Comparison of Models for Spatial Distribution and Prediction of Cadmium in Subtropical Forest Soils, Guangdong, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling, Processing, and Application
2.3. DEM-Derived Topo-Hydrologic Variables
- Extracting DEM data that were derived from stereo images of Cartosat-1 (IRS-P5) with 12.5 m-resolution [48];
- Subsampling the obtained DEM data and recasting to 10 m resolution DEM;
- Linking DEM dataset with soil sampling information.
2.4. Statistical Methods and Models
2.4.1. Principal Component Analysis, Multi-Variate Regression Analysis, and Correlation Analysis
2.4.2. Artificial Neural Network Model
Development Principle of Artificial Neural Network Model
Selection of Model Inputs
Model Fitting and Validation
Accuracy Assessment of ANN Model
- Root-mean-square error (RMSE) or root-mean-square deviation (RMSD), as described by Hyndman and Koehler [52], as follows:
- Coefficient of determination (r2): The proportion of variation explained by each ANN model:
- Relative overall accuracy (ROA): A relative accuracy indicator of model predictions. Model predictions were considered to be relatively accurate if they were within a certain variation range of measurements [33]. In other words, if we use a threshold of relative error as a criterion, out of all prediction points, the total number of model predictions with relative error within ±% will be a relatively good indicator of model prediction accuracy. For example, ROA ± 5% was calculated by counting all predictions within a ±5% range of the measurement over the total measurement points as follows:
Best ANN Model Determination
2.5. Other Statistical Analyses
3. Results
3.1. Cd Variation in Soil Samples
3.2. Major Variables Influencing the Cd Concentration
3.3. ANN Model Performance for Predicting Soil Cd Concentrations in Different Soil Layers in the Study Area
4. Discussion
4.1. Implication of Cd Measurement in the Forest Ecosystem in Yunfu Area
4.2. Leading Factors Impacting the Concentration and Distribution of Cd in Forest Soils
4.3. The Challenge for Predicting Soil Cd Concentration with Multiple-Variable Regression and ANN Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitrikeski, J.; Mitkova, T.; Stikova, E. Contents of soluble forms of heavy metals (cu, cd, pb, zn and co) in cinnamonic forest soils in kumanovo and prilep region. Zb. Zemjod. Fak. Univ. St. Kiril Metod. Skopje 1997, 42, 11–15. (In Macedonian) [Google Scholar]
- Vuksic, N.; Speranda, M. Distribution of heavy metals (cd, pb, hg, as) and essential elements (fe, se) in forest soil and plant communities of the state open hunting area “krndija ii” xiv/23. [croatian]. Šumarski List 2016, 140, 147–153. [Google Scholar]
- Cao, S.; Anxiang, L.; Jihua, W.; Lili, H. Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area. Sci. Total Environ. 2016, 580, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.; Refsgaard, A.; Raulund-Rasmussen, K.; Strobel, B.; Hansen, H. Content, distribution, and solubility of cadmium in arable and forest soils. Soil Sci. Soc. Am. J. SSSAJ 2002, 66, 1829–1835. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, D.; Zhong, T.; Zhang, X.; Cheng, M.; Li, X. Assessment of cadmium (cd) concentration in arable soil in china. Environ. Sci. Pollut. Res. 2015, 22, 4932–4941. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yan, M.; Mo, R.; Lyu, J. Assessment of potential ecological hazards of heavy metals in the soils in the areas of edible forest products in xinyu city. Acta Agric. Univ. Jiangxiensis 2018, 40, 423–428. (In Chinese) [Google Scholar]
