Explore Associations between Subjective Well-Being and Eco-Logical Footprints with Fixed Effects Panel Regressions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Study Framework
2.3. Methods
2.3.1. Panel Unit Root Test
2.3.2. Stepwise Regression (SR)
2.3.3. Fixed Effect Panel Model
3. Results
3.1. Panel Unit Root Tests
3.2. Regression Analysis
4. Discussion
5. Conclusions
5.1. Implication
5.2. Limitation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. IPCC special report on the ocean and cryosphere in a changing climate. In Intergovernmental Panel on Climate Change; World Meteorological Organization: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/srocc/ (accessed on 31 August 2021).
- Zhang, J.; Wu, X.; Chow, T.E. Space-Time Cluster’s Detection and Geographical Weighted Regression Analysis of COVID-19 Mortality on Texas Counties. Int. J. Environ. Res. Public Health 2021, 18, 5541. [Google Scholar] [CrossRef]
- Strack, F.; Argyle, M.; Schwarz, N. Subjective Well-Being: An Interdisciplinary Perspective, 1st ed.; Pergamon Press: London, UK, 1991. [Google Scholar]
- Diener, E.; Tay, L. Subjective Well-Being and Human Welfare around the World as Reflected in the Gallup World Poll. Available online: http://libproxy.txstate.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=s3h&AN=101190444&site=eds-live&scope=site (accessed on 31 August 2021).
- Sharif, S.P.; Amiri, M.; Allen, K.-A.; Nia, H.S.; Fomani, F.K.; Matbue, Y.H.; Goudarzian, A.H.; Arefi, S.; Yaghoobzadeh, A.; Waheed, H. Attachment: The mediating role of hope, religiosity, and life satisfaction in older adults. Health Qual. Life Outcomes 2021, 19, 57. [Google Scholar] [CrossRef]
- Hui, V.; Constantino, R.E. The association between life satisfaction, emotional support, and perceived health among women who experienced intimate Partner violence (IPV)—2007 behavioral risk factor surveillance system. BMC Public Health 2021, 21, 641. [Google Scholar] [CrossRef]
- Richter, N.; Bondü, R.; Trommsdorff, G. Linking transition to motherhood to parenting, children’s emotion regulation, and life satisfaction: A longitudinal study. J. Fam. Psychol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhan, F.; Wu, X.; Zhang, D. Partial Correlation Analysis of Association between Subjective Well-Being and Ecological Footprint. Sustainability 2021, 13, 1033. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J. Perceived residential environment of neighborhood and subjective well-being among the elderly in China: A mediating role of sense of community. J. Environ. Psychol. 2017, 51, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Charfeddine, L.; Mrabet, Z. The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renew. Sustain. Energy Rev. 2017, 76, 138–154. [Google Scholar] [CrossRef]
- York, R.; A Rosa, E.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Graham, C. Happiness And Health: Lessons—And Questions—For Public Policy. Health Aff. 2008, 27, 72–87. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M.S.; Martindill, J.; Medouar, F.-Z.; Huang, S.; et al. Ecological Footprint Accounting for Countries: Updates and Results of the National Footprint Accounts, 2012–2018. Resources 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, L.; Ge, J.; Tang, D.; Zhao, S. Spatial Spillover Effects of Environmental Regulations on China’s Haze Pollution Based on Static and Dynamic Spatial Panel Data Models. Pol. J. Environ. Stud. 2019, 28, 2231–2241. [Google Scholar] [CrossRef]
- Magdoff, F.; Foster, J.B.; Buttel, F.H. Hungry for Profit: The Agribusiness Threat to Farmers, Food, and the Environment; Monthly Review Press: New York, NY, USA, 2020. [Google Scholar]
- Guo, S.; Wang, Y. Ecological Security Assessment Based on Ecological Footprint Approach in Hulunbeir Grassland, China. Int. J. Environ. Res. Public Health 2019, 16, 4805. [Google Scholar] [CrossRef] [Green Version]
- Destek, M.A.; Ulucak, R.; Dogan, E. Analyzing the environmental Kuznets curve for the EU countries: The role of ecological footprint. Environ. Sci. Pollut. Res. Int. 2018, 25, 29387–29396. [Google Scholar] [CrossRef] [PubMed]
- Rees, W.; Wackernagel, M. Urban Ecological Footprints: Why Cities Cannot Be Sustainable—And Why They Are a Key to Sustainability; Elsevier Science Inc.: Amsterdam, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Hori, S.; Takamura, Y.; Fujita, T.; Kanie, N. International Development and the Environment: Social Consensus and Cooperative Measures for Sustainability; Springer: New York, NY, USA, 2020. [Google Scholar]
- Easterlin, R.A. Does Economic Growth Improve the Human Lot? Some Empirical Evidence. In Nations and Households in Economic Growth; Academic Press: Cambridge, MA, USA, 1974; pp. 89–125. [Google Scholar]
- Stelzner, M. Growth, Consumption, and Happiness: Modeling the Easterlin Paradox. J. Happiness Stud. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development. 1994. Available online: http://libproxy.txstate.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-0028443307&site=eds-live&scope=site (accessed on 31 August 2021).
