Differences in the Content of Zn Fractions in the Profiles of Soils from Allotment and Domestic Gardens in South-Eastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling Site
2.3. Soil Sampling and Basic Soil Properties
2.4. Heavy Metal Determination and Sequential Extraction Procedure
2.5. Indices of Pollution
- ≤0: unpolluted;
- 0–1: unpolluted to moderately polluted;
- 1–2: moderately polluted;
- 2–3: moderately to highly polluted;
- 3–4: highly polluted;
- 4–5: highly to extremely highly polluted;
- ≥5: extremely highly polluted;
2.6. Statistical Analysis
3. Results
3.1. Basic Soil Properties
3.2. Zn Content
3.2.1. Total Zn Content
3.2.2. Bioavailable Zn Forms
3.2.3. Indices of Pollution
3.2.4. Sequential Extraction of Zn
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burghardt, W.; Schneider, T. Bulk density and content, density and stock of carbon, nitrogen and heavy metals in vegetable patches and lawns of allotments gardens in the northwestern Ruhr area, Germany. J. Soils Sediments 2018, 18, 407–417. [Google Scholar] [CrossRef]
- Leitão, E.; Cameira, M.R.; Costa, H.D.; Pacheco, J.M.; Henriques, M.J.; Martins, L.L.; Mourato, M.P. Environmental quality in urban allotment gardens: Atmospheric deposition, soil, water and vegetable assessment at Lisbon city. Water Air Soil Pollut. 2018, 229, 1–22. [Google Scholar] [CrossRef]
- Calmuc, V.A.; Calmuc, M.; Arseni, M.; Topa, C.M.; Timofti, M.; Burada, A.; Iticescu, C.; Georgescu, L.P. Assessment of heavy metal pollution levels in sediments and of ecological risk by quality indices, applying a case study: The Lower Danube River, Romania. Water 2021, 13, 1801. [Google Scholar] [CrossRef]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of contamination assessment of potentially toxic elements in the urban soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- Herbón, C.; Barral, M.T.; Paradelo, R. Potentially toxic trace elements in the urban soils of Santiago de Compostela (Northwestern Spain). Appl. Sci. 2021, 11, 4211. [Google Scholar] [CrossRef]
- Horváth, A.; Csáki, P.; Szita, R.; Kalicz, P.; Gribovszki, Z.; Bidló, A.; Bolodár-Varga, B.; Balázs, P.; Winkler, D. A Complex soil ecological approach in a sustainable urban environment: Soil properties and soil biological quality. Minerals 2021, 11, 704. [Google Scholar] [CrossRef]
- Pecina, V.; Brtnicky, M.; Balkova, M.; Hegrova, J.; Buckova, M.; Baltazar, T.; Licbinsky, R.; Radziemska, M. Assessment of soil contamination with potentially toxic elements and soil ecotoxicity of botanical garden in Brno, Czech Republic: Are urban botanical gardens more polluted than urban parks? Int. J. Environ. Res. Public Health 2021, 18, 7622. [Google Scholar] [CrossRef]
- Petukhov, A.; Kremleva, T.; Petukhova, G.; Khritokhin, N. Biochemical responses of medicinal plant Tussilago farfara L. to elevated heavy metal concentrations in soils of urban areas. Toxics 2021, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Morillo, E.; Romero, A.S.; Madrid, L.; Villaverde, J.; Maqueda, C. Characterization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water Air Soil Pollut. 2008, 187, 41–51. [Google Scholar] [CrossRef]
- Charzyński, P.; Bednarek, R.; Hudańska, P.; Świtoniak, M. Issues related to classification of garden soils from the urban area of Toruń, Poland. Soil Sci. Plant Nutr. 2018, 64, 132–137. [Google Scholar] [CrossRef]
- Alloway, B.J. Contamination of soils in domestic gardens and allotments: A brief overview. Land Contam. Reclam. 2004, 12, 179–187. [Google Scholar] [CrossRef]
- Bechet, B.; Joimel, S.; Jean-Soro, L.; Hursthouse, A.; Agboola, A.; Leitão, T.E.; Costa, H.; Cameira, M.R.; Le Guern, C.; Schwartz, C.; et al. Spatial variability of trace elements in allotment gardens of four European cities: Assessments at city, garden, and plot scale. J. Soils Sediments 2018, 18, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Bretzel, F.; Calderisi, M.; Scatena, M.; Pini, R. Soil quality is key for planning and managing urban allotments intended for the sustainable production of home-consumption vegetables. Environ. Sci. Pollut. Res. 2016, 23, 17753–17760. [Google Scholar] [CrossRef] [PubMed]
- Giusti, L. Heavy metals in urban soils of Bristol (UK). Initial screening for contaminated land. J. Soils Sediments 2011, 11, 1385–1398. [Google Scholar] [CrossRef]
- Weissmannová, H.D.; Pavlovský, J. Indices of soil contamination by heavy metals—methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 616. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Thomas, R.P.; Ure, A.M.; Davidson, C.M.; Littlejohn, D. Three stage sequential extraction Procedure for the determination of metals in river sediments. Anal. Chem. Acta 1994, 286, 423–429. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.H.; Muntau, H.; Griepink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communitie. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Klimat Polski 2020. IMGW. Available online: http://klimada.mos.gov.pl/zmiany-klimatu-w-polsce/tendencje-zmian-klimatu/ (accessed on 17 August 2021).