- Wang, L.; Cui, X.; Cheng, H.; Chen, F.; Wang, J.; Zhao, X.; Lin, C.; Pu, X. A review of soil cadmium contamination in china including a health risk assessment. Environ. Sci. Pollut. Res. 2015, 22, 16441–16452. [Google Scholar] [CrossRef] [PubMed]
- Qadir, S.; Jamshieed, S.; Rassol, S.; Ashraf, M.; Akram, N.A.; Ahmad, P. Modulation of plant growth and metabolism in cadmium-enriched environments. Rev. Environ. Contam. Toxicol. 2014, 229, 51–88. [Google Scholar] [CrossRef]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Chrzan, A.A. The impact of heavy metals on the soil fauna of selected habitats in niepolomice forest. Pol. J. Soil Sci. 2017, 50, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Järup, L.; Berglund, M.; Elinder, C.G.; Nordberg, G.; Vanter, M. Health effects of cadmium exposure—A review of the literature and a risk estimate. Scand. J. Work Environ. Health 1998, 24, 1–51. [Google Scholar]
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy metal poisoning: The effects of cadmium on the kidney. BioMetals 2010, 23, 783–792. [Google Scholar] [CrossRef]
- Elinder, C.-G. Uses, Occurrence, and Intake. In Cadmium and Health: A Toxicological and Epidemiological Appraisal; CRC Press Inc.: Boca Raton, FL, USA, 1985. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Szymanska-Pulikowska, A.; Kucharzewski, A.; Nowak, L. Pollution of forest soils in lower silesia with heavy metals and sulfur. [polish]. Acta Sci. Pol. Form. Circumiectus 2004, 3, 77–87. [Google Scholar]
- Vytopilova, M.; Tejnecky, V.; Boruvka, L.; Drabek, O. Sorption of heavy metals in organic horizons of acid forest soils at low added concentrations. Soil Water Res. 2015, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.-H.; Liao, B.-H.; Huang, C.-Y. Mobility and speciation of cd, cu, and zn in two acidic soils affected by simulated acid rain. J. Environ. Sci. 2005, 17, 332–334. [Google Scholar]
- Atteia, O.; Thélin, P.; Pfeifer, H.R.; Dubois, J.P.; Hunziker, J.C. A search for the origin of cadmium in the soil of the swiss jura. Geoderma 1995, 68, 149–172. [Google Scholar] [CrossRef]
- Byun, J.; Yoo, J.; Kim, C.; Jeong, J.; Lee, B. Estimation of heavy metal concentrations by soil property of forest soils in seoul. FRI J. For. Sci. 1999, 61, 97–101. [Google Scholar]
- CCME. Canadian soil quality guidelines for the protection of environmental and human health: Cadminum. Winnipeg. In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 1999. [Google Scholar]
- Fisak, J.; Skrivan, P.; Tesar, M.; Fottova, D.; Dobesova, I.; Navratil, T. Forest vegetation affecting the deposition of atmospheric elements to soils. Biologia 2006, 61, S255–S260. [Google Scholar] [CrossRef] [Green Version]
- Luster, J.; Zimmermann, S.; Zwicky, C.N.; PLienemann, P.; Blaser, P. Heavy metals in swiss forest soils: Modification of lithogenic and anthropogenic contents by pedogenetic processes, and implications for ecological risk assessment. Geol. Soc. Lond. Spec. Publ. 2006, 266, 63–78. [Google Scholar] [CrossRef]
