scale Conservation to the Twenty-First Century. Biodivers. Conserv. 2017, 26, 527–552. [Google Scholar] [CrossRef] [Green Version]
- Bàrberi, P.; Moonen, A. Reconciling Agricultural Production with Biodiversity Conservation; Burleigh Dodds Science Publishing: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Ekroos, J.; Ödman, A.M.; Andersson, G.K.S.; Birkhofer, K.; Herbertsson, L.; Klatt, B.K.; Olsson, O.; Olsson, P.A.; Persson, A.S.; Prentice, H.C.; et al. Sparing Land for Biodiversity at Multiple Spatial Scales. Front. Ecol. Evol. 2016, 3, 145. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.; Gaston, K.J.; Skinner, A.M.J.; Nick, H.; Acs, S.; Armsworth, P.R. Field-Level Bird Abundances Are Enhanced by Landscape-Scale Agri-Environment Scheme Uptake. Biol. Lett. 2010, 6, 643–646. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Cash, D.W.; Adger, W.N.; Berkes, F.; Garden, P.; Lebel, L.; Olsson, P.; Pritchard, L.; Young, O. Scale and Cross-Scale Dynamics: Governance and Information in a Multilevel World. Ecol. Soc. 2006, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, C.; Costanza, R.; Eggertsson, T.; Fortmann, L.; Low, B.; McKean, M.; Ostrom, E.; Wilson, J.; Young, O. A Framework for Modeling the Linkages between Ecosystems and Human Systems. Beijer Discuss. Pap. Ser. 1996, 76, 51. [Google Scholar]
- Pauly, D.; Christensen, V.; Guénette, S.; Pitcher, T.J.; Sumaila, U.R.; Walters, C.J.; Watson, R.; Zeller, D. Towards Sustainability in World Fisheries. Nature 2002, 418, 689–695. [Google Scholar] [CrossRef]
- Baskin, Y. Yellowstone Fires: A Decade Later: Ecological Lessons Learned in the Wake of the Conflagration. BioScience 1999, 49, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Gottfried, R.; Wear, D.; Lee, R. Institutional Solutions to Market Failure on the Landscape Scale. Ecol. Econ. 1996, 18, 133–140. [Google Scholar] [CrossRef]
- Springer, A.M.; Estes, J.A.; van Vliet, G.B.; Williams, T.M.; Doak, D.F.; Danner, E.M.; Forney, K.A.; Pfister, B. Sequential Megafaunal Collapse in the North Pacific Ocean: An Ongoing Legacy of Industrial Whaling? Proc. Natl. Acad. Sci. USA 2003, 100, 12223–12228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cash, D.W.; Moser, S.C. Linking Global and Local Scales: Designing Dynamic Assessment and Management Processes. Glob. Environ. Chang. 2000, 10, 109–120. [Google Scholar] [CrossRef]
- Graham, J.; Amos, B.; Plumptre, T. Governance Principles for Protected Areas in the 21st Century. In Proceedings of the Fifth World Parks Congress Durban, Durban, South Africa, 12–13 September 2003; Available online: https://www.files.ethz.ch/isn/122197/pa_governance2.pdf (accessed on 1 June 2021).
