Decoupling the Relationships between Carbon Footprint and Economic Growth within an Urban Agglomeration—A Case Study of the Yangtze River Delta in China
Abstract
:1. Introduction
2. Study Area and Data Preprocessing
2.1. Study Area
2.2. Data Sources and Preprocessing
3. Methods
3.1. IPCC Carbon Inventory Method to Estimate Carbon Emission from Fossil Energy Consumption
3.2. Estimate the Carbon Footprint of Fossil Energy Consumption and Carbon Footprint Pressure
3.3. Tapio Decoupling Model to Analyze the Coupling or Decoupling Effects between Carbon Footprint, Carbon Footprint Pressure and Economic Growth
3.4. Driving Forces of Carbon Footprint Pressure Based on the GeoDetector Method
4. Results
4.1. Changes of Productive Lands and Carbon Footprint in the YRD
4.1.1. Temporal Changes of Productive Lands, Carbon Emission and Carbon Footprint Pressure in the YRD
4.1.2. Changes of Productive Lands, Carbon Emission and Carbon Footprint Pressure at City Scale
4.2. Decoupling Analysis on Carbon Footprint, Carbon Footprint Pressure and Economic Growth
4.2.1. Decoupling analysis on the Relationships between Carbon Footprint, Carbon Footprint Pressure and Economic Growth
4.2.2. City-Based Decoupling Analysis on Carbon Footprint Pressure and Economic Growth
4.3. Driving Factors of Carbon Footprint Pressure Changes
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; in press. [Google Scholar]
- Oreskes, N. Beyond the ivory tower. The scientific consensus on climate change. Science 2004, 306, 1686. [Google Scholar] [CrossRef] [Green Version]
- Scafetta, N. On the reliability of computer-based climate models. Ital. J. Eng. Geol. Environ. 2019, 1, 49–70. [Google Scholar]
- Luderer, G.; Vrontisi, Z.; Bertram, C.; Edelenbosch, O.Y.; Pietzcker, R.C.; Rogelj, J.; De Boer, H.S.; Drouet, L.; Emmerling, J.; Fricko, O.; et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Chang. 2018, 8, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Christophe, M.; Paul, E. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 2015, 517, 187–190. [Google Scholar]
- Deutch, J. Decoupling Economic Growth and Carbon Emissions. Joule 2017, 1, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Simion, I.M.; Ghinea, C.; Maxineasa, S.G.; Taranu, N.; Bonoli, A.; Gavrilescu, M. Ecological footprint applied in the assessment of construction and demolition waste integrated management. Environ. Eng. Manag. J. 2013, 12, 779–788. [Google Scholar]
- Zhao, R.; Huang, X.; Ying, Z.; Ding, M.; Chuai, X. Urban carbon footprint and carbon cycle pressure: The case study of Nanjing. J. Geogr. Sci. 2014, 24, 159–176. [Google Scholar] [CrossRef]
- Winiewski, P.; Kistowski, M. Carbon Footprint as a Tool for Local Planning of Low Carbon Economy in Poland. Rocz. Ochr. Sr. 2017, 19, 335–354. [Google Scholar]
- Ma, F.; Wang, W.; Sun, Q.; Liu, F.; Li, X. Ecological pressure of carbon footprint in passenger transport: Spatio-temporal changes and regional disparities. Sustainability 2018, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Wiedmann, T.; Minx, J. A Definition of ‘Carbon Footprint’. In Ecological Economics Research Trends; Pertsova, C.C., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2008; Chapter 1; pp. 1–11. [Google Scholar]
- Gao, T.; Liu, Q.; Wang, J. A comparative study of carbon footprint and assessment standards. Int. J. Low-Carbon Technol. 2014, 9, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Wackernagel, M.; Onisto, L.; Bello, P.; Linares, A.C.; Ina, L.S.F.; García, J.M.; Guerrero, A.I.S.; Guerrero, M.G.S. National natural capital accounting with the ecological footprint concept. Ecol. Econ. 1999, 29, 375–390. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M.; Pandey, J.S. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Meng, G. The decoupling effect and driving factors of carbon footprint in megacities: The case study of Xi’an in western China. Sustain. Cities Soc. 2019, 44, 783–792. [Google Scholar] [CrossRef]
- Inch, J. Our Ecological Footprint: Reducing Human Impact on the Earth. Popul. Environ. 1995, 1, 171–174. [Google Scholar]
- Fang, K.; Heijungs, R.; Snoo, G.R.D. Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family. Ecol. Indic. 2014, 36, 508–518. [Google Scholar] [CrossRef]
- Mikayilov, J.I.; Hasanov, F.J.; Galeotti, M. Decoupling of co 2 emissions and gdp: A time-varying cointegration approach. Ecol. Indic. 2018, 95, 615–628. [Google Scholar] [CrossRef]
- Karakaya, E.; Bostan, A.; Za, M. Decomposition and decoupling analysis of energy-related carbon emissions in turkey. Enviro. Sci. Pollut. Res. 2019, 26, 32080–32091. [Google Scholar] [CrossRef]
- Engo, J. Driving forces and decoupling indicators for carbon emissions from the industrial sector in Egypt, Morocco, Algeria, and Tunisia. Environ. Sci. Pollut. Res. 2021, 28, 14329–14342. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yu, Q.; Wang, R. Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production. Technol. Forecast. Soc. Chang. 2021, 167, 120722. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Zhuang, Q.; Tang, X.; Zhao, K.; Wang, S. Factors influencing industrial carbon emissions and strategies for carbon mitigation in the Yangtze River Delta of China. J. Clean. Prod. 2017, 142, 3607–3616. [Google Scholar] [CrossRef]
- Statistics Bureau of Shanghai Municipality. Shanghai Statistical Yearbook 2020; China Statistical Press: Beijing, China, 2020.