- Sassen, S. The Global City: New York, London, Tokyo, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2001; Available online: http://libproxy.txstate.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat00022a&AN=txi.b2414811&site=eds-live&scope=site or http://libproxy.txstate.edu/login?url=https://ebookcentral.proquest.com/lib/txstate/detail.action?docID=1144732; (accessed on 31 August 2021). [Google Scholar]
- Sarkodie, S.A. Environmental performance, biocapacity, carbon & ecological footprint of nations: Drivers, trends and mitigation options. Sci. Total. Environ. 2021, 751, 141912. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A.; York, R. Environmentally efficient well-being: Rethinking sustainability as the relationship between human well-being and environmental impacts. Hum. Ecol. Rev. 2009, 16, 114–123. [Google Scholar]
- Easterlin, R.A.; Sawangfa, O. Happiness and economic growth: Does the cross section predict time trends? Evidence from developing countries. In International Differences in Well-Being; Diener, H., John, F., Kahneman, D., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 166–216. [Google Scholar]
- Fan, Y.; Liu, L.-C.; Wu, G.; Wei, Y.-M. Analyzing impact factors of CO2 emissions using the STIRPAT model. Environ. Impact Assess. Rev. 2006, 26, 377–395. [Google Scholar] [CrossRef]
- Fang, K. Ecological footprint depth and size: New indicators for a 3D model. Acta Ecol. Sin. 2013, 33, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Frongillo, E.; Nguyen, H.; Smith, M.D.; Coleman-Jensen, A. Food Insecurity Is Associated with Subjective Well-Being among Individuals from 138 Countries in the 2014 Gallup World Poll. J. Nutr. 2017, 147, 680–687. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.-K. Environmentally Responsible Happy Nation Index: Towards an Internationally Acceptable National Success Indicator. Soc. Indic. Res. 2007, 85, 425–446. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Ramirez-Andreotta, M.; Pepper, I.L.; Maximillian, J. Chapter 26—Environmental Impacts on Human Health and Well-Being. Environ. Pollut. Sci. 2019, 477–499. [Google Scholar] [CrossRef]
- Evans, G.F.; Soliman, E.Z. Happier countries, longer lives: An ecological study on the relationship between subjective sense of well-being and life expectancy. Glob. Health Promot. 2019, 26, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.S.; Stutzer, A. Happiness and Economics: How the Economy and Institutions Affect Well-Being; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Hassan, S.; Bhuiyan, M.A.H.; Tareq, F.; Doza, B.-; Tanu, S.M.; Rabbani, K.A. Relationship between COVID-19 infection rates and air pollution, geo-meteorological, and social parameters. Environ. Monit. Assess. 2021, 193, 29. [Google Scholar] [CrossRef] [PubMed]
- Knight, K.W.; Rosa, E.A. The environmental efficiency of well-being: A cross-national analysis. Soc. Sci. Res. 2011, 40, 931–949. [Google Scholar] [CrossRef]
- Prescott-Allen, R. The Well-Being of Nations: A Country-by-Country Index of Quality of Life and the Environment; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Sürücü, A. Predictive Relationships Between Incivility Behaviors Faced by Guidance Counselors and Subjective Well-Being and Life-Domain Satisfaction. Int. J. Progress. Educ. 2021, 17, 17–34. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, D.; Li, B. Spatial–temporal calculation simulation of ecological footprint of resource and environmental pollution in green communication. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Lee, L.-F.; Yu, J. Estimation of fixed effects panel regression models with separable and nonseparable space–time filters. J. Econ. 2015, 184, 174–192. [Google Scholar] [CrossRef]
