Landscape Attributes Best Explain the Population Trend of Wintering Greater White-Fronted Goose (Anser albifrons) in the Yangtze River Floodplain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Count Data of Greater White-Fronted Geese
2.3. Satellite Image Processing
2.4. Climatic Variables
2.5. Ecological Variables
2.6. Landscape Metrics
2.7. Statistical Analyses
3. Results
3.1. Changing of Population Sizes and Population Trends
3.2. Changing of Habitat from 1996 to 2019
3.3. Effect of Different Variables on Wintering Population Trends of the Greater White-Fronted Goose
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Area/km2 |
---|---|
1989 | 131.0022 |
2002 | 131.1035 |
2019 | 131.9908 |
Category | TM | ETM+ | OLI |
---|---|---|---|
5 July 1989 | 10 December 1999 | 2 August 2013 | |
9 April 1996 | 5 July 2000 | 24 December 2013 | |
25 December 1996 | 2 November 2000 | 1 May 2014 | |
22 August 1997 | 24 July 2001 | 5 August 2014 | |
7 September 1997 | 11 July 2002 | 5 June 2015 | |
10 November 1997 | 24 November 2005 | 30 December 2015 | |
8 July 1998 | 30 November 2007 | 23 June 2016 | |
15 December 1998 | 27 July 2008 | 16 December 2016 | |
29 September 1999 | 5 December 2009 | 12 July 2017 | |
21 November 2001 | 18 August 2010 | 19 December 2017 | |
8 November 2002 | 8 December 2010 | 3 August 2019 | |
7 August 2003 | 11 December 2011 | 23 November 2019 | |
13 December 2003 | 22 July 2012 | ||
9 August 2004 | 27 November 2012 | ||
15 December 2004 | 17 November 2014 | ||
12 August 2005 | 24 August 2018 | ||
30 July 2006 | 28 November 2018 | ||
21 November 2006 | |||
2 August 2007 | |||
10 December 2008 | |||
4 June 2009 | |||
28 July 2011 |
References
- Johnson, C.N.; Balmford, A.; Brook, B.W.; Buettel, J.C.; Galetti, M.; Lei, G.C.; Wilmshurst, J.M. Biodiversity losses and conservation responses in the Anthropocene. Science 2017, 356, 270–274. [Google Scholar] [CrossRef]
- Stephens, P.A.; Mason, L.R.; Green, R.E.; Gregory, R.D.; Sauer, J.R.; Alison, J.; Aunins, A.; Brotons, L.; Butchart, S.H.M.; Campedelli, T.; et al. Consistent response of bird populations to climate change on two continents. Science 2016, 352, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Pecl, G.T.; Araujo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengard, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, X.; Zhang, Y.; Cao, L.; Fox, A.D. Drivers of waterbird communities and their declines on Yangtze River floodplain lakes. Biol. Conserv. 2018, 218, 240–246. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Brotons, L.; Calladine, J.; Campedelli, T.; Escandell, V.; Flousek, J.; Grueneberg, C.; Haas, F.; Harris, S.; Herrando, S.; et al. Declining population trends of European mountain birds. Glob. Chang. Biol. 2019, 25, 577–588. [Google Scholar] [CrossRef] [Green Version]
- VanDerWal, J.; Murphy, H.T.; Kutt, A.S.; Perkins, G.C.; Bateman, B.L.; Perry, J.J.; Reside, A.E. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Chang. 2013, 3, 239–243. [Google Scholar] [CrossRef]
- Bowler, D.E.; Heldbjerg, H.; Fox, A.D.; de Jong, M.; Bohning-Gaese, K. Long-term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 2019, 33, 1120–1130. [Google Scholar] [CrossRef]
- Keddy, P.A. Wetland Ecology: Principles and Conservation; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Costanza, R. Nature: Ecosystems without commodifying them. Nature 2006, 443, 749. [Google Scholar] [CrossRef] [Green Version]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Mammides, C. A global assessment of the human pressure on the world’s lakes. Glob. Environ. Chang. 2020, 63, 102084. [Google Scholar] [CrossRef]
- Meng, W.; He, M.; Hu, B.; Mo, X.; Li, H.; Liu, B.; Wang, Z. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
