Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source Area of the Middle Route of the South-to-North Water Diversion Project, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Testing
2.3. Data Processing and Spatial Analysis Methods
2.3.1. Statistical Analysis
2.3.2. Spatial Analysis Methods
2.4. Heavy Metal Pollution and Its Risk Assessment Methods
2.4.1. Nemerow Pollution Index (NPI)
2.4.2. Pollution Load Index (PLI)
2.4.3. Potential Ecological Risk Index (RI)
3. Results
3.1. Analysis of Heavy Metal Pollution in Surface Water
3.1.1. Statistical Characteristics Analysis of Surface Water
3.1.2. Assessment of Current Heavy Metal Contamination Levels in Surface Water
3.2. Analysis of Environmental Quality of Heavy Metals in Topsoil
3.2.1. Analysis of Topsoil Concentrations
3.2.2. Spatial Variability and Distribution Pattern of the Heavy Metals in the Topsoil
3.2.3. Characteristics and Distribution of Heavy Metal Pollution in the Topsoil
3.3. Ecological Risk Assessment of Heavy Metals in Surface Water and Topsoil
3.4. Analysis of PCCA and PCA-APCS-MLR
4. Discussion
4.1. Contamination Risk Characteristics of Heavy Metals in Topsoil and Surface Water
4.2. Analysis of Heavy Metal Sources
4.3. Strategy Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhury, S.; Mazumder, M.J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569, 476–488. [Google Scholar] [CrossRef]
- Li, R.; Tang, X.; Guo, W.; Lin, L.; Zhao, L.; Hu, Y.; Liu, M. Spatiotemporal distribution dynamics of heavy metals in water, sediment, and zoobenthos in mainstream sections of the middle and lower Changjiang River. Sci. Total Environ. 2020, 714, 136779. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Guidelines for the health risk assessment of chemical mixtures. Fed. Reg. 1986, 51, 34014–34025. [Google Scholar]
- Ezemonye, L.I.; Adebayo, P.O.; Enuneku, A.A.; Tongo, I.; Ogbomida, E. Potential health risk consequences of heavy metal con-centrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicol. Rep. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Radhouan, E.Z.; Lamia, Y.; Takwa, W.; Sylvie, C.; Michel, G.; Lamjed, M.; Pierre, C.; Lotfi, R. Surface sediment enrichment with trace metals in a heavily human-impacted lagoon (Bizerte Lagoon, Southern Mediterranean Sea): Spatial distribution, ecological risk assess-ment, and implications for environmental protection. Mar. Pollut. Bull. 2021, 169, 112512. [Google Scholar]
- Cafer, M.Y.; Yasar, K. Spatial characteristics of ecological and health risks of toxic heavy metal pollution from road dust in the Black Sea coast of Turkey. Geoderma Reg. 2021, 25, e00388. [Google Scholar]
- Nsikak, U.B.; Essien, D.U.; Joseph, P.E.; Winifred, U.A.; Adebusayo, E.A.; Oyeronke, A.A.; Omowunmi, H.F.; Abass, A.O. Geochemical fractionation and ecological risks assessment of benthic sediment-bound heavy metals from coastal ecosystems off the Equatorial Atlantic Ocean. Int. J. Sediment Res. 2017, 32, 410–420. [Google Scholar]
- Zhang, J.; Li, X.; Guo, L.; Deng, Z.; Wang, D.; Liu, L. Assessment of heavy metal pollution and water quality characteristics of the res-ervoir control reaches in the middle Han River, China. Sci. Total. Environ. 2021, 799, 149472. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Iqbal, J.; Shah, M.H. Seasonal variations, risk assessment and multivariate analysis of trace metals in the freshwater reservoirs of Pakistan. Chemosphere 2019, 216, 715–724. [Google Scholar] [CrossRef]
- Nawab, J.; Khan, S.; Xiaoping, W. Ecological and health risk assessment of potentially toxic elements in the major rivers of Pakistan: General population vs. Fishermen. Chemosphere 2018, 202, 154–164. [Google Scholar] [CrossRef]
