Remote Sensing Monitoring and Evaluation of the Temporal and Spatial Changes in the Eco-Environment of a Typical Arid Land of the Tarim Basin in Western China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Research Data and Sources
2.2.1. Landsat Remote Sensing Image Data
2.2.2. MODIS Sensor Data
2.2.3. DEM Data
2.2.4. Hydrological Data
2.2.5. Meteorological Data
2.2.6. Pollution Data
2.3. Construction of the Ecological Index
2.3.1. Biological Richness Index
2.3.2. Vegetation Coverage Index
2.3.3. Water Network Denseness Index
2.3.4. Calculation of Land Stress Index
2.3.5. Calculation of Pollution Load Index
2.3.6. Classification and Analysis of Change in Eco-Environmental Status
3. Results
3.1. Biological Richness Index
3.2. Vegetation Coverage Index
3.3. Water Network Denseness Index
3.4. Land Stress Index
3.5. Pollution Load Index
3.6. Grading and Changes of Eco-Environmental Status
4. Discussion
4.1. The Reduction in Vegetation Coverage and Reforestation
4.2. The Drivers of Land Use Changes and the Desertification of Hyper-Arid Areas
4.3. The Pollution Load and the Necessary of Pollution Control
4.4. Applicability and Limitations of EI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, J.; Na, L.; Liu, B.; Zhang, T.; Wang, H. An Ecological Service System Based Study on Suburban Rural Landscape Multifunction. Land 2021, 10, 232. [Google Scholar] [CrossRef]
- Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118–126. [Google Scholar] [CrossRef]
- Snella, M.A.; Irvine, K.A. Importance of scalar and riparian habitat effects for assessment of ecological status using littoral diatoms. Ecol. Indic. 2013, 25, 149–155. [Google Scholar] [CrossRef]
- Handfield, R.; Walton, S.V.; Sroufe, R.; Melnyk, S.A. Applying environmental criteria to supplier assessment: A study in the application of the Analytical Hierarchy Process. Eur. J. Oper. Res. 2002, 141, 70–87. [Google Scholar] [CrossRef]
- Delfanti, L.; Colanton, A.; Zambon, I.; Salvat, L. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Li, T.; Li, X.; Liu, S. Goafwater storage and utilization in arid regions of northwest China: A case study of Shennan coal mine district. J. Clean. Prod. 2018, 202, 33–44. [Google Scholar] [CrossRef]
- Yu, X.; Hawley-Howard, J.; Pitt, A.L.; Wang, J.-J.; Baldwin, R.F.; Chow, A.T. Water quality of small seasonal wetlands in the Piedmont ecoregion, South Carolina, USA: Effects of land use and hydrological connectivity. Sci. Direct 2015, 73, 98–108. [Google Scholar] [CrossRef]
- Yang, Z.; Li, W.; Li, X.; Wang, Q.; He, J. Assessment of eco-geo-environment quality using multivariate data: A case study in a coal mining area of Western China. Ecol. Indic. 2019, 107, 105651. [Google Scholar] [CrossRef]
- Pandey, S.K.; Bhattacharya, T. Mobility, Ecological risk and change in surface morphology during sequential chemical extraction of heavy metals in fly ash: A case study. Environ. Technol. Innov. 2019, 13, 373–382. [Google Scholar] [CrossRef]
