Urban Naturalization for Green Spaces Using Soil Tillage, Herbicide Application, Compost Amendment and Native Vegetation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Site Preparation and Soil Amendment Treatments
2.3. Planting and Plot Management
2.4. Vegetation Assessments
2.5. Soils Sampling and Analyses
2.6. Statistical Analyses
3. Results
3.1. Soil Response to Treatments
3.2. Plant Survival Response to Treatments
3.3. Effects on Tree and Shrub Height and Diameter
3.4. Species Cover and Richness
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2014 Revision; Population Division (ST/ESA/SER.A/366); United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2015; Available online: https://www.un.org/en/development/desa/publications/2014-revision-world-urbanization-prospects.html (accessed on 21 July 2021).
- Pickett, S.T.; Cadenasso, M.L.; Childers, D.L.; McDonnell, M.J.; Zhou, W. Evolution and future of urban ecological science: Ecology in, of, and for the city. Ecosyst. Health Sustain. 2016, 2, e01229. [Google Scholar] [CrossRef]
- Elmqvist, T.; Fragkias, M.; Goodness, J.; Güneralp, B.; Marcotullio, P.J.; McDonald, R.I.; Seto, K.C. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer Nature: Cham, Switzerland, 2013; p. 755. [Google Scholar]
- Wang, Y.; Bakker, F.; de Groot, R.; Wortche, H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Build. Environ. 2014, 77, 88–100. [Google Scholar] [CrossRef]
- Lin, B.B.; Meyers, J.; Beaty, M.; Barnett, G.B. Urban green infrastructure impacts on climate regulation services in Sydney, Australia. Sustainability 2016, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Kim, G.; Mayer, A.; He, R.; Tian, G. Assessing the Ecosystem Services of Various Types of Urban Green Spaces Based on i-Tree Eco. Sustainability 2020, 12, 1630. [Google Scholar] [CrossRef] [Green Version]
- Lindemann-Matthies, P.; Brieger, H. Does urban gardening increase aesthetic quality of urban areas? A case study from Germany. Urban For. Urban Green. 2016, 17, 33–41. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Yue, Z.E.J.; Ling, S.K.; Tan, H.H.V. It’s ok to be wilder: Preference for natural growth in urban green spaces in a tropical city. Urban For. Urban Green. 2019, 38, 165–176. [Google Scholar] [CrossRef]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.; Shan, X. Socioeconomic effect on perception of urban green spaces in Guangzhou, China. Cities 2013, 31, 123–131. [Google Scholar] [CrossRef]
- Evergreen. Urban Naturalization in Canada: A Policy and Program Guidebook. 2001. Available online: http://www.evergreen.ca/downloads/pdfs/Urban-Naturalization-in-Canada-1.pdf (accessed on 11 August 2021).
- Savard, J.-P.L.; Clergeau, P.; Mennechez, G. Biodiversity concepts and urban ecosystems. Landsc. Urban Plan. 2000, 48, 131–142. [Google Scholar] [CrossRef]
- Mayer, K.; Haeuser, E.; Dawson, W.; Essl, F.; Kreft, H.; Pergl, J.; Pysek, P.; Weigelt, P.; Winter, M.; Lenzner, B.; et al. Naturalization of ornamental plant species in public green spaces and private gardens. Biol. Invasions 2017, 19, 3613–3627. [Google Scholar] [CrossRef] [Green Version]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Pavao-Zuckerman, M.A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 2008, 16, 642–649. [Google Scholar] [CrossRef]
- Lososova, Z.; Chytry, M.; Tichy, L.; Danihelka, J.; Fajmon, K.; Hájek, O.; Kintrová, K.; Kühn, I.; Láníková, D.; Otýpková, Z.; et al. Native and alien floras in urban habitats: A comparison across 32 cities of central Europe. Glob. Ecol. Biogeogr. 2012, 21, 545–555. [Google Scholar] [CrossRef]