- Gibbs, J.P. Wetland loss and biodiversity conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Zhang, Y.; Barter, M.; Lei, G. Anatidae in eastern China during the non-breeding season: Geographical distributions and protection status. Biol. Conserv. 2010, 143, 650–659. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Q.; Prins, H.H.T.; Cao, L.; de Boer, W.F. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River. Sci. Rep. 2015, 5, 17136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, E.F.; Courtney, A.C.; Yoder, J.M. Individuals–area relationships: The relationship between animal population density and area. Ecology 2000, 81, 734–748. [Google Scholar]
- Heuermann, N.; van Langevelde, F.; van Wieren, S.E.; Prins, H.H.T. Increased searching and handling effort in tall swards lead to a Type IV functional response in small grazing herbivores. Oecologia 2011, 166, 659–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.-H.; Chou, J.-Y.; Fang, W.-T. Habitat selection of wintering birds in farm ponds in Taoyuan, Taiwan. Animals 2019, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Durant, D.; Fritz, H.; Blais, S.; Duncan, P. The functional response in three species of herbivorous Anatidae: Effects of sward height, body mass and bill size. J. Anim. Ecol. 2003, 72, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Huang, X.; Mu, H.Q.; Yin, W. Impacts of land-use changes on the lakes across the Yangtze floodplain in China. Environ. Sci. Technol. 2017, 51, 3669–3677. [Google Scholar] [CrossRef]
- Fang, J.; Wang, Z.; Zhao, S.; Li, Y.; Tang, Z.; Yu, D.; Ni, L.; Liu, H.; Xie, P.; Da, L. Biodiversity changes in the lakes of the Central Yangtze. Front. Ecol. Environ. 2006, 4, 369–377. [Google Scholar] [CrossRef]
- Madsen, J.; Cracknell, G.; Fox, T. Goose Populations of the Western Palearctic: A Review of Status and Distribution; 8777724372; Wetland International: Wageningen, The Netherlands, 1999. [Google Scholar]
- Baker, J.; French, K.; Whelan, R.J. The edge effect and ecotonal species: Bird communities across a natural edge in southeastern Australia. Ecology 2002, 83, 3048–3059. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Yu, L.; Si, Y. Multi-scale habitat selection by two declining East Asian waterfowl species at their core spring stopover area. Ecol. Indic. 2018, 87, 127–135. [Google Scholar] [CrossRef]
- Wachob, D.G. The effect of thermal microclimate on foraging site selection by wintering mountain chickadees. Condor 1996, 98, 114–122. [Google Scholar] [CrossRef]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a metabolic theory of ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Guo, Q.; Hu, Z.M.; Li, S.G.; Li, X.R.; Sun, X.M.; Yu, G.R. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 2012, 18, 3624–3631. [Google Scholar] [CrossRef]
- Fox, A.D.; Elmberg, J.; Tombre, I.M.; Hessel, R. Agriculture and herbivorous waterfowl: A review of the scientific basis for improved management. Biol. Rev. 2017, 92, 854–877. [Google Scholar] [CrossRef] [PubMed]
- Nolet, B.A.; Fuld, V.N.; Van Rijswijk, M.E.C. Foraging costs and accessibility as determinants of giving-up densities in a swan-pondweed system. Oikos 2006, 112, 353–362. [Google Scholar] [CrossRef]
- Fan, Y.; Zhou, L.; Cheng, L.; Song, Y.; Xu, W. Foraging behavior of the Greater White-fronted Goose (Anser albifrons) wintering at Shengjin Lake: Diet shifts and habitat use. Avian Res. 2020, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.J.; Cao, L.; Klaassen, M.; Zhang, Y.; Fox, A.D. Avoiding competition? Site use, diet and foraging behaviours in two similarly sized geese wintering in China. Ardea 2015, 103, 27–38. [Google Scholar] [CrossRef]
- Cao, L.; Barter, M.; Zhao, M.; Meng, H.; Zhang, Y. A systematic scheme for monitoring waterbird populations at Shengjin Lake, China: Methodology and preliminary results. Chin. Birds 2011, 2, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Scaramuzza, P.; Micijevic, E.; Chander, G. SCL Gap-Filled Products: Phase One Methodology. Available online: https://www.usgs.gov/media/files/landsat-7-slc-gap-filled-products-phase-one-methodology (accessed on 9 May 2020).