- Westerlund, J.; Larsson, R. New tools for understanding the local asymptotic power of panel unit root tests. J. Econ. 2015, 188, 59–93. [Google Scholar] [CrossRef]
- Ali, E.B.; Amfo, B. Comparing the values of economic, ecological and population indicators in High- and Low-Income Economies. Econ. Reg. Ekon. Reg. 2021, 17, 72–85. [Google Scholar]
- Harris, D.; Harvey, D.I.; Leybourne, S.J.; Sakkas, N. Local Asymptotic Power of the Im-Pesaran-Shin Panel Unit Root Test and the Impact of Initial Observations. Econ. Theory 2009, 26, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Hadri, K.; Kurozumi, E.; Yamazaki, D. Synergy between an Improved Covariate Unit Root Test and Cross-sectionally Dependent Panel Data Unit Root Tests. Manch. Sch. 2014, 83, 676–700. [Google Scholar] [CrossRef] [Green Version]
- Im, K.S.; Pesaran, M.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econ. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Guidolin, M.; Pedio, M. Forecasting commodity futures returns with stepwise regressions: Do commodity-specific factors help? Ann. Oper. Res. 2021, 299, 1317–1356. [Google Scholar] [CrossRef]
- Hsiao, C. Analysis of Panel Data, 3rd ed.; Cambridge University Press: London, UK, 2014. [Google Scholar]
- Mátyás, L.; Sevestre, P. The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice, 3rd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Inglehart, R.; Haerpfer, C.; Moreno, A.; Welzel, C.; Kizilova, K.; Diez-Medrano, J.; Lagos, M.; Norris, P.; Ponarin, E.; Puranen, B.; et al. (Eds.) World Values Survey: Round Six-Country-Pooled Data 2014. Available online: http://www.worldvaluessurvey.org/WVSDocumentationWVL.jsp (accessed on 31 August 2021).
- Gehlke, C.E.; Biehl, K. Certain Effects of Grouping Upon the Size of the Correlation Coefficient in Census Tract Material. J. Am. Stat. Assoc. 1934, 29, 169. [Google Scholar] [CrossRef]
- Robinson, J. An essay on Marxian economics. Macmillan 1949, 1, 64. [Google Scholar]
- Knight, J.; Gunatilaka, R. Income, aspirations and the Hedonic Treadmill in a poor society. J. Econ. Behav. Organ. 2012, 82, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Huang, H.-C.; Lin, S.-C. Kuznets Hypothesis in a Panel of States. Contemp. Econ. Policy 2011, 29, 250–260. [Google Scholar] [CrossRef]
- Kong, Y.; Khan, R. To examine environmental pollution by economic growth and their impact in an environmental Kuznets curve (EKC) among developed and developing countries. PLoS ONE 2019, 14, e0209532. [Google Scholar] [CrossRef] [Green Version]
- Jammazi, R.; Aloui, C. RETRACTED: On the interplay between energy consumption, economic growth and CO2 emission nexus in the GCC countries: A comparative analysis through wavelet approaches. Renew. Sustain. Energy Rev. 2015, 51, 1737–1751. [Google Scholar] [CrossRef]
- Ortiz-Ospina, E.; Roser, M. Happiness and Life Satisfaction. Our World in Data. 2013. Available online: https://ourworldindata.org/happiness-and-life-satisfaction (accessed on 31 August 2021).