- Kowarik, I.; von der Lippe, M.; Cierjacks, A. Prevalence of alien versus native species of woody plants in Berlin differs between habitats and at different scales. Preslia 2013, 85, 113–132. [Google Scholar]
- Pergl, J.; Sadlo, J.; Petrık, P.; Danihelka, J.; Chrtek, J., Jr.; Hejda, M.; Moravcova, L.; Perglova, I.; Stajerova, K.; Pysek, P. Dark side of the fence: Ornamental plants as a source for spontaneous flora of the Czech Republic. Preslia 2016, 88, 163–184. [Google Scholar]
- McLean, P.; Gallien, L.; Wilson, J.R.U.; Gaertner, M.; Richardson, D.M. Small urban centres as launching sites for plant invasions in natural areas: Insights from South Africa. Biol. Invasions 2017, 19, 3541–3555. [Google Scholar] [CrossRef]
- Nehring, S.; Kowarik, I.; Rabitsch, W.; Essl, F. Naturschutzfachliche Invasivitätsbewertungen für in Deutschland Wild Lebende Gebietsfremde Gefäßpflanzen; BfN-Skripten, Bundesamt für Naturschutz: Bonn, Germany, 2013. [Google Scholar]
- Pysek, P.; Jarosik, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vila, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Clement, E.J.; Foster, M.C. Alien Plants of the British Isles; Botanical Society of Britain & Ireland: London, UK, 1994; p. 590. [Google Scholar]
- Lehan, N.E.; Murphy, J.R.; Thorburn, L.P.; Bradley, B.A. Accidental introductions are an important source of invasive plants in the continental United States. Am. J. Bot. 2013, 100, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Groves, R.H. Recent Incursions of Weeds to Australia 1971–1995; CRC for Weed Management Systems Technical Series, No. 3; CRC for Weed Management Systems: Adelaide, Australia, 1998; pp. 1–74. [Google Scholar]
- Faulkner, K.T.; Robertson, M.P.; Rouget, M.; Wilson, J.R.U. Understanding and managing the introduction pathways of alien taxa: South Africa as a case study. Biol. Invasions 2016, 18, 73–87. [Google Scholar] [CrossRef]
- Vila, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarosik, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pysek, P. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef]
- Pysek, P.; Danihelka, J.; Sadlo, J.; Chrtek, J., Jr.; Chytry, M.; Jarosık, V.; Kaplan, Z.; Krahulec, F.; Moravcova, L.; Pergl, J.; et al. Catalogue of alien plants of the Czech Republic (2nd ed.): Checklist update, taxonomic diversity and invasion patterns. Preslia 2012, 84, 155–255. [Google Scholar]
- Schaefer, V. Alien Invasions, ecological restoration in cities and the loss of ecological memory. Restor. Ecol. 2009, 17, 171–176. [Google Scholar] [CrossRef]
- Millwood, A.A.; Paudel, K.; Briggs, S.E. Naturalization as a strategy for improving soil physical characteristics in a forested urban park. Urban Ecosyst. 2011, 14, 261–278. [Google Scholar] [CrossRef]
- Alakukku, L. Persistence of soil compaction due to high axle load traffic. II. Long-term effects on the properties of fine-textured and organic soils. Soil Tillage Res. 1996, 37, 223–238. [Google Scholar] [CrossRef]
- Gomez, A.; Powers, R.F.; Singer, M.J.; Horwath, W.R. Soil compaction effects on growth of young ponderosa pine following litter removal in California’s Sierra Nevada. Soil Sci. Soc. Am. J. 2002, 66, 1334–1343. [Google Scholar] [CrossRef]
- Environment Canada. Canadian Climate Normals 1981–2010 Bindloss East Station Data. 2021. Available online: https://climate.weather.gc.ca/climate_normals/index_e.html (accessed on 12 July 2021).