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Polish Soil Classification; Wydawnictwo Uniwersytetu Przyrodniczego We Wrocławiu, Polskie Towarzystwo Gleboznawcze: Wrocław-Warszawa, Poland, 2019. [Google Scholar]
- Polish Standard. Soil and Mineral Soil Materials—Sampling and Determination of Particle Size Distribution; PN-R-04032; Polish Committee for Standardization: Warszawa, Poland, 1998.
- Ostrowska, A.; Gawlinski, S.; Szczubiałka, Z. Methods of Analysis and Evaluation of Properties of Soils and Plants; Institute of Environmental Protection: Warsaw, Poland, 1991. [Google Scholar]
- Weissmannová, H.D.; Pavlovský, J.; Chovanec, P. Heavy metal contaminations of urban soils in Ostrava, Czech Republic: Assessment of metal pollution and using principal component analysis. Int. J. Environ. Res. 2015, 9, 683–696. [Google Scholar]
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Setlak, M.; Zaleski, T.; Waroszewski, J. Soil pollution indices conditioned by medieval metallurgical activity—A case study from Krakow (Poland). Environ. Pollut. 2016, 218, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- Dąbkowska–Naskręt, H.; Kędzia, W. Mobilność miedzi w uprawnych czarnych ziemiach kujawskich. Zesz. Naukowe. Pol. Akad. Nauk. Kom. Nauk. Przy Prezydium PAN Człowiek Sr. 1996, 14, 51–56. [Google Scholar]
- Bielicka-Giełdoń, A.; Ryłko, E.; Żamojć, K. Distribution, bioavailability and fractionation of metallic elements in allotment garden soils using the BCR sequential extraction procedure. Pol. J. Environ. Stud. 2013, 22, 1013–1021. [Google Scholar]
- Zalecenia Nawozowe, C.I. Liczby Graniczne do Wyceny Zawartości w Glebach Makro- i Mikroelementów; IUNG Puławy. Seria P(44): Puławy, Poland, 1990. [Google Scholar]
- Rozporządzenie Ministra Środowiska. w Sprawie Sposobu Prowadzenia Oceny Zanieczyszczenia Powierzchni Ziemi; Dz.U. z dn. 5 września 2016 Poz. 1395; Środowiskaed, M., Ed.; Ministry of the Environment of Poland: Warsaw, Poland, 2016.
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; PWN: Warsaw, Poland, 1999. [Google Scholar]
- Gorlach, E.; Brydak, K.; Gambuś, F. Distribution of heavy metals in soil profiles of the Cracow region. Pol. J. Soil Sci. 1993, 34, 35–42. [Google Scholar]
- Kabata–Pendias, A. Zawartość metali ciężkich w glebach uprawnych Polski. Pamięt Puł. 1981, 74, 101–111. [Google Scholar]
- Kawałko, D.; Chodak, T. Zawartość niektórych metali ciężkich w glebach i warzywach ogródków działkowych Wrocławia. Zesz. Probl. Postępów Nauk. Rol. 1996, 434, 949–954. [Google Scholar]
- Świercz, A.; Smorzewska, E. Variations in the zinc and lead content in surface layers of urban soils in Kielce (Poland) with regard to land use. J. Elem. 2015, 20, 449–461. [Google Scholar]
- Ciupa, T.; Suligowski, R.; Kozłowski, R. Trace metals in surface soils under different land uses in Kielce city, south-central Poland. Environ. Earth Sci. 2020, 79, 14. [Google Scholar] [CrossRef]
- Świercz, A.; Zajęcka, E. Accumulation of heavy metals in the urban soils of the city of Skarżysko-Kamienna (Poland) with regard to land use. Carpathian J. Earth Environ. 2018, 13, 249–266. [Google Scholar] [CrossRef]
- Kelly, J.; Thornton, I. Urban geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl. Geochem. 1996, 11, 363–370. [Google Scholar] [CrossRef]
- Kabała, C.; Chodak, T.; Szerszeń, L.; Karczewska, A.; Szopka, K.; Fratczak, U. Factors influencing the concentration of heavy metals in soils of allotment gardens in the city of Wrocław. Fresenius Environ. Bull 2009, 18, 622–630. [Google Scholar]