- Lockwood, M.; Davidson, J.; Curtis, A.; Stratford, E.; Griffith, R. Governance Principles for Natural Resource Management. Soc. Nat. Resour. 2010, 23, 986–1001. [Google Scholar] [CrossRef]
- Bennett, N.J.; Satterfield, T. Environmental Governance: A Practical Framework to Guide Design, Evaluation, and Analysis. Conserv. Lett. 2018, 11, e12600. [Google Scholar] [CrossRef] [Green Version]
- de Sadeleer, N. Principle of Subsidiarity and the EU Environmental Policy. J. Eur. Environ. Plan. Law 2012, 9, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Jordan, A.; Jeppesen, T. EU Environmental Policy: Adapting to the Principle of Subsidiarity? Eur. Environ. 2000, 10, 64–74. [Google Scholar] [CrossRef]
- Sayre, N.F. Ecological and Geographical Scale: Parallels and Potential for Integration. Prog. Hum. Geogr. 2005, 29, 276–290. [Google Scholar] [CrossRef]
- Allen, T.F.H.; Hoekstra, T. Toward a Unified Ecology, 2nd ed.; Columbia University Press: New York, NY, USA, 2015. [Google Scholar]
- Gibson, C.C.; Ostrom, E.; Ahn, T.K. The Concept of Scale and the Human Dimensions of Global Change: A Survey. Ecol. Econ. 2000, 32, 217–239. [Google Scholar] [CrossRef]
- Buizer, M.; Arts, B.; Kok, K. Governance, Scale and the Environment: The Importance of Recognizing Knowledge Claims in Transdisciplinary Arenas. Ecol. Soc. 2011, 16. [Google Scholar] [CrossRef] [Green Version]
- Wiens, J.A. Spatial Scaling in Ecology. Funct. Ecol. 1989, 3, 385–397. [Google Scholar] [CrossRef]
- Mayer, A.L.; Cameron, G.N. Consideration of Grain and Extent in Landscape Studies of Terrestrial Vertebrate Ecology. Landsc. Urban Plan. 2003, 65, 201–217. [Google Scholar] [CrossRef]
- Hooghe, L.; Marks, G. Multi-Level Governance and European Integration; Governance in Europe, Rowman & Littlefield Publishers: Lanham, MD, USA, 2001. [Google Scholar]
- Feitelson, E.; Fischhendler, I. Spaces of Water Governance: The Case of Israel and Its Neighbors. Ann. Assoc. Am. Geogr. 2009, 99, 728–745. [Google Scholar] [CrossRef]
- Collins, W.W.; Qualset, C.O. (Eds.) Biodiversity in Agroecosystems; Advances in Agroecology; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Altieri, M.A. The Ecological Role of Biodiversity in Agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Lohbeck, M.; Winowiecki, L.; Aynekulu, E.; Okia, C.; Vågen, T.G. Trait-Based Approaches for Guiding the Restoration of Degraded Agricultural Landscapes in East Africa. J. Appl. Ecol. 2018, 55, 59–68. [Google Scholar] [CrossRef]
- Sinclair, A.R.E.; Fryxell, J.M.; Caughley, G.; Caughley, G. Wildlife Ecology, Conservation, and Management, 2nd ed.; Blackwell Pub: Malden, MA, USA; Oxford, UK, 2006. [Google Scholar]
- Gamfeldt, L.; Hillebrand, H.; Jonsson, P.R. Multiple Functions Increase the Importance of Biodiversity for Overall Ecosystem Functioning. Ecology 2008, 89, 1223–1231. [Google Scholar] [CrossRef]
- Brussaard, L. Biodiversity and Ecosystem Functioning in Soil. Ambio 1997, 26, 563–570. [Google Scholar]
- Vitousek, P.M.; Hooper, D.U. Biological Diversity and Terrestrial Ecosystem Biogeochemistry. In Biodiversity and Ecosystem Function; Schulze, E.D., Mooney, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 3–14. [Google Scholar] [CrossRef]
- Swift, M.J.; Izac, A.M.N.; van Noordwijk, M. Biodiversity and Ecosystem Services in Agricultural Landscapes—Are We Asking the Right Questions? Agric. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
- Schulze, E.D.; Chapin, F.S. Plant Specialization to Environments of Different Resource Availability. In Potentials and Limitations of Ecosystem Analysis; Schulze, E.D., Zwölfer, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; pp. 120–148. [Google Scholar] [CrossRef]
- de Bello, F.; Lavorel, S.; Díaz, S.; Harrington, R.; Cornelissen, J.H.C.; Bardgett, R.D.; Berg, M.P.; Cipriotti, P.; Feld, C.K.; Hering, D.; et al. Towards an Assessment of Multiple Ecosystem Processes and Services via Functional Traits. Biodivers. Conserv. 2010, 19, 2873–2893. [Google Scholar] [CrossRef]
- Garnier, E.; Navas, M.L. A Trait-Based Approach to Comparative Functional Plant Ecology: Concepts, Methods and Applications for Agroecology. A Review. Agron. Sustain. Dev. 2012, 32, 365–399. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.R.; Isaac, M.E. Functional Traits in Agroecology: Advancing Description and Prediction in Agroecosystems. J. Appl. Ecol. 2018, 55, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; LeBuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and Other Ecosystem Services Produced by Mobile Organisms: A Conceptual Framework for the Effects of Land-Use Change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Prager, K.; Reed, M.; Scott, A. Encouraging Collaboration for the Provision of Ecosystem Services at a Landscape Scale—Rethinking Agri-Environmental Payments. Land Use Policy 2012, 29, 244–249. [Google Scholar] [CrossRef]
- Goldman, R.L.; Thompson, B.H.; Daily, G.C. Institutional Incentives for Managing the Landscape: Inducing Cooperation for the Production of Ecosystem Services. Ecol. Econ. 2007, 64, 333–343. [Google Scholar] [CrossRef]
- European Landscape Convention, Council of Europe. 2000. Available online: https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/176?module=treaty-detail&treatynum=176 (accessed on 1 August 2021).