- Diwakar, K.; Calvin, D.W.; Tapan, K.C.; Srimoyee, G. Assessment of heavy metals in some natural water bodies in Meghalaya, India. Environ. Nanotechnol. Monit. Management. 2021, 16, 100512. [Google Scholar]
- Väänänen, K.; Leppänen, M.T.; Chen, X.; Akkanen, J. Metal bioavailability in ecological risk assessment of freshwater ecosystems: From science to environmental management. Ecotoxicol. Environ. Saf. 2018, 147, 430–446. [Google Scholar] [CrossRef] [PubMed]
- Magaly, V.A.; Rebecca, S.; Anthony, S.; Robert, J.G.M. Evaluating water quality and ecotoxicology assessment techniques using data from a lead and zinc effected upland limestone catchment. Water Res. 2018, 128, 49–60. [Google Scholar]
- Baken, K.A.; Sjerps, R.M.A.; Schriks, M.; Wezel, A.P. Toxicological risk assessment and prioritization of drinking water relevant con-taminants of emerging concern. Environ. Int. 2018, 118, 293–303. [Google Scholar] [CrossRef]
- Park, B.; Lee, J.; Ro, H.; Kim, Y.H. Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health. Appl. Soil Ecol. 2011, 51, 17–24. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Song, J.; Tan, M.L.; Kung, H.; Johnson, V.C. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 2021, 202, 111702. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Xue, N.; Han, Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. 2021, 101, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xu, Y.; Zhang, J.; Wang, W.; Elwardany, R.M. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China. China Geol. 2020, 3, 402–410. [Google Scholar]
- Qiao, D.; Wang, G.; Li, X.; Wang, S.; Zhao, Y. Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere 2020, 248, 125988. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Ruiz, E.; Alonso-Azcárate, J.; Rincón, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J. Environ. Manag. 2009, 90, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, L.; Kong, L.; Liu, E.; Wang, L.; Zhu, J. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena 2015, 125, 200–205. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Surya, B.; Saleh, H.; Suriani, S.; Sakti, H.H.; Hadijah, H.; Idris, M. Environmental Pollution Control and Sustainability Management of Slum Settlements in Makassar City, South Sulawesi, Indonesia. Land 2020, 9, 279. [Google Scholar] [CrossRef]
- Alexakis, D.E. Contaminated Land by Wildfire Effect on Ultramafic Soil and Associated Human Health and Ecological Risk. Land 2020, 9, 409. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, M.; Liu, Q.; Wang, Z.; Zhao, L.; Chen, Y. Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary. Mar. Pollut. Bull. 2018, 137, 601–609. [Google Scholar] [CrossRef]
- Olatunde, K.A.; Sosanya, P.A.; Bada, B.S.; Ojekunle, Z.O.; Abdussalaam, S.A. Distribution and ecological risk assessment of heavy metals in soils around a major cement factory, Ibese, Nigeria. Sci. Afr. 2020, 9, e00496. [Google Scholar] [CrossRef]
- Cui, X.; Geng, Y.; Sun, R.; Xie, M.; Feng, X.; Li, X.; Cui, Z. Distribution, speciation and ecological risk assessment of heavy metals in Jinan Iron & Steel Group soils from China. J. Clean. Prod. 2021, 295, 126504. [Google Scholar]
- Nasrin, Y.A.; Behnam, K. Geochemical characteristics, partitioning, quantitative source apportionment, and ecological and health risk of heavy metals in sediments and water: A case study in Shadegan Wetland, Iran. Mar. Pollut. Bull. 2019, 149, 110495. [Google Scholar]
- Zhu, J.; Zhang, Z.; Lei, X.; Jing, X.; Wang, H.; Yan, P. Ecological scheduling of the middle route of south-to-north water diversion project based on a reinforcement learning model. J. Hydrol. 2021, 596, 126107. [Google Scholar] [CrossRef]