- Wang, Z.; Wu, Q. Carbon emission reduction and product collection decisions in the closed-loop supply chain with cap-and-trade regulation. Int. J. Prod. Res. 2021, 59, 4359–4383. [Google Scholar] [CrossRef]
- McGuire, A.D.; Genet, H.; Zhou, L.; Neal, P.; Sarah, S.; Richard, B.; D’Amore, D.; He, Y.; Rupp, T.S.; Striegl, R.; et al. Assessing historical and projected carbon balance of Alaska: A synthesis of results and policy/management implications. Ecol. Appl. 2018, 28, 1396–1412. [Google Scholar] [CrossRef]
- Ghosh, S.K. Circular Economy: Global Perspective; Springer: New York, NY, USA, 2020. [Google Scholar]
- Liu, L.; Ramakrishna, S. An Introduction to Circular Economy; Springer: New York, NY, USA, 2021. [Google Scholar]
- Ushch-Purii, U. Eudaimonic Happiness as a Convergence Point for Religion and Medicine: The Ukrainian Context. Occas. Pap. Relig. East. Eur. 2021, 41, 106–117. [Google Scholar]
- Freitas, D. The Happiness Effect: How Social Media is Driving a Generation to Appear Perfect at Any Cost; Oxford University Press: London, UK, 2017. [Google Scholar]
- Giorgino, V. The Pursuit of Happiness and the Traditions of Wisdom; Springer: New York, NY, USA, 2014. [Google Scholar]
- Wang, R.; Dai, M.; Ou, Y.; Ma, X. Residents’ happiness of life in rural tourism development. J. Destin. Mark. Manag. 2021, 20, 100612. [Google Scholar] [CrossRef]
- Okulicz-Kozaryn, A. Unhappy metropolis (when American city is too big). Cities 2017, 61, 144–155. [Google Scholar] [CrossRef]
- Du, P.; Wood, A.; Ditchman, N.; Stephens, B. Life Satisfaction of Downtown High-Rise vs. Suburban Low-Rise Living: A Chicago Case Study. Sustainability 2017, 9, 1052. [Google Scholar] [CrossRef] [Green Version]
Variables | Method | Coef. | Prob.** | Cross-Sections Obs. | Records |
---|---|---|---|---|---|
Null: unit root (assumes common unit root process) | |||||
SWB | Levin, Lin & Chu t* | 173.355 | 0.000 | 99 | 826 |
TEF | Levin, Lin & Chu t* | −14.698 | 0.0000 | 99 | 826 |
TBC | Levin, Lin & Chu t* | −3.793 | 0.0001 | 99 | 826 |
Control variables | Levin, Lin & Chu t* | −19.288 | 0.0000 | 4 | 4651 |
Null: unit root (assumes individual unit root process) | |||||
SWB | Im, Pesaran and Shin W-stat | −69.319 | 0.0000 | 99 | 826 |
ADF—Fisher Chi-square | 1013.71 | 0.0000 | 99 | 826 | |
PP—Fisher Chi-square | 1340.59 | 0.0001 | 99 | 900 | |
TEF | Im, Pesaran and Shin W-stat | −2.390 | 0.0084 | 99 | 826 |
ADF—Fisher Chi-square | 262.865 | 0.0014 | 99 | 826 | |
PP—Fisher Chi-square | 357.207 | 0.0000 | 99 | 900 | |
TBC | Im, Pesaran and Shin W-stat | −0.054 | 0.4785 | 99 | 826 |
ADF—Fisher Chi-square | 221.116 | 0.1246 | 99 | 826 | |
PP—Fisher Chi-square | 387.289 | 0.0000 | 99 | 900 | |
Control variables | Im, Pesaran and Shin W-stat | −75.9524 | 0.0000 | 4 | 4655 |
ADF—Fisher Chi-square | 987.895 | 0.0000 | 4 | 4655 | |
PP—Fisher Chi-square | 899.930 | 0.0000 | 4 | 4673 |
Variables Parameters | OLS OLS OLS | Stepwise Regression | Cross-Sectional Fixed Effects Regression | Time-Series Fixed Effects Regression | ||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