- Loeppert, R.H.; Suarez, D.L. Carbonate and gypsum. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 437–474. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Chapman, H.D. Cation-exchange capacity. In Methods of Soil Analysis; Black, C.A., Ed.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1965; pp. 891–901. [Google Scholar]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Ion exchange and exchangeable cations. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science: Boca Raton, FL, USA, 2008; pp. 199–201. [Google Scholar]
- Bremner, J.M. Nitrogen—Total. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Maynard, D.G.; Kalra, Y.P.; Crumbaugh, J.A. Nitrate and exchangeable ammonium nitrogen. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science: Boca Raton, FL, USA, 2008; pp. 71–80. [Google Scholar]
- Ashworth, J.; Mrazek, K. Modified Kelowna test for available phosphorus and potassium in soil. Commun. Soil Sci. Plant Anal. 1995, 26, 731–739. [Google Scholar] [CrossRef]
- Miller, J.J.; Curtin, D. Electronical conductivity and soluble ions. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; Canadian Soil Science Society: Madison, WI, USA; CRC Press and Taylor and Francis Group: Boca Raton, FL, USA, 2007; pp. 153–166. [Google Scholar]
- Burt, R. ; Soil Survey Staff. Soil Survey Field and Laboratory Methods Manual, Version 2.0; Soil Survey Investigations Report No. 51; US Department of Agriculture, Natural Resources Conservation Service, USDA: Washington, DC, USA, 2004. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1244466.pdf (accessed on 1 July 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.Rproject.org/ (accessed on 26 June 2021).
- Buonopane, M.; Snider, G.; Kerns, B.K.; Doescher, P.S. Complex restoration challenges: Weeds, seeds, and roads in a forested wildland urban interface. For. Ecol. Manag. 2013, 295, 87–96. [Google Scholar] [CrossRef]
- Vetterlein, J.; Hüttl, D. Can applied organic matter fulfill similar functions as soil organic matter? Risk benefit analysis for organic matter application as a potential strategy for rehabilitation of disturbed ecosystems. Plant Soil 1999, 213, 1–10. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Lloyd, J.E.; Johnson-Maynard, J.L. Distinguishing urban soils with physical, chemical and biological properties. Pedobiologia 2005, 49, 283–296. [Google Scholar] [CrossRef]
- Skrindo, A.B.; Pedersen, P.A. Natural revegetation of indigenous roadside vegetation by propagules from topsoil. Urban For. Urban Green. 2004, 3, 29–37. [Google Scholar] [CrossRef]
- Louda, S.M. Predation in the dynamics of seed regeneration. In Ecology of Soil Seed Banks; Leck, M.A., Parker, V.T., Simpson, R.L., Eds.; Academic Press: New York, NY, USA, 1989; pp. 25–51. [Google Scholar]
- Radosevich, S.R.; Holt, J.S.; Ghersa, C.M. Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management; John Wiley and Sons: Hoboken, NJ, USA, 2007; p. 472. [Google Scholar]