- Chojnicki, J.; Czarnowska, K. The changes of the contents of total and readily soluble phosphorus and Zn, Cu, Pb, Cd in agricultural soils under intensive cultivation. Soil Sci. Ann. 1993, 44, 99–111. [Google Scholar]
- Dąbkowska–Naskręt, H.; Kobierski, M. Metale ciężkie i ich mobilność w czarnych ziemiach aglomeracji Inowrocławia. Zesz. Probl. Postępów Nauk. Rol. 1998, 460, 259–267. [Google Scholar]
- Grzebisz, W.; Cieśla, L.; Komisarek, J.; Potarzycki, J. Geochemical assessment of heavy metals pollution of urban soils. Pol. J. Environ. Stud. 2002, 11, 493. [Google Scholar]
- Klimowicz, Z.; Melke, J. The content of heavy metals in soils in the vicinity of traffic roads using chosen stretches of road as examples. Soil Sci. Ann. 2000, 51, 36–45. [Google Scholar]
- Madrid, L.; Diaz-Barrientos, E.; Reinoso, R.; Madrid, F. Metals in urban soils of Sevilla: Seasonal changes and relations with other soil components and plant contents. Eur. J. Soil Sci. 2004, 55, 209–217. [Google Scholar] [CrossRef]
- Römkens, P.; Salomons, W. Cd, Cu and Zn solubility in arable and forest soils: Consequences of land use changes for metal mobility and risk assessment. Soil Sci. 1998, 163, 859–871. [Google Scholar] [CrossRef]
- Ruiz-Cortés, E.; Reinoso, R.; Díaz-Barrientos, E.; Madrid, L. Concentrations of potentially toxic metals in urban soils of Seville: Relationship with different land uses. Environ. Geochem. Health 2005, 27, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Terelak, H.; Tujaka, A. Występowanie pierwiastków śladowych w glebach użytków rolnych województwa podkarpackiego. Zesz. Probl. Postępów Nauk. Rol. 2003, 493, 245–252. [Google Scholar]
- Czarnowska, K. Total content of heavy metals in parent rocks as reference background levels of soils. Soil Sci. Ann. 1996, 47, 43–50. [Google Scholar]
- Terelak, H.; Piotrowska, M.; Motowicka-Terelak, T.; Stuczyński, T.; Budzyńska, K. Zawartość metali ciężkich i siarki w glebach użytków rolnych Polski oraz ich zanieczyszczenie tymi składnikami. Zesz. Probl. Postępów Nauk. Rol. 1995, 418, 45–59. [Google Scholar]
- Terelak, H.; Tujaka, A.; Motowicka-Terelak, T. Trace element content (Cd, Cu, Ni, Pb, Zn) in farm—Land soils in Poland. Arch. Ochr. Środ. 2001, 27, 159–174. [Google Scholar]
- Ullrich, S.M.; Ramsey, M.H.; Helios–Rybicka, E. Total and exchangeable concentrations of heavy metals in soils near Bytom, an area of 180 Pb/Zn mining and smelting in Upper Silesia, Poland. Appl. Geochem. 1999, 14, 187–196. [Google Scholar] [CrossRef]
- Właśniewski, S. Pierwiastki śladowe w glebach ogrodów działkowych Rzeszowa. Zesz. Probl. Postępów Nauk. Rol. 2003, 493, 279–287. [Google Scholar]
- Moćko, A.; Wacławek, W. Three—Step extraction procedure for determination of heavy metals availability to vegetables. Anal. Bioanal. Chem. 2004, 380, 813–817. [Google Scholar] [CrossRef]
- Chao, W.; Liu, X.; Li, Z.; Pei, W.; Guo, Z. Pb, Cu, Zn and Ni concentration in vegetables in relation to their extractable fractions in soils in suburban areas of Nanjing, China. Pol. J. Environ. Stud. 2007, 16, 199–207. [Google Scholar]
- Herencia, J.F.; Ruiz, J.C.; Morillo, E.; Melero, S.; Villaverde, J.; Maqueda, C. The effect of organic and mineral fertilization on micronutrient availability in soil. Soil Sci. 2008, 173, 69–80. [Google Scholar] [CrossRef]
- Kaasalainen, M.; Yli-Halla, M. Use of sequential extraction to assess metal partitioning in soils. Environ. Pollut. 2003, 126, 225–233. [Google Scholar] [CrossRef]
- Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef]