- Statistics Bureau of Jiangsu Province. Jiangsu Statistical Yearbook 2020; China Statistical Press: Beijing, China, 2020.
- Statistics Bureau of Zhejiang Province. Zhejiang Statistical Yearbook 2020; China Statistical Press: Beijing, China, 2020.
- IPCC (Intergovernmental Panel on Climate Change). Guidelines for National Greenhouse Gas Inventories; IPCC: London, UK, 1996. [Google Scholar]
- Mahony, T.O. Decomposition of Ireland’s carbon emissions from 1990 to 2010: An extended Kaya identity. Energy Policy 2013, 59, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Kai, H.; Yang, S.; Yan, L.; Hu, T.; Yue, Z. Driving forces analysis of energy-related carbon dioxide (CO2) emissions in Beijing: An input–output structural decomposition analysis. J. Clean. Prod. 2017, 163, 58–68. [Google Scholar]
- Jiang, R.; Li, R. Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector. Sustainability 2017, 9, 793. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D. Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Pei, F.; Wu, C.; Liu, X.; Xia, L.; Yang, K.; Yi, Z.; Wang, K.; Li, X.; Xia, G. Monitoring the vegetation activity in China using vegetation health indices. Agric. For. Meteorol. 2018, 248, 215–227. [Google Scholar] [CrossRef]
- Xie, H.; Chen, X.; Lin, K. The ecological footprint analysis of fossil energy and electricity. Acta Ecolog. Sin. 2008, 28, 1729–1735. [Google Scholar]
- Chen, H.; Li, C.; Wang, L. Research on the regional sustainable development based on the ecological footprint theory: A case of Henan Province. Appl. Mech. Mater. 2013, 361, 199–203. [Google Scholar]
- Organization for Economic Cooperation and Development (OECD). Indicators to Measure Decoupling of Environmental pressure from Economic Grow. 2002. Available online: http://www.oecd.org/environment/indicators-modelling-outlooks/1933638.pdf (accessed on 1 September 2021).
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; He, W.; Yuan, L.; Zhang, Z.; Gao, X.; Zhao, Y.; Degefu, D.M. Decoupling economic growth from water consumption in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 123, 107344. [Google Scholar] [CrossRef]
- Vehmas, J.; Kaivo-oja, J.; Luukkanen, J. Global Trends of Linking Environmental Stress and Economic Growth; Turku School of Economics and Business Administration: Turku, Finland, 2003. [Google Scholar]
- Wen, L.; Zhang, Z. Probing the affecting factors and decoupling analysis of energy industrial carbon emissions in Liaoning, China. Environ. Sci. Pollut. Res. 2019, 26, 14616–14626. [Google Scholar] [CrossRef]
- Cai, H.; Qu, S.; Wang, M. Changes in China’s carbon footprint and driving factors based on newly constructed time series input–output tables from 2009 to 2016. Sci. Total Environ. 2020, 711, 134555. [Google Scholar] [CrossRef]
- Apeaning, A.W. Technological constraints to energy-related carbon emissions and economic growth decoupling: A retrospective and prospective analysis. J. Clean. Prod. 2021, 291, 125706. [Google Scholar] [CrossRef]
- Ozturk, I.; Majeed MTKhan, S. Decoupling and decomposition analysis of environmental impact from economic growth: A comparative analysis of Pakistan, India, and China. Environ. Ecol. Stat. 2021, 1–28. [Google Scholar] [CrossRef]
- Haberl, H.; Wiedenhofer, D.; Virág, D.; Kalt, G.; Plank, B.; Brockway, P.; Fishman, T.; Hausknost, D.; Krausmann, F.P.; Leon-Gruchalski, B.; et al. A systematic review of the evidence on decoupling of gdp, resource use and ghg emissions, part ii: Synthesizing the insights. Environ. Res. Lett. 2020, 15, 065003. [Google Scholar] [CrossRef]
- Piłatowska, M.; Włodarczyk, A. Decoupling Economic Growth from Carbon Dioxide Emissions in the EU Countries. Montenegrin J. Econ. 2018, 14, 7–26. [Google Scholar] [CrossRef]