- Popp, J.H.; Hyatt, D.E.; Hoag, D. Modeling environmental condition with indices: A case study of sustainability and soil resources. Ecol. Model. 2000, 30, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Yang, S. Assessment of Eco-Environmental Stress in the Western Taiwan Straits Economic Zone. Sustainability 2015, 7, 2716–2729. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Yan, T.; Ding, X.; Peng, S.; Chen, H.; Fu, Y. Response of ecological quality to the evolution of land use structure in Taiyuan during 2003 to 2018. Alex. Eng. J. 2021, 60, 1777–1785. [Google Scholar] [CrossRef]
- Feng, D.; Bao, W.; Fu, M.; Zhang, M.; Sun, Y. Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model. Land 2021, 10, 286. [Google Scholar] [CrossRef]
- Xu, F.; Zhou, J.; Li, B.; Cao, J.; Tao, S. Multi -step Fuzzy Cluster Analysis for Comprehensive Assessment of Urban Environmental Quality. Urban Environ. Urban Ecol. 2001, 14, 13–15. (In Chinese) [Google Scholar]
- Yu, L.; Yi, W. Application Research of Analytic Hierarchy Process (AHP) in Urban Ecotope Quality Evaluation. Sichuan Environ. 2002, 21, 38–40. (In Chinese) [Google Scholar] [CrossRef]
- Hao, Y.; Zhou, H. A Grey Assessment Model of Regional Eco-evironment Quality and Its Application. Environ. Eng. 2002, 20, 66–70. (In Chinese) [Google Scholar] [CrossRef]
- Tang, L.; Zhang, L.; Wang, Z. Application of Artificial Neural Network to the Assessment of Eco-environment Quality. Sichuan Environ. 2003, 22, 69–72. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, H. A Preliminary Study on Advances in Assessment of Eco-environmental Quality in China. Arid Land Geogr. 2003, 26, 166–172. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 33, 7853–7862. (In Chinese) [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. (In Chinese) [Google Scholar]
- China MoEaEotPsRo. Technical Criterion for Ecosystem Status Evaluation. 2015; p. 28, (In Chinese). Available online: http://english.mee.gov.cn/Resources/standards/Eco_Environment/201605/t20160512_337614.shtml (accessed on 10 October 2020).
- Zhang, Z. Eco-Environmental Monitoring and Evaluation of Tekes Watershed in Xinjiang Using Remote Sensing Images. Master’s Thesis, China University of Geosciences, Beijing, China, 2012. Available online: http://kns.cnki.net/kcms/detail/detail.aspx?DBCode=CMFD&DBName=CMFD201301&fileName=1012365210.nh (accessed on 1 February 2021).
- Lin, M. Evaluation of Ecological Environment Quality in Danjiangkou Water Source Area Based on RS and GIS in Hubei Province. Master’s Thesis, Hubei University, Wuhan, China, 2019. [Google Scholar] [CrossRef]
- Gong, Z.; Li, M. Research on the Method of Assessment of Natural Ecology for Tibet Plateau Ecological Shelter Zone. Geomat. Spat. Inf. Technol. 2020, 43, 88–92, 95. Available online: http://kns.cnki.net/kcms/detail/detail.aspx?DBCode=CJFD&DBName=CJFDLAST2020&fileName=DBCH202011025 (accessed on 1 February 2021).
- Kasim, Y. Spatial-Temporal Differentiation and Influence Factors of Economic-Ecosystem Coupling in Ebinur Lake. Ph.D. Thesis, Xinjiang University, Urumqi, China, 2019. Available online: http://kns.cnki.net/kcms/detail/detail.aspx?DBCode=CJFD&DBName=CJFDLAST2020&fileName=DBCH202011025//kns.cnki.net/kcms/detail/detail.aspx?DBCode=CDFD&DBName=CDFDLAST2019&fileName=1019608487.nh (accessed on 25 September 2020).