- Martin, E.A.; Dainese, M.; Clough, Y.; Báldi, A.; Bommarco, R.; Gagic, V.; Garratt, M.P.D.; Holzschuh, A.; Kleijn, D.; Kovács-Hostyánszki, A.; et al. The Interplay of Landscape Composition and Configuration: New Pathways to Manage Functional Biodiversity and Agroecosystem Services across Europe. Ecol. Lett. 2019, 22, 1083–1094. [Google Scholar] [CrossRef] [Green Version]
- Burel, F.; Baudry, J.; Butet, A.; Clergeau, P.; Delettre, Y.; Le Coeur, D.; Dubs, F.; Morvan, N.; Paillat, G.; Petit, S.; et al. Comparative Biodiversity along a Gradient of Agricultural Landscapes. Acta Oecologica 1998, 19, 47–60. [Google Scholar] [CrossRef]
- McKenzie, A.J.; Emery, S.B.; Franks, J.R.; Whittingham, M.J. Landscape-Scale Conservation: Collaborative Agri-Environment Schemes Could Benefit Both Biodiversity and Ecosystem Services, but Will Farmers Be Willing to Participate? J. Appl. Ecol. 2013, 50, 1274–1280. [Google Scholar] [CrossRef]
- Macfarlane, R. Building Blocks or Stumbling Blocks? Landscape Ecology and Farm-Level Participation in Agri-Environmental Policy. Landsc. Res. 2000, 25, 321–331. [Google Scholar] [CrossRef]
- Altieri, M. Agroecology: The Science of Sustainable Agriculture; CLC Press: Boca Raton, FL, USA, 2018; p. 433. [Google Scholar] [CrossRef]
- Weibull, A.C.; Bengtsson, J.; Nohlgren, E. Diversity of Butterflies in the Agricultural Landscape: The Role of Farming System and Landscape Heterogeneity. Ecography 2000, 23, 743–750. [Google Scholar] [CrossRef]
- Zingg, S.; Grenz, J.; Humbert, J.Y. Landscape-Scale Effects of Land Use Intensity on Birds and Butterflies. Agric. Ecosyst. Environ. 2018, 267, 119–128. [Google Scholar] [CrossRef]
- Jonsen, I.D.; Fahrig, L. Response of Generalist and Specialist Insect Herbivores to Landscape Spatial Structure. Landsc. Ecol. 1997, 12, 185–197. [Google Scholar] [CrossRef]
- Holland, J.; Fahrig, L. Effect of Woody Borders on Insect Density and Diversity in Crop Fields: A Landscape-Scale Analysis. Agric. Ecosyst. Environ. 2000, 78, 115–122. [Google Scholar] [CrossRef]
- van Zanten, B.T.; Verburg, P.H.; Espinosa, M.; Gomez-y-Paloma, S.; Galimberti, G.; Kantelhardt, J.; Kapfer, M.; Lefebvre, M.; Manrique, R.; Piorr, A.; et al. European Agricultural Landscapes, Common Agricultural Policy and Ecosystem Services: A Review. Agron. Sustain. Dev. 2014, 34, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Willemen, L.; Verburg, P.H.; Hein, L.; van Mensvoort, M.E.F. Spatial Characterization of Landscape Functions. Landsc. Urban Plan. 2008, 88, 34–43. [Google Scholar] [CrossRef]
- Iverson Nassauer, J. Culture and Changing Landscape Structure. Landsc. Ecol. 1995, 10, 229–237. [Google Scholar] [CrossRef]
- Potts, S.; Biesmeijer, K.; Bommarco, R.; Breeze, T.; Carvalheiro, L.; Franzén, M.; González-Varo, J.P.; Holzschuh, A.; Kleijn, D.; Klein, A.M.; et al. Status and Trends of European Pollinators: Key Findings of the STEP Project; Pensoft Publishers: Sofia, Bulgaria, 2015; p. 72. [Google Scholar]