TBC | 0.051 | 0.022 | 0.023 | −0.001 | 0.022 | |
TEF | −49.810 | −16.170 | −0.026 | 0.048 | −0.022 | |
BLF | 56.190 | 17.400 | 1.252 | 2.148 | 1.611 | |
CBF | 50.080 | 16.150 | 0.000 | 0.000 | 0.000 | |
CLF | 50.280 | 16.330 | 0.185 | 0.000 | 0.000 | |
FIF | 51.280 | 15.930 | −0.217 | 0.000 | 0.000 | |
FLF | 49.670 | 16.090 | −0.055 | 0.000 | 0.000 | |
GLF | 50.170 | 16.350 | 0.204 | 0.231 | 0.212 | |
YLE | 0.036 | 0.039 | 0.039 | 0.011 | 0.000 | |
GDP | 1.370 | 1.500 | 1.490 | 1.600 | 1.560 | |
PS | −0.003 | −0.002 | −0.002 | 0.002 | −0.002 | |
WSW | −0.043 | −0.04 | −0.040 | −0.041 | −0.037 | |
VA | 0.006 | 0.005 | 0.005 | −0.001 | 0.004 | |
UBR | 0.016 | 0.014 | 0.014 | −0.010 | 0.014 | |
LR | 0.007 | 0.007 | 0.007 | 0.009 | 0.006 | |
C | 1.221 | 3.910 | 0.943 | 0.942 | 4.144 | 0.852 |
R2 | 0.759 | 0.575 | 0.771 | 0.770 | 0.922 | 0.770 |
N | 965.000 | 965.000 | 965.000 | 965.000 | 965.000 | |
F | 430.900 | 161.779 | 213.040 | 91.220 | 154.470 | |
Prob | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
COUNTRY | Effect | COUNTRY | Effect | COUNTRY | Effect |
---|---|---|---|---|---|
Afghanistan | −1.51088 | Lebanon | −0.180311 | Estonia | −0.090499 |
Albania | 0.045380 | Lithuania | 0.277951 | Ethiopia | −1.07871 |
Angola | −0.619248 | Luxembourg | −0.271843 | France | 0.582562 |
Argentina | 0.923528 | Macedonia | 0.584715 | Germany | 0.586486 |
Armenia | −0.436922 | Madagascar | −1.670047 | Ghana | −0.537327 |
Australia | 0.910666 | Malawi | −1.132996 | Greece | 0.429039 |
Austria | 0.728967 | Malaysia | 0.355872 | Haiti | −0.665673 |
Azerbaijan | −0.466232 | Mali | −1.145177 | India | −0.711663 |
Bahrain | 0.101220 | Mexico | 1.530931 | Indonesia | −0.036024 |
Bangladesh | −0.689438 | Montenegro | 0.389134 | Israel | 1.725349 |
Belarus | 0.304442 | Myanmar | −1.222246 | Italy | 0.403465 |
Belgium | 0.894801 | Nepal | −1.098227 | Japan | −0.033037 |
Benin | −1.783677 | Netherlands | 1.272200 | Jordan | 0.616101 |
Bhutan | −0.976775 | Nicaragua | 0.173986 | Kazakhstan | 0.313510 |
Bolivia | −0.13884 | Niger | −1.55483 | Kenya | −0.823037 |
Bosnia and Herzegovina | 0.545076 | Norway | 0.579930 | Kuwait | 0.156473 |
Botswana | −0.672194 | Pakistan | −0.125697 | Latvia | −0.059265 |
Brazil | 1.248360 | Panama | 1.219165 | Sri Lanka | −1.253539 |
Burkina Faso | −1.374199 | Paraguay | −0.284495 | Sweden | 1.014358 |
Burundi | −1.96029 | Peru | 0.103869 | Switzerland | 0.853278 |
Cameroon | −0.74744 | Philippines | −0.295956 | Tanzania | −1.802745 |
Canada | 1.242624 | Poland | 0.393796 | Thailand | 0.532577 |
Chad | −1.650706 | Portugal | −0.187612 | Togo | −2.091407 |
Chile | 0.925958 | Romania | −0.198973 | Tunisia | 0.163915 |
China | −0.600853 | Russia | 0.320365 | Turkey | 0.259620 |
Colombia | 1.101339 | Rwanda | −1.840178 | Uganda | −1.173354 |
Congo | −1.143827 | S Korea | 0.210454 | United Arab Emirates | 0.931038 |
Costa Rica | 1.749141 | Saudi Arabia | 1.125122 | United Kingdom | 0.786135 |