- Liu, H.; Liu, Z. Analysis on the Status and Variations of Ecological Environment in the Pearl River Delta Urban Agglomeration from 2011 to 2015. China Resour. Compr. Util. 2019, 37. [Google Scholar] [CrossRef]
- Ouyang, L.; Ma, H.; Wang, Z.; Wang, Z.; Yu, X. Assessment of ecological environment in Chifeng City based on Landsat imagery. China Environ. Sci. 2020, 40, 5075. [Google Scholar] [CrossRef]
- Chen, L. Study on the Ecological Environment of Manas River Basin Shihezi. Master’s Thesis, Shihezi University, Shihezi, China, 2020. [Google Scholar] [CrossRef]
- He, K.; Wu, S.; Yang, Y.; Wang, D.; Zhang, S.; Yin, N. Dynamic changes of land use and oasis in Xinjiang in the last 40 years. Arid Land Geogr. 2018, 46, 1333–1340. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Z.; Chang, N.-B.; Oppc, C.; Hennig, T. Spatial and temporal characteristics of aridity conditions in Tarim Basin, China. Earth Resour. Environ. Remote Sens. GIS Appl. 2010, 7831, 78311R. [Google Scholar] [CrossRef]
- Tan, R. Research on the Pattern and Path of Industrala Poverty Alleviation in Hetian, Xinjiang. Master’s Thesis, Tianjing Normal University, Tianjing, China, 2020. (In Chinese). [Google Scholar] [CrossRef]
- Wang, Q.; Ma, Z.; Ma, Q.; Liu, M.; Yuan, X.; Mu, R.; Zuo, J.; Zhang, J.; Wang, S. Comprehensive evaluation and optimization of agricultural system: An emergy approach. Ecol. Indic. 2019, 107, 105650. [Google Scholar] [CrossRef]
- Kosmas, C.; Kirkby, M.J.; Geeson, N. (Eds.) EC-European Commission The Medalus Project: Mediterranean Desertification and Land Use: Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; Directorate-General Science, Research and Development: Paris, France, 1999. [Google Scholar]
- Yuan, Y.; Na, Z.; Yongdong, W. Comparative study of desertification control policies and regulations in representative countries of the Belt and Road Initiative. Glob. Ecol. Conserv. 2021, 27, e01577. [Google Scholar] [CrossRef]
- Wang, T. Review and Prospect of Research on Oasification and Desertification in Arid Regions. Acta Geogr. Sin. 2004, 29, 1–9. Available online: http://kns.cnki.net/kcms/detail/detail.aspx?DBCode=CJFD&DBName=CJFDLAST2020&fileName=DBCH202011025//kns.cnki.net/kcms/detail/detail.aspx?DBCode=CJFD&DBName=CJFD2004&fileName=DLXB200402006 (accessed on 20 May 2021).
- Chen, X.; Chang, C.; Bao, A.; Wu, S.; Luo, G. Spatial pattern and characteristics of land cover change in Xinjiang since past 40 years of the economic reform and opening up. Arid Land Geogr. 2020, 43, 1–11. (In Chinese) [Google Scholar] [CrossRef]
- Dias, V.; Belcher, K. Value and provision of ecosystem services from prairie wetlands: A choice experiment approach. Ecosyst. Serv. 2015, 15, 35–44. [Google Scholar] [CrossRef]
- Serra, P.; Vera, A.; Tulla, A.F.; Salvati, L. Beyond urbanerural dichotomy: Exploring socioeconomic and land-use processes of change in Spain (1991–2011). Appl. Geogr. 2014, 55, 71–81. [Google Scholar] [CrossRef]
- Britannica. Available online: https://www.britannica.com/science/habitat-biology (accessed on 13 August 2021).
- Hughes, R.M.; Herlihy, A.T.; Kaufmann, P.R. An Evaluation of Qualitative Indexes of Physical Habitat Applied to Agricultural Streams in Ten, U.S. States. J. Am. Water Resour. Assoc. 2010, 46, 792–806. [Google Scholar] [CrossRef]
- Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Angulo, E. The Tomlinson Pollution Load Index applied to heavy metal, ‘Mussel-Watch’ data: A useful index to assess coastal pollution. Sci. Total Environ. 1996, 187, 19–56. [Google Scholar] [CrossRef]
- Chang, J. Evaluation of Eco-Environmental Quality in Arid Region Based on Spatio-Temporal Dynamics: A Case Study of Shiyang River Basin in Gansu Province. Ph.D. Thesis, Shanxi Narmal University, Xi’an, China, 2011. [Google Scholar]
- Wang, J.; Ma, J.; Xie, F.; Xu, X. Improvement of remote sensing ecological index in arid regions: Taking Ulan Buh Desert as an example. Chin. J. Appl. Ecol. 2020, 31, 3795–3804. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Qiao, M.; Miu, Y. Evaluation and dynamic analysis of ecological environment quality in Yili River Basin based on GIS. Arid Land Geogr. 2008, 31. [Google Scholar] [CrossRef]
- Ding, Y.; Abdirahman, H.; Chen, X.; Mukaddas, A. Spatial-temporal changes in vegetation characteristics and climate in Hotan Prefecture. Acta Ecol. Sin. 2020, 40, 1258–1268. [Google Scholar] [CrossRef]
- Peng, J.; Liu, T.; Huang, Y.; Ling, Y.; Li, Z.; Bao, A.; Chen, X.; Kurban, A.; De Maeyer, P. Satellite-Based Precipitation Datasets Evaluation Using Gauge Observation and Hydrological Modeling in a Typical Arid Land Watershed of Central Asia. Remote Sens. 2021, 13, 221. [Google Scholar] [CrossRef]
- Wang, H.; He, M.; Yan, W.; Ai, J.; Chu, J. Ecosystem vulnerability in the Tianshan Mountains and Tarim Oasis based on remote sensed gross primary productivity. Acta Ecol. Sin. 2021, 41, 24. Available online: https://kns.cnki.net/kcms/detail/11.2031.Q.20210803.1506.054.html (accessed on 20 May 2021).