- Stern, D. The Rise and Fall of the Environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Li, K.; Zhou, Y.; Xiao, H.; Li, Z.; Shan, Y. Decoupling of economic growth from CO2 emissions in cities from the Yangtze River Economic Belt. Sci. Total Environ. 2021, 775, 145927. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, Y.; Bethel, B.J. An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt. Sustainability 2019, 11, 2362. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Chen, X.; Su, S.; Yin, Z. Time-Varying Impact of Economic Growth on Carbon Emission in BRICS Countries: New Evidence from Wavelet Analysis. Front. Environ. Sci. 2021, 9, 280. [Google Scholar] [CrossRef]
Data Category | Spatio-Temporal Resolution | Sources | |
---|---|---|---|
1 | Land use dataset | 500 m, 2001–2019 | NASA’s LP DAAC |
2 | NPP dataset | 500 m, 2019 | NASA’s LP DAAC |
3 | Fossil energy consumption (raw coal, gasoline and diesel) | By cities, 2001–2019 | Statistical yearbooks of the 16 cities in the YRD - Shanghai statistical yearbooks [25] Jiangsu statistical yearbooks [26] Zhejiang statistical yearbooks [27] |
4 | Proportion of urban population | By cities, 2001–2019 | |
5 | Permanent population | By cities, 2000, 2005–2019 | |
6 | Urban population | By cities, 2000, 2005–2019 | |
7 | GDP | By cities, 2001–2019 | |
8 | Built-up area | By cities, 2001–2019 |
Types | Standard Coal Coefficient | Carbon Emission Coefficient |
---|---|---|
Raw coal | 0.7143 (kgce/kg) | 0.7559 (104 t/104 tce) |
Gasoline | 1.4714 (kgce/kg) | 0.5538 (104 t/104 tce) |
Diesel | 1.4571 (kgce/kg) | 0.5921 (104 t/104 tce) |
Decoupling State | ||||
---|---|---|---|---|
Negative decoupling | >0 | >0 | >1.2 | Expansive negative decoupling (END) |
>0 | <0 | <0 | Strong negative decoupling (SND) | |
<0 | <0 | 0–0.8 | Weak negative decoupling (WND) | |
Decoupling | >0 | >0 | 0–0.8 | Weak decoupling (WD) |
<0 | >0 | <0 | Strong decoupling (SD) | |
<0 | <0 | >1.2 | Recessive decoupling (RD) | |
Coupling | >0 | >0 | 0.8–1.2 | Expansive coupling (EC) |
<0 | <0 | 0.8–1.2 | Recessive coupling (RC) |
Description | Interaction |
---|---|
Weakened, nonlinear | |
Weakened, single factor nonlinear | |
Enhanced, double factors | |
Independent | |
Enhanced, nonlinear |
NPP | Urbanization Rate | Energy Consumption per GDP | GDP Rate | Built-Up Area Rate | |
---|---|---|---|---|---|
NPP | 0.241 | ||||
Urbanization rate | 0.477 | 0.135 | |||
Energy consumption per GDP | 0.483 | 0.971 | 0.134 | ||
GDP rate | 0.482 | 0.933 | 0.344 | 0.133 | |
Rate of built-up area | 0.546 | 0.975 | 0.516 | 0.339 | 0.290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, F.; Zhong, R.; Liu, L.-A.; Qiao, Y. Decoupling the Relationships between Carbon Footprint and Economic Growth within an Urban Agglomeration—A Case Study of the Yangtze River Delta in China. Land 2021, 10, 923. https://doi.org/10.3390/land10090923
Pei F, Zhong R, Liu L-A, Qiao Y. Decoupling the Relationships between Carbon Footprint and Economic Growth within an Urban Agglomeration—A Case Study of the Yangtze River Delta in China. Land. 2021; 10(9):923. https://doi.org/10.3390/land10090923
Chicago/Turabian StylePei, Fengsong, Rui Zhong, Li-An Liu, and Yingjuan Qiao. 2021. "Decoupling the Relationships between Carbon Footprint and Economic Growth within an Urban Agglomeration—A Case Study of the Yangtze River Delta in China" Land 10, no. 9: 923. https://doi.org/10.3390/land10090923
APA StylePei, F., Zhong, R., Liu, L. -A., & Qiao, Y. (2021). Decoupling the Relationships between Carbon Footprint and Economic Growth within an Urban Agglomeration—A Case Study of the Yangtze River Delta in China. Land, 10(9), 923. https://doi.org/10.3390/land10090923