- Fortuna-Antoszkiewicz, B.; Łukaszkiewicz, J.; Rosłon-Szeryńska, E.; Wysocki, C.; Wiśniewski, P. Invasive Species and Maintaining Biodiversity in the Natural Areas—Rural and Urban—Subject to Strong Anthropogenic Pressure. J. Ecol. Eng. 2018, 19, 14–23. [Google Scholar] [CrossRef]
Properties | 0% Compost | 20% Compost | 50% Compost | 100% Compost | ||||
---|---|---|---|---|---|---|---|---|
Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | Year 1 | Year 2 | |
pH | 6.6(0.1) | 6.8 (0.1) | 6.3(0.2) | 6.6(0.1) | 6.3(0.1) | 6.1(0.1) | 5.5(0.2) | 5.8(0.1) |
EC (dS m−1) | 0.6(0.1)c | 0.7(0.0)y | 2.6(0.5)b | 1.7(0.3)x | 4.3(0.4)a | 2.3(0.4)x | 5.6(0.4)a | 2.5(0.4)x |
SAR | 0.5(0.1) | 0.6 (0.1) | 0.4(0.0) | 0.4(0.1) | 0.5(0.0) | 0.4(0.0) | 0.5(0.1) | 0.3(0.0) |
Total Carbon (%) | 6.0(0.4)b | 4.2 (0.3)y | 4.1(0.7)b | 3.6(0.5)y | 5.3(0.3)b | 6.0(1.2)y | 19.4(0.5)a | 17.6(1.4)x |
TOC (%) | 6.0(0.4)b | 4.1 (0.3)y | 4.1(0.7)b | 3.5(0.5)y | 5.3(0.3)b | 6.0(1.2)y | 19.3(0.5)a | 17.4(1.4)x |
Total Nitrogen (%) | 0.5(0.0)b | 0.4 (0.0)y | 0.3(0.1)b | 0.4(0.1)y | 0.4(0.0)b | 0.5(0.1)y | 1.5(0.0)a | 1.4(0.1)x |
Ammonium (mgL−1) | 10.7(1.4)b | 6.6 (2.5)y | 10.1(5.1)b | 2.1(0.3)y | 11.7(2.1)b | 3.0(0.6)y | 75.7(11.2)a | 17.3(7.4)x |
Nitrate (mgL−1) | 25.8(3.3)d | 12.9 (2.1)y | 87.0(23.2)c | 128.0(105.1)x | 175.6(31.8)b | 35.6(10)y | 612.8(109.3)a | 134.1(62.0)x |
Phosphate (mgL−1) | 52.7(12.1)c | 34.9(6.8)z | 405.3(145)b | 213.0(11.2)y | 526.2(22.4)b | 554.0(89.8)x | 2801.7(109.3)a | 1615.0(173.2)w |
Potassium (mgL−1) | 722.0(67.4)b | 544.5 (63.8)x | 192.0(11.9)d | 187.3(12.1)z | 324.7(9.0)c | 385.5(52.3)y | 1280.0(48.6)a | 1080.8(100.8)w |
Sulfate (mgL−1) | 14.0(2.2)d | 20.1(3.8)z | 123.0(23.6)c | 69.4(23.9)y | 318.7(32.4)b | 131.8(41.1)y | 1253.7(135.7)a | 524.1(141.1)x |
Calcium (mgL−1) | 58.5(3.9)d | 87.2 (5.2)y | 311.1(53.1)c | 269.7(48.2)x | 549.8(75.7)b | 360.0(61.0)x | 1112.5(145.4)a | 364.8(66.3)x |
CEC (meq 100 g−1) | 39.1(1.5)b | 40.3 (5.2)y | 27.4(4.0)b | 31.2(5.0)y | 33.2(4.9)bc | 37.1(5.7)y | 60.8(2.2)a | 61.4(4.2)a |
Chloride (mgL−1) | 26.3(1.8)c | 23.7(1.3) | 25.6(5.0)c | 29.2(5.7) | 44.4(7.7)b | 36.2(6.9) | 95.3(16.5)a | 26.2(3.1) |
Copper (mgL−1) | 21.7(0.5)c | 1.1 (0.1)z | 31.8(3.5)c | 2.4(0.4)y | 61.3(5.9)b | 7.2(1.9)y | 316.5(5.9)a | 38.4(2.7)x |
Magnesium (mgL−1) | 16.2(1.2)d | 22.0 (1.6)z | 67.5(12.1)c | 59.9(11.8)y | 142.3(20.4)b | 103.2(21.2)x | 510.2(20.4)a | 144.8(32.2)x |
Sodium (mgL−1) | 15.2(2.8)c | 22.9 (5.8)y | 26.4(4.1)c | 28.5(5.8)x | 42.9(6.4)b | 30.5(4.6)x | 97.8(15)a | 28.2(4.1)x |
Zinc (mgL−1) | 91.2(2.9)c | 6.0 (0.7)z | 83.7(10.3)c | 10.1(1.7)z | 132.0(10.9)b | 25.7(6.7)y | 562.2(19.5)a | 111.8(6.9)x |
Treatment | Tree | Shrub | ||||||
---|---|---|---|---|---|---|---|---|
Populus balsamifera | Prunus virginiana | Populus tremuloides | Picea glauca | Salix exigua | Viburnum trilobum | Symphoricarpos albus | Rosa acicularis | |