- Belanovic, S.; Kosanin, O.; Danilovic, M.; Kadovic, R. Accumulation of heavy metals as related to cation exchange in some forest and pasture soils of stara planina (serbia). Istanb. Univ. Orman Fak. Derg. Ser. A 2008, 58, 1–11. [Google Scholar]
- Mohammed, F.A.E.; Bchitou, R.; Boulmane, M.; Bouhaouss, A.; Guillaume, D. Modeling of the distribution of heavy metals and trace elements in argan forest soil and parts of argan tree. Nat. Prod. Commun. 2013, 8, 21–23. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wu, J.; Xu, J. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and gis. Environ. Pollut. 2006, 141, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Alam, N.; Ahmad, S.R.; Qadir, A.; Ashraf, M.I.; Lakhan, C.; Lakhan, V.C. Use of statistical and gis techniques to assess and predict concentrations of heavy metals in soils of lahore city, pakistan. Environ. Monit. Assess. 2015, 187, 1–10. [Google Scholar] [CrossRef]
- Asmaryan, S.G.; Muradyan, V.; Sahakyan, L.; Saghatelyan, A.; Warner, T. (Eds.) Development of remote sensing methods for assessing and mapping soil pollution with heavy metals. In Global Soil Map: Basis of the Global Spatial Soil Information System; CRC Press/Taylor and Francis Group: Abingdon, UK, 2014; pp. 429–432. [Google Scholar] [CrossRef]
- Boruvka, L.; Vacek, O.; Jehlicka, J. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 2005, 128, 289–300. [Google Scholar] [CrossRef]
- Hong, Y.; Shen, R.; Cheng, H.; Chen, S.; Chen, Y.; Guo, L.; He, J.; Liu, Y.; Yu, L.; Liu, Y. Cadmium concentration estimation in peri-urban agricultural soils: Using reflectance spectroscopy, soil auxiliary information, or a combination of both? Geoderma 2019, 354, 354. [Google Scholar] [CrossRef]
- Zhang, Z.; Abuduwaili, J.; Jiang, F. Relationship of heavy metals and soil N, P, K and total salts in tianshan mountains, central asia. Asian J. Chem. 2013, 25, 8971–8975. [Google Scholar] [CrossRef]
- Ghazi, F.F. Estimation of heavy metals contamination in the osil of zaafaraniya city using the neural network. J. Phys. Conf. Ser. 2018, 1003, 012058. [Google Scholar] [CrossRef]
- Nadari, A.; Mohmmad Amir, D.; Babak, K.; Mohammad Sagdegh, A. Assessment of spatial distribution of soil heavy metals using ann-ga, mslr and satellite imagery. Environ. Monit. Assess. 2017, 189, 214. [Google Scholar] [CrossRef]
- Zhao, Z.; Chow, T.L.; Rees, H.W.; Yang, Q.; Xing, Z.; Meng, F.-R. Predict soil texture distributions using an artificial neural network model. Comput. Electron. Agric. 2009, 65, 36–48. [Google Scholar] [CrossRef]
- Birkeland, P. Soils and Geomorphology, 3rd ed.; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soil, 14th ed.; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- China Soil Survey Office. Chinese Soil; Chinese Agriculture Press: Beijing, China, 1988. [Google Scholar]
- Guangdong Soil Census Office. Guangdong Soil; Science Press: Beijing, China, 1993. [Google Scholar]
- Li, X.; Ding, X.; Ceng, S.; Zhang, C.; Yang, H. Forest Soil Survey of Yunfu, Guangdong Province; China Forestry Publishing House: Beijing, China, 2018. [Google Scholar]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Meng, F.-R.; Castonguay, M.; Ogilvie, J.; Murphy, P.N.C.; Arp, P.A. Developing a gis-based flow-channel and wet areas mapping framework for precision forestry planning. In Proceedings of the Iufro Precision Forestry Symposium 2006, Stellenbosch, South Africa, 5–10 March 2006; pp. 43–55. [Google Scholar]