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Meehan, T.D.; Jetz, W.; Brown, J.H. Energetic determinants of abundance in winter landbird communities. Ecol. Lett. 2004, 7, 532–537. [Google Scholar] [CrossRef]
- Marklund, O.; Sandsten, H.; Hansson, L.A.; Blindow, I. Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshw. Biol. 2002, 47, 2049–2059. [Google Scholar] [CrossRef]
- Tischendorf, L. Can landscape indices predict ecological processes consistently? Landsc. Ecol. 2001, 16, 235–254. [Google Scholar] [CrossRef]
- Li, X.; Si, Y.; Ji, L.; Gong, P. Dynamic response of East Asian Greater White-fronted Geese to changes of environment during migration: Use of multi-temporal species distribution model. Ecol. Model. 2017, 360, 70–79. [Google Scholar] [CrossRef]
- Gao, B.; Gong, P.; Zhang, W.; Yang, J.; Si, Y. Multiscale effects of habitat and surrounding matrices on waterbird diversity in the Yangtze River Floodplain. Landsc. Ecol. 2020, 36, 179–190. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1995; Volume 351.
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 3 October 2020).
- Pannekoek, J.; Van Strien, A. Trim 3 Manual (TRends & Indices for Monitoring Data); Statistics Netherlands: Voorburg, The Netherlands, 2005.
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitao, P.J. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002; p. 267. [Google Scholar]
- Callaghan, C.T.; Major, R.E.; Lyons, M.B.; Martin, J.M.; Kingsford, R.T. The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere 2018, 9, e02347. [Google Scholar] [CrossRef] [Green Version]
- Jefferies, R.L.; Drent, R.H.; Bakker, J.P. Connecting arctic and temperate wetlands and agricultural landscapes: The dynamics of goose populations in response to global change. In Wetlands and Natural Resource Management; Springer: Berlin/Heidelberg, Germany, 2006; pp. 293–314. [Google Scholar]
- Zou, Y.-A.; Zhang, P.-Y.; Zhang, S.-Q.; Chen, X.-S.; Li, F.; Deng, Z.-M.; Yang, S.; Zhang, H.; Li, F.-Y.; Xie, Y.-H. Crucial sites and environmental variables for wintering migratory waterbird population distributions in the natural wetlands in East Dongting Lake, China. Sci. Total Environ. 2019, 655, 147–157. [Google Scholar] [CrossRef]
- Snall, T.; Kindvall, O.; Nilsson, J.; Part, T. Evaluating citizen-based presence data for bird monitoring. Biol. Conserv. 2011, 144, 804–810. [Google Scholar] [CrossRef]
- Jia, Q.; Koyama, K.; Choi, C.-Y.; Kim, H.-J.; Cao, L.; Gao, D.; Liu, G.; Fox, A.D. Population estimates and geographical distributions of swans and geese in East Asia based on counts during the non-breeding season. Bird Conserv. Int. 2016, 26, 397–417. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, Q.; Solovyeva, D.; Lee, H.; Bysykatova-Harmey, I.; Xu, Z.; Ushiyama, K.; Shimada, T.; Koyama, K.; Park, J. Contrasting trends in two East Asian populations of the Greater White-fronted Goose Anser albifrons. Wildfowl 2020, 181–205. [Google Scholar]
- Fox, A.D.; Cao, L.; Zhang, Y.; Barter, M.; Zhao, M.J.; Meng, F.J.; Wang, S.L. Declines in the tuber-feeding waterbird guild at Shengjin Lake National Nature Reserve, China—A barometer of submerged macrophyte collapse. Aquat. Conserv. 2011, 21, 82–91. [Google Scholar] [CrossRef]
- Xu, C.; Huang, Z.Y.X.; Chi, T.; Chen, B.J.W.; Zhang, M.; Liu, M. Can local landscape attributes explain species richness patterns at macroecological scales? Glob. Ecol. Biogeogr. 2014, 23, 436–445. [Google Scholar] [CrossRef]