Height change by site preparation treatment (cm) | ||||||||
Herbicide | −6.9 (3.2) | 1.3(1.0) | 5.7(3.4)b | 4.2(0.7)a | −9.0(3.2)b | −9.8(1.4) | 0.5(1.6)ab | 5.2(2.2)ab |
Herbicide tillage | −2.8(1.7) | 1.6(0.9) | 15.8(3.5)a | 5.9(0.8)a | 2.0(3.1)a | −5.2(1.0) | 4.4(1.9)a | 6.2(2.7)a |
Tillage | −7.3(2.0) | 0.6(2.9) | −2.8(1.9)bc | 1.7(0.5)b | −9.4(2.8)b | −8.4(1.3) | −5.4(1.2)bc | −2.0(2.1)ab |
Untreated | −7.4(2.1) | −3.2(0.8) | −5.7(1.6)c | 1.0(0.5)b | −9.5(2.7)b | −8.5(1.7) | −6.7(1.7)c | −3.0(1.5)b |
Height change by soil amendment treatment (cm) | ||||||||
Compost 100% | −3.3 (2.2) | 1.9(1.2) | 9.6(3.5) | 5.0(0.8)a | −2.8(3.3) | −8.9(1.6) | 2.4(2.1)a | 6.4(2.9) |
Compost 50% | −7.8(2.3) | −1.1(0.8) | 0.1(3.5) | 2.6(0.7)ab | −10.2(2.9) | −6.1(1.3) | −3.1(1.2)ab | −1.7(1.6) |
Compost 20% | −4.9(2.3) | 2.1(2.6) | 0.4(1.9) | 3.3(0.6)ab | −6.4(2.9) | −9.6(1.3) | −1.9(1.7)ab | 1.7(2.2) |
No compost | −8.3(2.6) | −1.7(0.7) | 3.6(2.4) | 1.8(0.5)b | −6.2(3.0) | −7.5(1.2) | −4.3(1.7)b | 0.2(1.9) |
Diameter change by site preparation treatment (mm) | ||||||||
Herbicide | 1.2(0.3)a | 0.3(0.5) | 1.1(0.3)ab | 0.7(0.2)ab | 1.3(0.3)a | 0.5(0.3) | 1.9(0.4)ab | 1.9(0.3)a |
Herbicide tillage | 0.4(0.2)ab | 0.4(0.2) | 1.7(0.4)a | 1.0(0.2)a | 1.2(0.5)a | 0.5(0.2) | 2.8(0.5)a | 1.3(0.4)ab |
Tillage | −0.1(0.3)b | 0.4(0.1) | 0.6(0.2)b | 0.6(0.1)ab | 0.03(0.2)ab | 0.2(0.2) | 0.7(0.3)b | 0.6(0.3)b |
Untreated | 0.3(0.4)ab | 0.02(0.1) | 0.1(0.2)b | 0.3(0.1)b | −0.5(0.4)b | −0.1(0.2) | 1.2(0.3)b | 0.2(0.1)b |
Diameter change by soil amendment treatment (mm) | ||||||||
Compost 100% | 0.9(0.4) | 0.01(0.5) | 1.5(0.4)a | 0.9(0.2)a | 0.6(0.3) | 0.5(0.2) | 1.6(0.4) | 1.3(0.4) |
Compost 50% | 0.5(0.3) | 0.5(0.2) | 0.4(0.3)b | 0.2(0.1)b | −0.2(0.5) | −0.2(0.2) | 2.2(0.4) | 0.9(0.3) |
Compost 20% | 0.02(0.3) | 0.4(0.1) | 0.6(0.3)ab | 0.8(0.2)ab | 0.4(0.2) | 0.1(0.2) | 1.7(0.4) | 1.1(0.3) |
No compost | 0.4(0.4) | 0.3(0.2) | 1.2(0.2)ab | 0.7(0.1)ab | 1.1(0.4) | 0.7(0.2) | 0.9(0.4) | 0.7(0.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, J.A.; Dhar, A.; Naeth, M.A. Urban Naturalization for Green Spaces Using Soil Tillage, Herbicide Application, Compost Amendment and Native Vegetation. Land 2021, 10, 854. https://doi.org/10.3390/land10080854
Rojas JA, Dhar A, Naeth MA. Urban Naturalization for Green Spaces Using Soil Tillage, Herbicide Application, Compost Amendment and Native Vegetation. Land. 2021; 10(8):854. https://doi.org/10.3390/land10080854
Chicago/Turabian StyleRojas, Jaime Aguilar, Amalesh Dhar, and M. Anne Naeth. 2021. "Urban Naturalization for Green Spaces Using Soil Tillage, Herbicide Application, Compost Amendment and Native Vegetation" Land 10, no. 8: 854. https://doi.org/10.3390/land10080854
APA StyleRojas, J. A., Dhar, A., & Naeth, M. A. (2021). Urban Naturalization for Green Spaces Using Soil Tillage, Herbicide Application, Compost Amendment and Native Vegetation. Land, 10(8), 854. https://doi.org/10.3390/land10080854