- Ambroise, B.; Beven, K.; Freer, J. Toward a generalization of the topmodel concepts: Topographic indices of hydrological similarity. Water Resour. Manag. 1996, 32, 2135–2146. [Google Scholar] [CrossRef]
- Zhao, Z.; Benoy, G.; Chow, T.L.; Rees, H.W.; Daigle, J.-L.; Meng, F.-R. Impacts of accuracy and resolution of conventional and lidar based dems on parameters used in hydrologic modeling. Water Resour. Manag. 2010, 24, 1363–1380. [Google Scholar] [CrossRef]
- Ferro, V.; Minacapilli, M. Sediment delivery processes at basin scale. Hydrol. Sci. J. 1995, 40, 703–717. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.-R.; Arp, P.A.; Zelazny, V.F.; Colpitts, M.C.; Schivatcheva, T.; Fahmy, S.H. Spatial and temporal variation of soil moisture. Prog. Rep. Fundy Model For. 1997, 4, 517. [Google Scholar]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Greenlee, D.D. Raster and vector processing for scanned linework. Photogramm. Eng. Remote Sens. 1987, 53, 1383–1387. [Google Scholar]
- Akhtar, M.K.; Corzo, G.A.; van Andel, S.J.; Jonoski, A. River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: Case study of the ganges river basin. Hydrol. Earth Syst. Sci. 2009, 13, 1607–1618. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Yang, Q.; Sun, D.; Ding, X.; Meng, F.-R. Extended model prediction of high-resolution soil organic matter over a large area using limited number of field samples. Comput. Electron. Agric. 2020, 169, 105172. [Google Scholar] [CrossRef]
- Werbos, P.J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences; Harvard University: Cambridge, MA, USA, 1975. [Google Scholar]
- Li, Z.Y. Supervised classification of multispectral remote sensing image using b-p neural network. J. Infrared Millim. Waves 1998, 17, 153–156. [Google Scholar]
- Sigillito, V.G.; Hutton, L.V. Case Study II: Radar Signal Processing Neural Network PC Tools; Academic Press: Cambridge, MA, USA, 1990; Chapter 11. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Liu, L.; Xiao, H.; Wu, Q. Pollution characteristics and health risk assessment of heavy metals in soil of typical industrial district of shenzhen. Ecol. Environ. Sci. 2017, 26, 1051–1058. [Google Scholar]
- Memon, A.R.; Itö, S.; Yatazawa, M. Distribution of zinc and cadmium in the temperature forest taxa of central Japan. Soil Sci. Plant Nutr. 1980, 26, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Yu, X.; Zhao, G.; Zhang, Y.; Sun, N.; Du, Y. Analysis of heavy metals in soil of forests of mt. Lushan at different altitudes. Environ. Sci. Technol. 2013, 36, 191–194. (In Chinese) [Google Scholar]
- WHO Regional Office for Europe. Cadmium. In Air Quality Guidelines, 2nd ed.; European Series, No. 91; WHO Regional Publications: Copenhagen, Denmark, 2000. [Google Scholar]
- Ruan, X.; Zhang, G.; Ni, L.; He, Y. Distribution and migration of heavy metals in undisturbed forest soils: A high resolution sampling method. Pedosphere 2008, 18, 386–393. [Google Scholar] [CrossRef]
- Chanmugathas, P.; Bollag, J.M. Microbial mobiilizatio of cadmium in soil under aerobic and anaerobic conditions. J. Environ. Qual. 1987, 16, 161–167. [Google Scholar] [CrossRef]