- Sheng, J.; Michael, W. Using incentives to coordinate responses to a system of payments for watershed services: The middle route of South–North Water Transfer Project, China. Ecosyst. Serv. 2018, 32, 1–8. [Google Scholar] [CrossRef]
- Dong, G.; Hu, Z.; Liu, X.; Fu, Y.; Zhang, W. Spatio-Temporal Variation of Total Nitrogen and Ammonia Nitrogen in the Water Source of the Middle Route of the South-To-North Water Diversion Project. Water 2020, 12, 2615. [Google Scholar] [CrossRef]
- Zhu, J.; Lei, X.; Quan, J.; Yue, X. Algae Growth Distribution and Key Prevention and Control Positions for the Middle Route of the South-to-North Water Diversion Project. Water 2019, 11, 1851. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Wang, Z.; Xue, Z.; Yang, B. Spatial variability and pollution risk assessment of soil fluorine in the core area of the Middle Route of the South-to-North Water Transfer Project. Resources Science 2021, 43, 368–379. (In Chinese) [Google Scholar]
- China Geological Survey. Specification for Multi-Purpose Regional Geochemical Survey (1:250000) (DD2005-01); China Geological Survey: Beijing, China, 2005. (In Chinese)
- Ministry of Natural Resources of the People’s Republic of China. Specification of Land Quality Geochemical Assessment (DZ/T 0295-2016). In Geological and Mineral Industry Standard of the People’s Republic of China 2016; Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Ministry of Ecology and Environment of China. Regulations on Quality Management of Environmental Monitoring; China Environmental Science Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Ministry of Ecology and Environment of China. Water Quality Technical Regulation on the Design of Sampling Programs (HJ 495–2009); China Environmental Science Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Ministry of Ecology and Environment of China. Technical Specification for Soil Environmental Monitoring (HJ/T 166-2004); China Environmental Science Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Wang, S.; Zhu, S.; Zhou, C. Characteristics of spatial variability of soil thickness in China. Geogr. Res. 2001, 20, 161–169. (In Chinese) [Google Scholar]
- White, J.G.; Welch, R.M.; Norvell, W.A. Soil Zinc Map of the USA using Geostatistics and Geographic Information Systems. Soil Sci. Soc. Am. J. 1997, 61, 185–194. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Fatoba, P.O. Contamination and spatial distribution of heavy metals in topsoil surrounding a mega cement factory. Atmos. Pollut. Res. 2014, 52, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Omwene, P.I.; Öncel, M.S.; Çelen, M.; Kobya, M. Heavy metal pollution and spatial distribution in surface sediments of Mustafake-malpaşa stream located in the world’s largest borate basin (Turkey). Chemosphere 2018, 208, 782–792. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Wang, C.; Zhu, Y.; Cui, Y. Probabilistic-fuzzy risk assessment and source analysis of heavy metals in soil consid-ering uncertainty: A case study of Jinling Reservoir in China. Ecotoxicol. Environ. Saf. 2021, 222, 112537. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Singh, V.P. Assessment of heavy metal contamination and Hg-resistant bacteria in surface water from different regions of Delhi, India. Saudi J. Biol. Sci. 2016, 25, 1687–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khadija, D.; Hicham, A.; Rida, A.; Hicham, E.; Nordine, N.; Najlaa, F. Surface water quality assessment in the semi-arid area by a combination of heavy metal pollution indices and statistical approaches for sustainable management. Environ. Challenges 2021, 5, 100230. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Y.; Ma, J.; Islam, S.; Weng, L.; Li, Y. Cd, Cu, and Zn Accumulations Caused by Long-Term Fertilization in Greenhouse Soils and Their Potential Risk Assessment. Int. J. Environ. Res. Public Health 2019, 16, 2805. [Google Scholar] [CrossRef] [Green Version]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221-222, 82–90. [Google Scholar] [CrossRef]