- Iknayan, K.J.; Beissinger, S.R. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl. Acad. Sci. USA 2018, 115, 8597–8602. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jia, Q.; Prins, H.H.T.; Cao, L.; de Boer, W.F. Individual-area relationship best explains goose species density in wetlands. PLoS ONE 2015, 10, e0124972. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, H.; Xu, X.; Yang, G.; Liu, G.; Li, X.; Chen, D. Changing land use and its impact on the habitat suitability for wintering Anseriformes in China’s Poyang Lake region. Sci. Total Environ. 2016, 557, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, L.; Cheng, L.; Song, Y. Water level management plan based on the ecological demands of wintering waterbirds at Shengjin Lake. Glob. Ecol. Conserv. 2021, 27, e01567. [Google Scholar] [CrossRef]
- Mei, X.F.; Dai, Z.J.; van Gelder, P.H.A.J.M.; Gao, J.J. Linking three gorges dam and downstream hydrological regimes along the Yangtze river, China. Earth Space Sci. 2015, 2, 94–106. [Google Scholar] [CrossRef]
- Han, X.X.; Feng, L.; Hu, C.M.; Chen, X.L. Wetland changes of China’s largest freshwater lake and their linkage with the Three Gorges Dam. Remote Sens. Environ. 2018, 204, 799–811. [Google Scholar] [CrossRef]
- Lai, X.J.; Liang, Q.H.; Jiang, J.H.; Huang, Q. Impoundment effects of the three-gorges-dam on flow regimes in two China’s largest freshwater lakes. Water Resour. Manag. 2014, 28, 5111–5124. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Zou, Y.A.; Xie, Y.H.; Zhang, S.Q.; Chen, X.S.; Li, F.; Deng, Z.M.; Zhang, H.; Tu, W. Hydrology-driven responses of herbivorous geese in relation to changes in food quantity and quality. Ecol. Evol. 2020, 10, 5281–5292. [Google Scholar] [CrossRef] [Green Version]
- Bakker, E.S.; Olff, H.; Gleichman, J.M. Contrasting effects of large herbivore grazing on smaller herbivores. Basic Appl. Ecol. 2009, 10, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Hole, D.G.; Willis, S.G.; Pain, D.J.; Fishpool, L.D.; Butchart, S.H.M.; Collingham, Y.C.; Rahbek, C.; Huntley, B. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 2009, 12, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Martay, B.; Brewer, M.J.; Elston, D.A.; Bell, J.R.; Harrington, R.; Brereton, T.M.; Barlow, K.E.; Botham, M.S.; Pearce-Higgins, J.W. Impacts of climate change on national biodiversity population trends. Ecography 2017, 40, 1139–1151. [Google Scholar] [CrossRef]
- Amano, T.; Szekely, T.; Wauchope, H.S.; Sandel, B.; Nagy, S.; Mundkur, T.; Langendoen, T.; Blanco, D.; Michel, N.L.; Sutherland, W.J. Responses of global waterbird populations to climate change vary with latitude. Nat. Clim. Chang. 2020, 10, 959–964. [Google Scholar] [CrossRef]
- Zhao, M.J.; Cong, P.H.; Barter, M.; Fox, A.D.; Cao, L. The changing abundance and distribution of Greater White-fronted Geese Anser albifrons in the Yangtze River floodplain: Impacts of recent hydrological changes. Bird Conserv. Int. 2012, 22, 135–143. [Google Scholar] [CrossRef] [Green Version]
Categories | Variables | Abbreviations | Sources |
---|---|---|---|
Climatic variables | Mean annual temperature | MAT | CMDSC |
CLIM | Mean temperature of the coldest quarter | MTCQ | CMDSC |
Mean temperature of the driest quarter | MTDQ | CMDSC | |
Min temperature of the coldest month | MTCM | CMDSC | |
Mean annual precipitation | MAP | CMDSC | |
Precipitation of the coldest quarter | PCQ | CMDSC | |
Precipitation of the driest quarter | PDQ | CMDSC | |
Temperature annual range | TAR | CMDSC | |
Temperature seasonality | TSN | CMDSC | |
Precipitation seasonality | PSN | CMDSC | |
Ecological variables | Mudflat area | MA | Image processing |
ECOL | Grassland area | GA | Image processing |