- Goulson, D.; Hughes, W.; Derwent, L.; Stout, J. Colony Growth of the Bumblebee, Bombus Terrestris, in Improved and Conventional Agricultural and Suburban Habitats. Oecologia 2002, 130, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.M.; Kremen, C. Resource Distributions Among Habitats Determine Solitary Bee Offspring Production in a Mosaic Landscape. Ecol. Appl. 2007, 17, 910–921. [Google Scholar] [CrossRef] [PubMed]
- van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological Control Using Invertebrates and Microorganisms: Plenty of New Opportunities. BioControl 2018, 63, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent Negative Effects of Pesticides on Biodiversity and Biological Control Potential on European Farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- DeBach, P.; Paul DeBach, D.; David Rosen, E.; Rosen, D. Biological Control by Natural Enemies; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Bianchi, F.; Booij, C.; Tscharntke, T. Sustainable Pest Regulation in Agricultural Landscapes: A Review on Landscape Composition, Biodiversity and Natural Pest Control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [Green Version]
- Thies, C.; Tscharntke, T. Landscape Structure and Biological Control in Agroecosystems. Science 1999, 285, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Thies, C.; Roschewitz, I.; Tscharntke, T. The Landscape Context of Cereal Aphid–Parasitoid Interactions. Proc. R. Soc. B Biol. Sci. 2005, 272, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil Invertebrates and Ecosystem Services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape Moderation of Biodiversity Patterns and Processes—Eight Hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.J.; Vickery, J.A.; Norris, K. Farmland Biodiversity and the Footprint of Agriculture. Science 2007, 315, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Biodiversity: Farmland Bird Populations and Agricultural Land Cover. In OECD Compendium of Agri-Environmental Indicators; OECD Publishing: Paris, France, 2013; pp. 157–169. [CrossRef]
- Whittingham, M.J. Will Agri-Environment Schemes Deliver Substantial Biodiversity Gain, and If Not Why Not? J. Appl. Ecol. 2007, 44, 1–5. [Google Scholar] [CrossRef]
- Marja, R.; Herzon, I.; Viik, E.; Elts, J.; Mänd, M.; Tscharntke, T.; Batáry, P. Environmentally Friendly Management as an Intermediate Strategy between Organic and Conventional Agriculture to Support Biodiversity. Biol. Conserv. 2014, 178, 146–154. [Google Scholar] [CrossRef]
- Davey, C.M.; Vickery, J.A.; Boatman, N.D.; Chamberlain, D.E.; Parry, H.R.; Siriwardena, G.M. Assessing the Impact of Entry Level Stewardship on Lowland Farmland Birds in England. Ibis 2010, 152, 459–474. [Google Scholar] [CrossRef]
- Young, J.C.; Jordan, A.; Searle, K.R.; Butler, A.; Simmons, P.; Watt, A.D. Framing Scale in Participatory Biodiversity Management May Contribute to More Sustainable Solutions. Conserv. Lett. 2013, 6, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Vanni, F. The Role of Collective Action. In Agriculture and Public Goods: The Role of Collective Action; Vanni, F., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 21–37. [Google Scholar] [CrossRef]