Croatia | 0.286016 | Serbia | 0.236301 | United States | 1.037721 |
Czech Republic | 0.602562 | Sierra Leone | −1.002086 | Uzbekistan | 0.314745 |
Denmark | 1.048223 | Singapore | 0.544174 | Venezuela | 1.414359 |
Dominican Republic | −0.100939 | Slovenia | 0.218718 | Vietnam | −0.472808 |
El Salvador | 0.613418 | Spain | 1.408133 | Yemen | −0.835204 |
Zimbabwe | −1.095074 | Zambia | −0.341393 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
BC | −0.032131 | 0.033433 | −0.961042 | 0.3368 |
EF | 0.059125 | 0.021677 | 2.727521 | 0.0065 |
BLF | 1.072607 | 0.826403 | 1.297923 | 0.1947 |
GLF | 0.083497 | 0.121051 | 0.689768 | 0.4905 |
VA | −0.001739 | 0.001819 | −0.955970 | 0.3394 |
UPR | −0.004341 | 0.008171 | −0.531263 | 0.5954 |
WSW | −0.044785 | 0.005499 | −8.144363 | 0.0000 |
PS | 0.001496 | 0.001118 | 1.338161 | 0.1812 |
GDP | 6.31 × 10−6 | 7.39 × 10−6 | 0.854006 | 0.3933 |
LR | 0.003451 | 0.009830 | 0.351046 | 0.7256 |
YLE | 0.022598 | 0.010068 | 2.244603 | 0.0250 |
C | 3.867909 | 0.859549 | 4.499930 | 0.0000 |
Effects Specification | ||||
Cross-section fixed (dummy variables) | ||||
Weighted Statistics | ||||
R-squared | 0.964015 | Mean dependent var | 7.787289 | |
Adjusted R-squared | 0.959332 | S.D. dependent var | 4.854981 | |
S.E. of regression | 0.337928 | Sum squared resid | 97.40874 | |
F-statistic | 205.8665 | Durbin-Watson stat | 1.621291 | |
Prob (F-statistic) | 0.000000 | |||
Unweighted Statistics | ||||
R-squared | 0.921740 | Mean dependent var | 5.498159 | |
Sum squared resid | 99.34218 | Durbin-Watson stat | 1.431227 |
Country | Debtor Countries Hierarchy | Creditor Countries Hierarchy | ||||
---|---|---|---|---|---|---|
Total EF Rank | EF per Capital Rank | SWB (2017) Rank | Total EF Rank | EF per Capital Rank | SWB (2017) Rank | |
China | ||||||
USA | ||||||
India | 1 | 65 | 90 | |||
Japan | 2 | 6 | 19 | |||
Germany | 3 | 162 | 133 | |||
The U.K. | 4 | 43 | 56 | |||
Afghanistan | 5 | 38 | 15 | |||
Brazil | 7 | 42 | 14 | 1 | 86 | 33 |
Canada | 71 | 5th last | 1st last | 2 | 7 | 7 |
Russia | 3 | 32 | 73 | |||
Australia | 4 | 11 | 12 | |||
Congo Demo | 5 | 183 | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, J.; Zhang, D. Explore Associations between Subjective Well-Being and Eco-Logical Footprints with Fixed Effects Panel Regressions. Land 2021, 10, 931. https://doi.org/10.3390/land10090931
Wu X, Zhang J, Zhang D. Explore Associations between Subjective Well-Being and Eco-Logical Footprints with Fixed Effects Panel Regressions. Land. 2021; 10(9):931. https://doi.org/10.3390/land10090931
Chicago/Turabian StyleWu, Xiu, Jinting Zhang, and Daojun Zhang. 2021. "Explore Associations between Subjective Well-Being and Eco-Logical Footprints with Fixed Effects Panel Regressions" Land 10, no. 9: 931. https://doi.org/10.3390/land10090931
APA StyleWu, X., Zhang, J., & Zhang, D. (2021). Explore Associations between Subjective Well-Being and Eco-Logical Footprints with Fixed Effects Panel Regressions. Land, 10(9), 931. https://doi.org/10.3390/land10090931