- Gao, F.; Deng, F. Preliminary study on the transfer of factors of agricultural production in xinjiang. J. Xinjiang Univ. 1993, 3, 51–55. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=XJDZ199303008&dbname=CJFD9093 (accessed on 1 February 2021).
- Sun, S.; Wang, L.; Che, K. Analysis of Vegetation Coverage Change in Diebu Forest of the Upper Bailong River Base on Landsat Satellite Data. J. Sichuan Agric. Univ. 2016, 34, 39–41. (In Chinese) [Google Scholar]
- Jie, W.; Dongwei, L.; Jiali, M.; Yingnan, C.; Lixin, W. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin. J. Arid Land 2021, 13, 40–55. [Google Scholar] [CrossRef]
- Daniela, S.; Tomaso, C.; Sofia, B.; Luca, S.; Luigi, P. Linking trajectories of land change, land degradation processes and ecosystem services. Environ. Res. 2016, 147, 590–600. [Google Scholar] [CrossRef]
- Kordrostami, F.; Attarod, P.; Abbaspour, K.C.; Ludwig, R.; Etemad, V.; Alilou, H.; Bozorg-Haddad, O. Identification of optimum afforestation areas considering sustainable management of natural resources, using geo-environmental criteria. Ecol. Eng. 2021, 168, 106259. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China. Agric. Water Manag. 2018, 203, 37–52. [Google Scholar] [CrossRef]
- Duarte, B.; Goessling, J.W.; Marques, J.C.; Caçador, I. Ecophysiological constraints of Aster tripolium under extreme thermal events impacts: Merging biophysical, biochemical and genetic insights. Plant Physiol. Biochem. 2015, 97, 217–228. [Google Scholar] [CrossRef]
- Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto Int. 2008, 21, 21–28. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Guirado, E.; Maestre, F.T. Desertifying deserts. Nat. Sustain 2020, 3, 572–575. [Google Scholar] [CrossRef]
- Briner, S.; Elkin, C.; Huber, R. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. J. Environ. Manag. 2013, 129, 414–422. [Google Scholar] [CrossRef]
- Liu, Y. Combined Utilization Research of Surface Water and Groundwater in Oasis Irrigation District of Southern Margin of Tarim Basin—A Case Study of Cele Oasis. Master’s Thesis, Xinjiang Unversity, Urumqi, China, 2019. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2019&filename=1019608491.nh&v=9Vj%25mmd2BSkieQH4SL%25mmd2FpBzrvC6xpWG8rrdFxdS6NsiAIST6wcAriVH%25mmd2FIxzUpieliHOw0T (accessed on 1 February 2021).