- Prager, K. Agri-Environmental Collaboratives for Landscape Management in Europe. Curr. Opin. Environ. Sustain. 2015, 12, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Xu, J.; Yang, X.; Tu, Q.; Hanley, N.; Kontoleon, A. Performance of Agglomeration Bonuses in Conservation Auctions: Lessons from a Framed Field Experiment. Environ. Resour. Econ. 2019, 73, 843–869. [Google Scholar] [CrossRef] [Green Version]
- OECD. Providing Agri-Environmental Public Goods through Collective Action; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Terwan, P.; Deelen, J.G.; Mulders, A.; Peeters, E. The Cooperative Approach under the New Dutch Agri-Environment- Climate Scheme; Technical Report; Ministry of Economic Affairs: The Hague, The Netherlands, 2016. [Google Scholar]
- Kleijn, D.; Sutherland, W.J. How Effective Are European Agri-Environment Schemes in Conserving and Promoting Biodiversity? J. Appl. Ecol. 2003, 40, 947–969. [Google Scholar] [CrossRef]
- Merckx, T.; Feber, R.E.; Riordan, P.; Townsend, M.C.; Bourn, N.A.; Parsons, M.S.; Macdonald, D.W. Optimizing the Biodiversity Gain from Agri-Environment Schemes. Agric. Ecosyst. Environ. 2009, 130, 177–182. [Google Scholar] [CrossRef]
- Siriwardena, G.M. The Importance of Spatial and Temporal Scale for Agri-Environment Scheme Delivery: Spatial and Temporal Scale of AES Delivery. Ibis 2010, 152, 515–529. [Google Scholar] [CrossRef]
- Leventon, J.; Schaal, T.; Velten, S.; Dänhardt, J.; Fischer, J.; Abson, D.J.; Newig, J. Collaboration or Fragmentation? Biodiversity Management through the Common Agricultural Policy. Land Use Policy 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Hauck, J.; Schindler, S.; Dittrich, A.; Zingg, S.; Tscharntke, T.; Oppermann, R.; Sutcliffe, L.M.E.; Hoyer, C.; et al. Adding Some Green to the Greening: Improving the EU’s Ecological Focus Areas for Biodiversity and Farmers. Conserv. Lett. 2017, 10, 517–530. [Google Scholar] [CrossRef]
- Früh-Müller, A.; Bach, M.; Breuer, L.; Hotes, S.; Koellner, T.; Krippes, C.; Wolters, V. The Use of Agri-Environmental Measures to Address Environmental Pressures in Germany: Spatial Mismatches and Options for Improvement. Land Use Policy 2019, 84, 347–362. [Google Scholar] [CrossRef]
- European Court of Auditors. Is Agri-Environment Support Well Designed and Managed? Technical Report; Publications Office: Luxembourg, 2011. [Google Scholar]
- Pardo, A.; Rolo, V.; Concepción, E.D.; Díaz, M.; Kazakova, Y.; Stefanova, V.; Marsden, K.; Brandt, K.; Jay, M.; Piskol, S.; et al. To What Extent Does the European Common Agricultural Policy Affect Key Landscape Determinants of Biodiversity? Environ. Sci. Policy 2020, 114, 595–605. [Google Scholar] [CrossRef]
- Nilsson, L.; Clough, Y.; Smith, H.G.; Alkan Olsson, J.; Brady, M.V.; Hristov, J.; Olsson, P.; Skantze, K.; Ståhlberg, D.; Dänhardt, J. A Suboptimal Array of Options Erodes the Value of CAP Ecological Focus Areas. Land Use Policy 2019, 85, 407–418. [Google Scholar] [CrossRef]
- European Commission The Future of Food and Farming—COM(2017) 713. 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52017DC0713 (accessed on 1 June 2021).