Emergent vegetation area | EVA | Image processing | |
NDVI | NDVI | Image processing | |
NDVI coefficient of variation | NDVICV | Image processing | |
Landscape metrics | Largest patch index of mudflat | MLPI | Image processing |
LAND | Patch density of mudflat | MPD | Image processing |
Connectance index of mudflat | MCONNECT | Image processing | |
Largest patch index of grassland | GLPI | Image processing | |
Patch density of grassland | GPD | Image processing | |
Connectance index of grassland | GCONNECT | Image processing | |
Largest patch index of emergent vegetation | EVLPI | Image processing | |
Patch density of emergent vegetation | EVPD | Image processing | |
Connectance index of emergent vegetation | EVCONNECT | Image processing | |
Largest patch index of lake area | LALPI | Image processing | |
Patch density of lake area | LAPD | Image processing | |
Connectance index of lake area | LACONNECT | Image processing | |
Simpson’s diversity index of lake area | LASIMP | Image processing | |
Simpson’s evenness index of lake area | LASIMPEVE | Image processing |
Models | Variables | Types | H1 |
---|---|---|---|
Model I | MAT | CLIM | + |
MTCQ | CLIM | + | |
MTCM | CLIM | + | |
MAP | CLIM | + | |
PCQ | CLIM | − | |
PDQ | CLIM | − | |
Model II | MA | ECOL | + |
GA | ECOL | + | |
EVA | ECOL | + | |
NDVI | ECOL | + | |
Model III | MCONNECT | LAND | + |
GLPI | LAND | + | |
GCONNECT | LAND | + | |
EVCONNECT | LAND | + | |
LACONNECT | LAND | + | |
LASIMPEVE | LAND | − |
Categories | Top Models | df | logLik | AICc | ∆AICc | wi | adj.R2 |
---|---|---|---|---|---|---|---|
CLIM | MAT | 3 | −31.810 | 70.820 | 0 | 0.078 | 0.095 |
CLIM | PCQ | 3 | −32.326 | 71.852 | 1.032 | 0.047 | 0.055 |
CLIM | MAT + PCQ | 4 | −30.927 | 71.959 | 1.139 | 0.044 | 0.119 |
CLIM | MAT + MTCQ | 4 | −31.043 | 72.192 | 1.372 | 0.039 | 0.111 |
CLIM | MAP + MAT | 4 | −31.195 | 72.495 | 1.675 | 0.034 | 0.099 |
CLIM | MAT + PDQ | 4 | −31.356 | 72.817 | 1.996 | 0.029 | 0.087 |
ECOL | GA + MA | 4 | −26.704 | 63.513 | 0 | 0.533 | 0.381 |
ECOL | EVA + GA + MA | 5 | −26.144 | 65.511 | 1.999 | 0.186 | 0.379 |
LAND | GCONNECT + GLPI + LASIMPEVE | 5 | −19.567 | 52.468 | 0 | 0.474 | 0.641 |
LAND | GCONNECT + GLPI + LACONNECT + LASIMPEVE | 6 | −18.984 | 54.449 | 1.981 | 0.140 | 0.640 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhang, Y.; Borzée, A.; Liang, T.; Zhang, M.; Shi, H.; Chen, B.; Xu, W.; Song, Y.; Mao, L. Landscape Attributes Best Explain the Population Trend of Wintering Greater White-Fronted Goose (Anser albifrons) in the Yangtze River Floodplain. Land 2021, 10, 865. https://doi.org/10.3390/land10080865
Chen S, Zhang Y, Borzée A, Liang T, Zhang M, Shi H, Chen B, Xu W, Song Y, Mao L. Landscape Attributes Best Explain the Population Trend of Wintering Greater White-Fronted Goose (Anser albifrons) in the Yangtze River Floodplain. Land. 2021; 10(8):865. https://doi.org/10.3390/land10080865
Chicago/Turabian StyleChen, Sheng, Yong Zhang, Amaël Borzée, Tao Liang, Manyu Zhang, Hui Shi, Bin Chen, Wenbin Xu, Yunwei Song, and Lingfeng Mao. 2021. "Landscape Attributes Best Explain the Population Trend of Wintering Greater White-Fronted Goose (Anser albifrons) in the Yangtze River Floodplain" Land 10, no. 8: 865. https://doi.org/10.3390/land10080865
APA StyleChen, S., Zhang, Y., Borzée, A., Liang, T., Zhang, M., Shi, H., Chen, B., Xu, W., Song, Y., & Mao, L. (2021). Landscape Attributes Best Explain the Population Trend of Wintering Greater White-Fronted Goose (Anser albifrons) in the Yangtze River Floodplain. Land, 10(8), 865. https://doi.org/10.3390/land10080865