Level | Categories | Vegetation Coverage Rate (%) | Descriptions |
---|---|---|---|
I | Extremely Low | 0~20% | Vegetation coverage rate is extremely low; only has little vegetation; almost barren lands. |
II | Low | 20~40% | Vegetation coverage rate is low; has little vegetation. |
III | Medium | 40~60% | Vegetation coverage rate is medium; has some vegetation, but not dense. |
IV | High | 60~80% | Vegetation coverage rate is high; has much vegetation. |
V | Extremely High | 80~100% | Vegetation coverage rate is extremely high; has a great amount of vegetation; vegetation cover is dense. |
Level | Vegetation Coverage Rate (%) | Slope (°) | Land Use Types |
---|---|---|---|
I Slight | >70 | 0–8 | Water Surfaces |
II Mild | 70–50 | 8–15 | Forest |
III Moderate | 50–30 | 15–25 | Agriculture |
IV Strong | 30–10 | 25–35 | Grassland |
V Severe | <10 | >35 | Barren Land |
Level | The Value of EI | Descriptions |
---|---|---|
Excellent | EI ≥ 75 | High vegetation coverage; abundant biodiversity; stable ecosystem; extremely livable. |
Good | 55 ≤ EI < 75 | Good vegetation coverage and biodiversity; livable. |
Moderate | 35 ≤ EI < 55 | Moderate vegetation coverage and biodiversity; relatively livable; a few restrictive factors for people’s living. |
Relatively poor | 20 ≤ EI < 35 | Relatively poor vegetation coverage and biodiversity; not livable; some restrictive factors for people’s living. |
Poor | EI < 20 | Poor vegetation coverage and biodiversity; not livable; many restrictive factors for people’s living. |
Level | Variation | Descriptions |
---|---|---|
No obvious change | |ΔEI| < 1 | The eco-environment quality has no obvious change. |
Slight change | 1 ≤ |ΔEI| < 3 | If 1 ≤ ΔEI < 3, the eco-environment quality has improved slightly; if −1 ≥ ΔEI > −3, it has deteriorated slightly. |
Obvious change | 3 ≤ |ΔEI| < 8 | If 3 ≤ ΔEI < 8, the eco-environment quality has improved obviously; if −3 ≥ ΔEI > −8, it has deteriorated obviously. |
Significant change | |ΔEI| ≥ 8 | If ΔEI ≥ 8, the eco-environment quality has improved significantly; if ΔEI ≤−8, it has deteriorated significantly. |
Year | Forest | Grassland | Water Surfaces | Agriculture | Urban or Built-Up | Barren Land | Total Area | Biological Richness Index | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | km2 | ||
1995 | 33,639.13 | 13.55% | 9093.73 | 3.66% | 13,585.53 | 5.47% | 2555.60 | 1.03% | 2456.92 | 0.99% | 186,882.19 | 75.29% | 248,213.10 | 40.65 |
2009 | 16,768.48 | 6.76% | 30,349.04 | 12.23% | 23,065.30 | 9.29% | 3507.09 | 1.41% | 6308.89 | 2.54% | 168,218.42 | 67.77% | 248,217.21 | 43.30 |
2018 | 16,877.60 | 6.85% | 19,907.90 | 8.08% | 21,798.60 | 8.84% | 8036.65 | 3.26% | 22,566.50 | 9.15% | 157,339.00 | 63.82% | 246,526.25 | 40.55 |
Year | Extremely Low | Low | Moderate | High | Extremely High | Total Area | Vegetation Coverage Index | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | km2 | ||
2000 | 63,312.90 | 25.68% | 145,419.72 | 58.99% | 17,965.65 | 7.29% | 6845.36 | 2.78% | 12,983.96 | 5.27% | 246,527.59 | 74.27 |
2009 | 167,574.11 | 67.97% | 59,158.23 | 24.00% | 8828.43 | 3.58% | 3938.83 | 1.60% | 7028.09 | 2.85% | 246,527.69 | 54.77 |