- Quenea, K.; Lamy, I.; Winterton, P.; Bermond, A.; Dumat, C. Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 2009, 149, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-y.; Liu, D.-m.; Sun, T.; Yu, Z.-w.; Xu, H.-P.; Tang, B. Characteristic analysis and evaluation of heavy metal content in soils around a smeter. Guangzhou Chem. Ind. 2019, 47, 128–132. [Google Scholar]
- Malczyk, P. Heavy metals content in soils of selected forest ecosystems. Zesz. Probl. Postepow Nauk. Rol. 1996, 434, 599–603. (In Polish) [Google Scholar]
Variable | Description | Range/Number of Classes | Reference |
---|---|---|---|
Topographic position index (TPI) | The relative topographic position | 6 classes | [39] |
Slope | Slope gradient (degrees) | 0.0–56.0 | |
Aspect | Slope aspect (0–360°) reclassified into 9 general directions flat, north, northeast, east, southeast, south, southeast, west, north west. | 9 classes | (ESRI 1999–2013) |
Potential solar radiation (PSR) | The PSR is a calculated total of potential solar radiation (kWh) over a year by taking more than three atmospheric factors affecting heterogeneity into consideration such as topographic changes, position changes and cloudiness | 484–1888 | [40] |
Soil terrain factor (STF) | A modified version of hydrological similarity index | 3.7–34.1 | [41,42] |
Sediment delivery ratio (SDR) | The ratio of the sediment transported to the outlet out of total erosion in a watershed | 0–100 | [43] |
Vertical slope position (VSP) | Elevation difference between the upland and nearest water surfaces (m) | 0.0–268.1 | [44] |
Flow direction (FD) | The steepest descent direction of each pixel, which is one of the keys to obtaining surface hydrological features | 8 classes | [45,46] |
Flow length (Length) | The length of the maximum ground distance along the FD projected to the nearest water channel | [47] |
Depth | Parameter Number | RMSE | r2 | ROA10% (Ratio) | ROA20% (Ratio) | Variables Included in Modelling |
---|---|---|---|---|---|---|
0–20 cm | 1 | 0.379 | 0.655 | 0.166 | 0.288 | Slope |
2 | 0.41 | 0.769 | 0.213 | 0.327 | Slope, Direction | |
7 | 0.623 | 0.882 | 0.332 | 0.488 | TPI, Slope, Aspect, VSP, Length, FD, PSR | |
20–40 cm | 1 | 391.543 | 0.424 | 0.106 | 0.247 | SDR |
2 | 313.05 | 0.519 | 0.145 | 0.281 | SDR, Direction | |
7 | 108.356 | 0.869 | 0.319 | 0.475 | TPI, Slope, STF, VSP, Length, FD, PSR | |
40–60 cm | 1 | 325.248 | 0.474 | 0.119 | 0.26 | SDR |
2 | 235.787 | 0.662 | 0.143 | 0.27 | Slope, Direction | |
7 | 173.355 | 0.777 | 0.275 | 0.423 | Slope, Aspect, STF, VSP, Length, FD, PSR | |
60–80 cm | 1 | 249.519 | 0.419 | 0.131 | 0.241 | Slope |
2 | 158.023 | 0.691 | 0.131 | 0.276 | Slope, Aspect | |
7 | 114.598 | 0.796 | 0.212 | 0.365 | TPI, Slope, Aspect, STF, VSP, Length, PSR | |
80–100 cm | 1 | 249.519 | 0.419 | 0.131 | 0.241 | Slope |
2 | 196.055 | 0.623 | 0.158 | 0.276 | Slope, VSP | |
7 | 114.598 | 0.796 | 0.212 | 0.365 | TPI, Slope, Aspect, STF, VSP, Length, PSR | |
0–100 cm | 1 | 799.402 | 0.497 | 0.13 | 0.236 | SDR |
2 | 663.318 | 0.613 | 0.14 | 0.278 | SDR, Length | |
7 | 360.45 | 0.831 | 0.332 | 0.488 | TPI, Slope, Aspect, SDR, VSP, Length, PSR |
Depth (cm) | N | Cd (mg kg−1, Mean ± SE) | CV (%) | Max (mg kg−1) | Min (mg kg−1) |