- Cai, L.; Xu, Z.; Bao, P.; He, M.; Dou, L.; Chen, L.; Zhou, Y.; Zhu, Y.-G. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. J. Geochem. Explor. 2015, 148, 189–195. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Meng, L.; Zuo, R.; Wang, J.; Yang, J.; Teng, Y.; Shi, R.; Zhai, Y. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model. J. Contam. Hydrol. 2018, 218, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Fang, W.; Shafi, M.; Wu, D.; Li, Y.; Zhong, B.; Ma, J.; Liu, D. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang, China. Ecotoxicol. Environ. Saf. 2019, 184, 109495. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.; Wang, Y.; Wang, X.; Ma, L.; Cheng, Z.; Su, L. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China. Ecol. Indic. 2021, 125, 107507. [Google Scholar] [CrossRef]
- Ahmed, M.; Mahmoud, K.E.; Ayman, A.E.; Ahmed, M.K.; Ahmed, E. Temporal distribution of trace metals pollution load index in the Nile Delta coastal surface sediments. Mar. Pollut. Bull. 2021, 167, 112290. [Google Scholar]
- El-Magd, S.; Taha, T.H.; Pienaar, H.H.; Breil, P.; Amer, R.A.; Namour, P. Assessing heavy metal pollution hazard in sediments of Lake Mariout, Egypt. J. Afr. Earth Sci. 2021, 176, 104116. [Google Scholar] [CrossRef]
- Zhuang, S.; Lu, X. Environmental Risk Evaluation and Source Identification of Heavy Metal(loid)s in Agricultural Soil of Shangdan Valley, Northwest China. Sustainability 2020, 12, 5806. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Wang, N.; Han, J.; Wei, Y.; Li, G.; Sun, Y. Potential Ecological Risk and Health Risk Assessment of Heavy Metals and Metalloid in Soil around Xunyang Mining Areas. Sustainability 2019, 11, 4828. [Google Scholar] [CrossRef] [Green Version]
- Talal, A.; El-Sorogy, A.S. Spatial distribution and risk assessment of heavy metals pollution in soils of marine origin in central Saudi Arabia. Mar. Pollut. Bull. 2021, 170, 112605. [Google Scholar]
- Wu, Q.; Hu, W.; Wang, H.; Liu, P.; Wang, X.; Huang, B. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Sci. Total Environ. 2021, 780, 146557. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of China. Environmental Quality Standards for Surface Water (GB 3838-2002); Ministry of Ecology and Environment of China: Beijing, China, 2002. (In Chinese)
- National Health Commission of the People’s Republic of China. Standard for Drinking Water (GB 5749-2006). In Translated English of Chinese Standard; National Health Commission of the People’s Republic of China: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Zhou, J.; Feng, K.; Pei, Z.; Lu, M. Pollution assessment and spatial variation of soil heavy metals in Lixia River Region of Eastern China. J. Soils Sediments 2016, 16, 748–755. [Google Scholar] [CrossRef]
- Guo, W.; Wu, T.; Jiang, G.; Pu, L.; Zhang, J.; Xu, F.; Yu, H.; Xie, X. Spatial Distribution, Environmental Risk and Safe Utilization Zoning of Soil Heavy Metals in Farmland, Subtropical China. Land 2021, 10, 569. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Bai, Z.; Alimu, M.; Liu, D.; Guo, Z. Pollution characteristics of forest surface water and the relationship with the soil heavy metal content in Tianshan. J. For. Environ. 2020, 40, 398–405. (In Chinese) [Google Scholar]