- Davidson, C.M.; Urquhart, G.J.; Ajmone-Marsan, F.; Biasioli, M.; Costa Duarte, A.; Diaz-Barrientos, E.; Grčman, H.; Hossack, I.; Hursthouse, A.; Madrid, L.; et al. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential procedure. Anal. Chim. Acta 2006, 565, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Mossop, K.F.; Davidson, C.M. Comparison of original and modified BCR sequential extraction procedures for the fractionation of cooper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta 2003, 478, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Dąbkowska-Naskręt, H.; Różański, S.; Bartkowiak, A. Forms and mobility of trace elements in soils of park areas from the city of Bydgoszcz, north Poland. Soil Sci. Ann. 2016, 67, 73–78. [Google Scholar] [CrossRef] [Green Version]
Fraction | Extracion Solvent | |
---|---|---|
I | Exchangeable and acid soluble | 0.11 M CH3COOH, pH = 2 |
II | Reducible | 0.1 mol·dm−3 NH2OH · HCl, pH = 2 |
III | Organic | 30% H2O2 + 1 mol·dm−3 CH3COONH4, pH = 2 |
IV | Residual | HNO3 + HClO4 |
Properties of Studied Soil | Zn Total | Zn Avail. | pH H2O | pH KCl | Crop | <0.002 |
---|---|---|---|---|---|---|
Zn total | 1.000 | 0.982 * | 0.616 | 0.627 | 0.879 ** | 0.009 |
Cf | 0.934 * | 0.965 * | 0.381 | 0.370 | 0.860 ** | −0.259 |
Zn available | 0.982 * | 1.000 | 0.599 | 0.595 | 0.929 * | −0.111 |
Ca/Ct | 0.385 | 0.509 | 0.644 | 0.595 | 0.689 *** | −0.189 |
Igeo | 0.915 * | 0.954 * | 0.389 | 0.392 | 0.890 ** | −0.292 |
I fraction | −0.226 | −0.081 | −0.121 | −0.206 | −0.029 | −0.551 |
II fraction | 0.470 | 0.582 | 0.669 *** | 0.647 | 0.784 *** | −0.196 |
III fraction | −0.035 | 0.111 | −0.070 | −0.114 | 0.241 | −0.197 |
IV fraction | −0.158 | −0.323 | −0.304 | −0.243 | −0.494 | 0.395 |
BF | 0.158 | 0.323 | 0.304 | 0.243 | 0.494 | −0.395 |
Properties of Studied Soil | Zn Total | Zn Avail. | pH H2O | pH KCl | Crop | <0.002 |
---|---|---|---|---|---|---|
Zn total | 1.000 | 0.942 * | 0.206 | 0.197 | 0.825 ** | −0.135 |
Cf | 0.909 * | 0.962 * | 0.287 | 0.272 | 0.638 | −0.356 |
Zn available | 0.942 * | 1.000 | 0.190 | 0.233 | 0.741 *** | −0.422 |
Ca/Ct | 0.377 | 0.648 | −0.102 | 0.094 | 0.285 | −0.855 ** |
Igeo | 0.886 ** | 0.915 * | 0.305 | 0.334 | 0.636 | −0.328 |
I fraction | −0.611 | −0.352 | −0.218 | −0.152 | −0.539 | −0.577 |
II fraction | −0.220 | −0.132 | −0.334 | −0.098 | 0.042 | −0.480 |
III fraction | −0.616 | −0.521 | −0.713 * | −0.613 | −0.386 | −0.302 |
IV fraction | 0.525 | 0.330 | 0.391 | 0.222 | 0.320 | 0.592 |
BF | −0.525 | −0.330 | −0.391 | −0.222 | −0.320 | −0.592 |
Statistic | Axis 1 | Axis 2 | Axis 3 | Axis 4 |
---|---|---|---|---|
Eigenvalues | 0.3490 | 0.3196 | 0.0977 | 0.0942 |
Explained variation (cumulative) | 34.90 | 66.86 | 76.63 | 86.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makuch-Pietraś, I.; Wójcikowska-Kapusta, A. Differences in the Content of Zn Fractions in the Profiles of Soils from Allotment and Domestic Gardens in South-Eastern Poland. Land 2021, 10, 886. https://doi.org/10.3390/land10090886
Makuch-Pietraś I, Wójcikowska-Kapusta A. Differences in the Content of Zn Fractions in the Profiles of Soils from Allotment and Domestic Gardens in South-Eastern Poland. Land. 2021; 10(9):886. https://doi.org/10.3390/land10090886
Chicago/Turabian StyleMakuch-Pietraś, Iwona, and Anna Wójcikowska-Kapusta. 2021. "Differences in the Content of Zn Fractions in the Profiles of Soils from Allotment and Domestic Gardens in South-Eastern Poland" Land 10, no. 9: 886. https://doi.org/10.3390/land10090886
APA StyleMakuch-Pietraś, I., & Wójcikowska-Kapusta, A. (2021). Differences in the Content of Zn Fractions in the Profiles of Soils from Allotment and Domestic Gardens in South-Eastern Poland. Land, 10(9), 886. https://doi.org/10.3390/land10090886