---|---|---|---|---|---|
0–20 | 385 | 0.022 ± 0.001 A | 122 | 0.338 | 0.001 |
20–40 | 385 | 0.018 ± 0.001 B | 117 | 0.185 | 0.002 |
40–60 | 385 | 0.017 ± 0.001 BC | 119 | 0.163 | 0.001 |
60–80 | 373 | 0.015 ± 0.001 BC | 113 | 0.152 | 0.001 |
80–100 | 352 | 0.014 ± 0.001 C | 125 | 0.175 | 0.001 |
Mean | 0.018 | ||||
0–100 | 352 | 0.029 ± 0.002 | 117 | 0.272 | 0.001 |
p-value | 0 | ||||
CV% | 122.89 | 119 |
Factor Categories | Variable | Cd | |||||
---|---|---|---|---|---|---|---|
0–20 cm | 20–40 cm | 40–60 cm | 60–80 cm | 80–100 cm | 0–100 cm | ||
Forest condition | forest1 | 0.0388 | −0.0006 | 0.0802 | 0.0892 | 0.0656 | −0.0565 |
forest2 | 0.0921 | 0.0418 | 0.1068 * | 0.1208 * | 0.0523 | 0.0181 | |
forest3 | 0.0885 | 0.0034 | 0.0302 | 0.0912 | 0.0358 | 0.0308 | |
forest4 | 0.0438 | 0.0597 | 0.0145 | −0.0021 | 0.0494 | 0.017 | |
Properties defined by coarse soil map | TK20 | 0.1819 * | 0.1374 * | 0.1766 * | 0.115 * | 0.1251 * | 0.1485 * |
TP20 | −0.0477 | −0.0298 | −0.072 | −0.0528 | −0.0542 | −0.0555 | |
TN20 | 0.2026 * | 0.1782 * | 0.1388 * | 0.1741 * | 0.2422 * | 0.2936 * | |
AP20 | 0.0792 | 0.1304 * | 0.0286 | 0.061 | −0.1753 * | 0.1593 * | |
AN20 | 0.2399 * | 0.2562 * | 0.1455 * | 0.2076 * | 0.0195 | 0.2964 * | |
AK20 | −0.0937 | −0.0718 | −0.0943 | −0.1337 * | 0.1723 * | −0.0589 | |
Clay20 | 0.3114 * | 0.2607 * | 0.1946 * | 0.2107 * | 0.2023 * | 0.2643 * | |
Sand20 | −0.1155 * | −0.1342 * | −0.121 * | −0.1356 * | −0.0683 | −0.0432 | |
SOM20 | 0.1631 * | 0.1202 * | 0.1282 * | 0.1617 * | 0.2532 * | 0.2108 * | |
DEM derived landscape feature | Aspect | 0.0608 | 0.046 | 0.0363 | 0.0134 | 0.04 | 0.0183 |
Slope | −0.0932 | −0.0359 | −0.0449 | −0.0918 | −0.0849 | −0.1624 * | |
SDR | 0.0191 | 0.016 | 0.0595 | −0.0245 | −0.0471 | −0.004 | |
VSP | 0.0461 | 0.112 * | 0.093 | 0.023 | 0.0318 | −0.0284 | |
STF | 0.0323 | 0.0308 | 0.0612 | 0.0345 | 0.0493 | 0.0121 | |
PSR | 0.102 * | 0.0906 | 0.0784 | 0.0929 | 0.1242 * | 0.1231 * | |
Length | −0.0364 | −0.0412 | −0.0353 | 0.0186 | 0.0336 | −0.006 | |
TPI | 0.0189 | −0.0224 | −0.0586 | −0.0697 | −0.056 | −0.0584 | |
FD | −0.0782 | −0.0897 | −0.0607 | −0.0192 | −0.0517 | −0.0356 | |
Soil layer properties | bulk | −0.1092 * | 0.0245 | 0.0045 | 0.0287 | −0.041 | n/a |
pH | 0.0044 | 0.0769 | 0.0552 | 0.0239 | 0.1237 * | 0.1026 * | |
som1 | 0.0913 | 0.0066 | 0.142 * | 0.0487 | 0.0037 | 0.1218 * | |
st051 | −0.0774 | −0.0622 | −0.0516 | 0.0181 | 0.0161 | 0.0141 | |
st011 | −0.1297 * | −0.0158 | −0.0724 | −0.0466 | −0.0271 | −0.0822 | |
st0051 | −0.1492 * | −0.0424 | −0.0598 | −0.0575 | −0.0245 | −0.0784 | |
st0011 | −0.1435 * | −0.0455 | −0.0562 | −0.0526 | −0.0189 | −0.0928 | |
TN | 0.0904 | −0.0221 | −0.0006 | 0.0588 | 0.0231 | 0.0819 | |
TP | 0.0697 | 0.1666 * | 0.2246 * | 0.0531 | 0.1536 * | 0.1897 * | |
TK | 0.2511 * | 0.1873 * | 0.1925 * | 0.2022 * | 0.0859 | 0.2097 * | |
AN | 0.0108 | −0.1247 * | −0.0558 | −0.0593 | 0.0539 | 0.0153 | |
AP | 0.053 | 0.0504 | 0.0711 | 0.0238 | 0.0287 | 0.002 | |
AK | 0.0924 | 0.0469 | 0.0381 | 0.085 | 0.0666 | 0.0863 | |
Cu | 0.1403 * | 0.3705 * | 0.1939 * | 0.2204 * | 0.2065 * | 0.1505 * | |
Zn | 0.2404 * | 0.2168 * | 0.2423 * | 0.2998 * | 0.2301 * | 0.1863 * | |
Pb | 0.2484 * | 0.4872 * | 0.344 * | 0.4605 * | 0.4652 * | 0.3534 * | |