- Guo, C.; Chen, Y.; Xia, W.; Qu, X.; Yuan, H.; Xie, S.; Lin, L.-S. Eutrophication and heavy metal pollution patterns in the water suppling lakes of China’s south-to-north water diversion project. Sci. Total Environ. 2019, 711, 134543. [Google Scholar] [CrossRef]
- Feng, D.; Zhao, G. Footprint assessments on organic farming to improve ecological safety in the water source areas of the South-to-North Water Diversion project. J. Clean. Prod. 2020, 254, 120130. [Google Scholar] [CrossRef]
- Yuvaraj, A.; Thangaraj, R.; Karmegam, N.; Ravindran, B.; Chang, S.W.; Awasthi, M.K.; Kannan, S. Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. Chemosphere 2021, 278, 130458. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Sarkar, A.; Singh, S.; Singh, P.; Araujo, A.; Singh, R.P. Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Front. Environ. Sci. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Liu, X.; Bai, J.; Shih, K.; Zeng, E.Y.; Cheng, H. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ. Sci. Pollut. Res. 2013, 20, 6150–6159. [Google Scholar] [CrossRef] [PubMed]
- Bello, S.; Nasiru, R.; Garba, N.; Adeyemo, D. Carcinogenic and non-carcinogenic health risk assessment of heavy metals exposure from Shanono and Bagwai artisanal gold mines, Kano state, Nigeria. Sci. Afr. 2019, 6, e00197. [Google Scholar] [CrossRef]
- Li, Q.; Ji, H.; Qin, F.; Tang, L.; Guo, X.; Feng, J. Sources and the distribution of heavy metals in the particle size of soil polluted by gold mining upstream of Miyun Reservior, Beijing: Implications for assessing the potential risks. Environ. Monit. Assess 2014, 186, 6605–6626. [Google Scholar] [CrossRef]
- Xiao, J.; Yuan, X.; Li, J. Characteristics and transformation of heavy metal pollution in soil and rice of Yangtze River Delta Region. Agric. Sci. Technol. 2010, 11, 148–151. [Google Scholar]
- Sun, C.; Liu, J.; Wang, Y.; Sun, L.; Yu, H. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere 2013, 92, 517–523. [Google Scholar] [CrossRef]
- Kumar, S.; Islam, A.R.M.T.; Hasanuzzaman, M.; Salam, R.; Khan, R.; Islam, M.S. Preliminary assessment of heavy metals in surface water and sediment in Nakuvadra-Rakiraki River, Fiji using indexical and chemometric approaches. J. Environ. Manag. 2021, 298, 113517. [Google Scholar] [CrossRef]
- Zhuang, W.; Ying, S.C.; Frie, A.L.; Wang, Q.; Song, J.; Liu, Y.; Chen, Q.; Lai, X. Distribution, pollution status, and source apportionment of trace metals in lake sediments under the influence of the South-to-North Water Transfer Project, China. Sci. Total Environ. 2019, 671, 108–118. [Google Scholar] [CrossRef]
Type | Item | Cd | Cr | Cu | Pb | Zn | Hg |
---|---|---|---|---|---|---|---|
Topsoil | Testing method | Inductively coupled plasma mass spectrometry (HJ 766-2015) | Atomic fluorescence spectrometry (HJ 680-2013) | ||||
Equipment | Inductively coupled plasma spectrometer (NexION 350D) | Atomic fluorescence spectrometer (AFS-8510) | |||||
Detection limit (mg·kg−1) | 0.02 | 1.00 | 1.20 | 0.20 | 3.20 | 0.0005 | |
Surface water | Testing method | Inductively coupled plasma mass spectrometry (HJ 700-2014) | Atomic fluorescence spectrometry (HJ 694-2014) | ||||
Equipment | Inductively coupled plasma spectrometer (NexION 350D) | Atomic fluorescence spectrometer (SA-7800) | |||||
Detection limit (µg·L−1) | 0.02 | 0.11 | 0.05 | 0.09 | 0.67 | 0.0004 |
Potential Ecological Risk Index | |||||
---|---|---|---|---|---|
Threshold interval | ≤ 40, ≤ 150 | 40 < ≤ 80, 150 < ≤ 300 | 80 < ≤ 160, 300 < ≤ 600 | 160 < ≤ 320, 600 < ≤ 1200 | > 320, > 1200 |
Ecological risk level | Low risk | Moderate risk | Considerable risk | High risk | Significantly high risk |
Statistic | Cd | Cr | Cu | Hg | Pb | Zn |
---|---|---|---|---|---|---|