2018 | 193,514.84 | 78.50% | 30,521.14 | 12.38% | 9154.66 | 3.71% | 5335.13 | 2.16% | 8001.89 | 3.25% | 246,527.65 | 47.78 |
Year | River Length (km) | Lake Area (km2) | Water Resources Quantity (km3) | Total Area (km2) | Water Network Denseness Index |
---|---|---|---|---|---|
1995 | 2648.35 | 228.14 | 7.32 | 246,527.00 | 0.49 |
2009 | 2648.35 | 272.00 | 7.64 | 246,527.00 | 0.52 |
2018 | 2648.35 | 269.04 | 11.01 | 246,527.00 | 0.52 |
Year | Severe Soil Erosion Area (km2) | Strong Soil Erosion Area (km2) | Urban or Built-Up Land Area (km2) | Other Soil Erosion Area (km2) | Total Area (km2) | Land Stress Index |
---|---|---|---|---|---|---|
1995 | 9767.59 | 58,779.60 | 2483.25 | 178,735.29 | 249,765.73 | 49.05 |
2009 | 11,456.07 | 143,798.12 | 6270.45 | 84,807.11 | 246,331.75 | 49.40 |
2018 | 11,288.79 | 147,621.79 | 22,543.83 | 64,877.26 | 246,331.67 | 49.37 |
Year | 1995 | 2009 | 2018 |
---|---|---|---|
COD Emissions (Ton) | 2346.12 | 5151.22 | 8024.32 |
Ammonia Nitrogen Emissions (Ton) | 389.14 | 832.91 | 1094.41 |
Sulfur Dioxide (Ton) | 1437.00 | 5817.00 | 4335.00 |
Smoke and Dust Emissions (Ton) | 2465.00 | 3440.00 | 3252.85 |
Nitrogen Oxides Emissions (Ton) | 346.43 | 652.32 | 778.69 |
Solid Waste Emissions (Ton) | 2516.00 | 4900.00 | 2163.00 |
Annual Precipitation (mm) | 519.00 | 500.40 | 579.50 |
Total Area (km2) | 246,527.00 | 246,527.00 | 246,527.00 |
Pollution Load Index | 10.00 | 22.42 | 27.34 |
Year | Biological Richness Index | Vegetation Coverage Index | Water Network Denseness Index | Land Stress Index | Pollution Load Index | Ecological Index |
---|---|---|---|---|---|---|
1995 | 40.65 | 74.27 | 0.52 | 49.05 | 10.00 | 24.76 |
2009 | 43.30 | 54.77 | 0.52 | 49.40 | 22.42 | 19.52 |
2018 | 40.55 | 47.78 | 0.49 | 49.37 | 27.34 | 16.32 |
Periods | ΔEI | Level |
---|---|---|
1995–2009 | −5.24 | Obvious Change |
2009–2018 | −3.20 | Obvious Change |
1995–2018 | −8.44 | Significant Change |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Yu, Y.; Gao, Y.; He, J.; Yu, X.; Malik, I.; Wistuba, M.; Yu, R. Remote Sensing Monitoring and Evaluation of the Temporal and Spatial Changes in the Eco-Environment of a Typical Arid Land of the Tarim Basin in Western China. Land 2021, 10, 868. https://doi.org/10.3390/land10080868
Sun L, Yu Y, Gao Y, He J, Yu X, Malik I, Wistuba M, Yu R. Remote Sensing Monitoring and Evaluation of the Temporal and Spatial Changes in the Eco-Environment of a Typical Arid Land of the Tarim Basin in Western China. Land. 2021; 10(8):868. https://doi.org/10.3390/land10080868
Chicago/Turabian StyleSun, Lingxiao, Yang Yu, Yuting Gao, Jing He, Xiang Yu, Ireneusz Malik, Malgorzata Wistuba, and Ruide Yu. 2021. "Remote Sensing Monitoring and Evaluation of the Temporal and Spatial Changes in the Eco-Environment of a Typical Arid Land of the Tarim Basin in Western China" Land 10, no. 8: 868. https://doi.org/10.3390/land10080868
APA StyleSun, L., Yu, Y., Gao, Y., He, J., Yu, X., Malik, I., Wistuba, M., & Yu, R. (2021). Remote Sensing Monitoring and Evaluation of the Temporal and Spatial Changes in the Eco-Environment of a Typical Arid Land of the Tarim Basin in Western China. Land, 10(8), 868. https://doi.org/10.3390/land10080868