Ni | 0.0688 | 0.0749 | 0.0395 | 0.1393 * | 0.1753 * | 0.1226 * |
Cd1 (0–20 cm) | Cd2 (20–40 cm) | Cd3 (40–60 cm) | Cd4 (60–80 cm) | Cd5 (80–100 cm) | Cd0 (0–100 cm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Var. ** | Coe. | Var. | Coe. | Var. | Coe. | Var. | Coe. | Var. | Coe. | Var. | Coe. | |
DEM derived variable | Con. | −52.72 | Con. | −20.07 | Con. | −35.65 | Con. | −5.84 | Con. | −41.245 | Con. | −74.12 |
VSP | 0.23 | VSP | 0.18 | VSP | 0.27 | PSR | 0.02 | STF | −1.58 | |||
Slope | −0.33 | Slope | −0.27 | Slope | −0.45 | |||||||
Coarse soil map variable | Sand20 | 0.36 | Sand20 | −0.33 | TK20 | 5.92 | Sand20 | −0.21 | TK20 | 1.21 | ||
TN20 | 12.06 | TN20 | 177.04 | TN20 | 13.40 | TN20 | 17.51 | TN20 | 89.24 | |||
SOM20 | −7.05 | SOM20 | −2.77 | |||||||||
AN20 | −0.39 | AK20 | −0.22 | |||||||||
AK20 | −0.57 | |||||||||||
Clay20 | 1.90 | Clay20 | −2.30 | |||||||||
Soil properties at the depth | SOM1 | 0.22 | bulk2 | 12.68 | SOM3 | 0.38 | tk4 | 0.30 | pH0 | 10.04 | ||
tk1 | 0.67 | tp2 | 11.23 | tp3 | 21.67 | SOM0 | 0.28 | |||||
Zn1 | 0.33 | tk2 | 0.51 | tk3 | 0.32 | tk0 | 0.58 | |||||
Pb1 | 0.11 | Zn2 | 0.25 | Zn3 | 0.23 | Cu4 | 0.40 | Cu5 | 0.48 | Cu0 | 0.35 | |
st0051 | −0.21 | Pb2 | 0.26 | Pb3 | 0.40 | Pb4 | 0.63 | Pb5 | 0.75 | Pb0 | 0.44 | |
st050 | 0.78 | |||||||||||
st010 | −0.71 | |||||||||||
Other factors | forest1 | 5.75 | forest1 | 5.44 | ||||||||
Adjusted r2 | 26.6 | 35.9 | 28.4 | 27.9 | 28.9 | 28.0 |
Layer (CM) | OM (1/000) | Cd | ||||
---|---|---|---|---|---|---|
Mean | SE | C.V. | Mean | SE | C.V. | |
0–20 | 24.17 | 0.35 | 56.25 | 21.60 | 1.34 | 122.14 |
20–40 | 16.79 | 0.43 | 50.82 | 17.56 | 1.05 | 117.35 |
40–60 | 13.71 | 0.38 | 54.25 | 17.17 | 1.04 | 119.30 |
60–80 | 12.06 | 0.37 | 59.65 | 15.38 | 0.90 | 113.16 |
80–100 | 10.40 | 0.36 | 64.72 | 15.71 | 1.05 | 125.05 |
Layer (cm) | Measurements (mg kg−1) | Single Model | Mean of 10 Fold Runs | ||
---|---|---|---|---|---|
Estimation (mg kg−1) | Relative Error (%) | Estimation (mg kg−1) | Relative Error (%) | ||
0–20 | 0.022 | 0.022 | 0 | 0.016 | −27 |
20–40 | 0.018 | 0.023 | 28 | 0.022 | 22 |
40–60 | 0.017 | 0.019 | 12 | 0.018 | 5.8 |
60–80 | 0.015 | 0.012 | −20 | 0.008 | −47 |
80–100 | 0.014 | 0.010 | −29 | 0.012 | −15 |
0–100 | 0.029 | 0.024 | −17 | 0.021 | −29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Zhao, Z.; Xing, Z.; Li, S.; Li, X.; Liu, Y. Comparison of Models for Spatial Distribution and Prediction of Cadmium in Subtropical Forest Soils, Guangdong, China. Land 2021, 10, 906. https://doi.org/10.3390/land10090906
Ding X, Zhao Z, Xing Z, Li S, Li X, Liu Y. Comparison of Models for Spatial Distribution and Prediction of Cadmium in Subtropical Forest Soils, Guangdong, China. Land. 2021; 10(9):906. https://doi.org/10.3390/land10090906
Chicago/Turabian StyleDing, Xiaogang, Zhengyong Zhao, Zisheng Xing, Shengting Li, Xiaochuan Li, and Yanmei Liu. 2021. "Comparison of Models for Spatial Distribution and Prediction of Cadmium in Subtropical Forest Soils, Guangdong, China" Land 10, no. 9: 906. https://doi.org/10.3390/land10090906
APA StyleDing, X., Zhao, Z., Xing, Z., Li, S., Li, X., & Liu, Y. (2021). Comparison of Models for Spatial Distribution and Prediction of Cadmium in Subtropical Forest Soils, Guangdong, China. Land, 10(9), 906. https://doi.org/10.3390/land10090906