- Franks, J.R. An Assessment of the Landscape-Scale Dimensions of Land Based Environmental Management Schemes Offered to Farmers in England. Land Use Policy 2019, 83, 147–159. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Petersen, J.E.; Hoogeveen, Y.; European Environment Agency; European Commission; Joint Research Centre; Institute for Environment and Sustainability. High Nature Value Farmland in Europe an Estimate of the Distribution Patterns on the Basis of Land Cover and Biodiversity Data; Publications Office: Luxembourg, 2008. [Google Scholar]
- Lomba, A.; Alves, P.; Jongman, R.H.G.; McCracken, D.I. Reconciling Nature Conservation and Traditional Farming Practices: A Spatially Explicit Framework to Assess the Extent of High Nature Value Farmlands in the European Countryside. Ecol. Evol. 2015, 5, 1031–1044. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the Relationship between Farmland Biodiversity and Land-Use Intensity in Europe. Proc. R. Soc. B Biol. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Franks, J.R.; Mc Gloin, A. Environmental Co-Operatives as Instruments for Delivering across-Farm Environmental and Rural Policy Objectives: Lessons for the UK. J. Rural. Stud. 2007, 23, 472–489. [Google Scholar] [CrossRef]
- Dänhardt, J.; Nilsson, L.; Hristov, J.; Olsson, J.A.; Brady, M.; Olsson, P.; Smith, H.G.; Clough, Y. Collective Implementation of Ecological Focus Areas; Technical Report 6816; The Swedish Environmental Protection Agency: Stockholm, Sweden, 2018. [Google Scholar]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the Effectiveness of Protected Area Networks in Reducing Deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blankespoor, B.; Dasgupta, S.; Wheeler, D. Protected Areas and Deforestation: New Results from High Resolution Panel Data; SSRN Scholarly Paper ID 2519851; Social Science Research Network: Rochester, NY, USA, 2014. [Google Scholar]
- Geldmann, J.; Manica, A.; Burgess, N.D.; Coad, L.; Balmford, A. A Global-Level Assessment of the Effectiveness of Protected Areas at Resisting Anthropogenic Pressures. Proc. Natl. Acad. Sci. USA 2019, 116, 23209–23215. [Google Scholar] [CrossRef] [PubMed]
SMR 3 |
Directive 2009/147/EC (Birds Directive)—Article 3(1), Article 3(2)(b), Article 4(1), (2) and (4) SMR 3 requires compliance with the measures provided by Member States to protect the targeted bird species (listed in Annex I of the Directive) and in particular:
|
SMR 4 | Directive 92/43/EEC (Habitats Directive)—Article 6(1) and (2) SMR 4 requires compliance with the measures provided by Member States to protect the targeted habitats and species (listed in Annex I and II of the Directive) and in particular:
|
GAEC 9 |
|
GAEC 10 | Ban on converting or ploughing permanent grassland in Natura 2000 sites |
Measure | Collective Action | Spatial Planning | |
---|---|---|---|
Implementation Method | Explicit Reference in Comm. Proposal | ||
SMR 3, 4 | voluntary | No | ✓- Natura 2000 |
GAEC 9 | voluntary | No | No |
GAEC 10 | voluntary | No | ✓- Natura 2000 |
Eco-schemes | voluntary | No | No |
AECMs | voluntary (standard in the Netherlands, if confirmed) | ✓ | No |
Natura 2000 payments | voluntary | No | ✓- Natura 2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falco, F.L.; Feitelson, E.; Dayan, T. Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design. Land 2021, 10, 846. https://doi.org/10.3390/land10080846
Falco FL, Feitelson E, Dayan T. Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design. Land. 2021; 10(8):846. https://doi.org/10.3390/land10080846
Chicago/Turabian StyleFalco, Francesca L., Eran Feitelson, and Tamar Dayan. 2021. "Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design" Land 10, no. 8: 846. https://doi.org/10.3390/land10080846
APA StyleFalco, F. L., Feitelson, E., & Dayan, T. (2021). Spatial Scale Mismatches in the EU Agri-Biodiversity Conservation Policy. The Case for a Shift to Landscape-Scale Design. Land, 10(8), 846. https://doi.org/10.3390/land10080846