Maximum (µg·L−1) | 2.77 | 7.62 | 3.14 | 0.052 | 2.12 | 223.00 |
Minimum (µg·L−1) | 0.03 | 0.53 | 0.06 | 0.002 | 0.12 | 1.57 |
Median (µg·L−1) | 0.03 | 3.57 | 0.98 | 0.002 | 0.72 | 55.63 |
Average (µg·L−1) | 0.26 | 3.49 | 1.17 | 0.009 | 0.87 | 63.93 |
SD (µg·L−1) | 0.75 | 1.26 | 0.66 | 0.014 | 0.51 | 52.60 |
CV (%) | 34.69 | 278.21 | 177.55 | 69.50 | 171.18 | 121.55 |
EQSSW I (µg·L−1) | 1 | 10 | 10 | 0.05 | 10 | 50 |
EQSSW II (µg·L−1) | 5 | 50 | 1000 | 0.05 | 10 | 1000 |
EQSSW III (µg·L−1) | 5 | 50 | 1000 | 0.1 | 50 | 1000 |
EQSSW IV (µg·L−1) | 5 | 50 | 1000 | 1 | 50 | 2000 |
EQSSW V (µg·L−1) | 10 | 100 | 1000 | 1 | 100 | 2000 |
SDW (µg·L−1) | 5 | 50 | 1000 | 1 | 10 | 2000 |
Level | Cd | Cr | Cu | Hg | Pb | Zn | NPI |
---|---|---|---|---|---|---|---|
Safe | 100.00 | 100.00 | 100.00 | 97.65 | 100.00 | 100.00 | 97.65 |
Alert | 0.00 | 0.00 | 0.00 | 2.35 | 0.00 | 0.00 | 2.35 |
Mild concentration | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Serious concentration | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Statistic | Cd | Cr | Cu | Hg | Pb | Zn |
---|---|---|---|---|---|---|
Maximum (mg·kg−1) | 0.87 | 248.24 | 121.09 | 0.221 | 63.13 | 193.00 |
Minimum (mg·kg−1) | 0.03 | 2.60 | 1.40 | 0.001 | 0.40 | 11.71 |
Median (mg·kg−1) | 0.19 | 77.82 | 27.64 | 0.027 | 22.46 | 80.40 |
Average (mg·kg−1) | 0.22 | 81.60 | 31.29 | 0.035 | 22.46 | 85.71 |
SD (mg·kg−1) | 0.12 | 42.06 | 20.04 | 0.031 | 7.42 | 24.90 |
CV (%) | 187.84 | 194.03 | 156.17 | 112.16 | 302.64 | 344.24 |
Topsoil background value (mg·kg−1) | 0.12 | 74.90 | 25.20 | 0.06 | 46.30 | 71.85 |
Item | Cd | Cr | Cu | Hg | Pb | Zn |
---|---|---|---|---|---|---|
Model | Exponential | Linear | Exponential | Gaussian | Gaussian | Gaussian |
Nugget | 0.01 | 1595.00 | 350.10 | 0.0007 | 35.19 | 533.00 |
Sill | 0.03 | 3969.35 | 944.38 | 0.0025 | 103.62 | 2631.88 |
Nugget/Sill (%) | 30.30 | 40.18 | 37.07 | 28.00 | 33.96 | 20.25 |
Range (km) | 29.58 | 13.44 | 21.71 | 47.17 | 31.47 | 16.75 |
R2 | 0.90 | 0.81 | 0.94 | 0.85 | 0.81 | 0.83 |
Contamination | Proportion of Contaminated Sites (%) | ||||||
---|---|---|---|---|---|---|---|
CF | PLI | ||||||
Cd | Cr | Cu | Hg | Pb | Zn | ||
Not polluted | 12.48 | 45.61 | 36.95 | 88.14 | 99.43 | 27.83 | 70.60 |
Slightly polluted | 60.56 | 47.96 | 53.63 | 8.82 | 0.57 | 68.16 | 28.93 |
Moderately polluted | 20.09 | 3.92 | 5.08 | 1.67 | 0.00 | 4.01 | 0.44 |
Highly polluted | 6.87 | 2.51 | 4.34 | 1.37 | 0.00 | 0.00 | 0.03 |
Statistics of CF and PLI | |||||||
Maximum | 7.07 | 3.31 | 4.81 | 3.89 | 1.36 | 2.69 | 3.20 |
Minimum | 0.23 | 0.03 | 0.06 | 0.01 | 0.01 | 0.16 | 0.17 |
Average | 1.77 | 1.09 | 1.24 | 0.61 | 0.49 | 1.19 | 0.90 |
Classification of contamination | Slightly polluted | Slightly polluted | Slightly polluted | Not polluted | Not polluted | Slightly polluted | Not polluted |
Item | Type | RI | ||||||
---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Hg | Pb | Zn | |||
Max | Surface water | 16.61 | 0.30 | 0.02 | 41.60 | 1.06 | 0.22 | 42.63 |
Topsoil | 212.20 | 6.63 | 24.03 | 155.41 | 6.82 | 2.69 | 405.49 | |
Min | Surface water | 0.15 | 0.02 | 0.00 | 1.20 | 0.06 | 0.00 | 1.55 |
Topsoil | 6.83 | 0.07 | 0.28 | 0.58 | 0.04 | 0.16 | 15.66 | |
Average | Surface water | 1.55 | 0.14 | 0.01 | 7.54 | 0.43 | 0.06 | 9.74 |
Topsoil | 53.25 | 2.18 | 6.21 | 24.47 | 2.43 | 1.19 | 89.73 | |
Ecological risk level | Surface water | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Topsoil | Moderate risk | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk |
Cd | Cr | Cu | Hg | Pb | Zn | |
---|---|---|---|---|---|---|
Cd | 1.000 | |||||
Cr | 0.117 | 1.000 | ||||
Cu | 0.218 | 0.561 ** | 1.000 | |||
Hg | 0.243 | 0.049 | 0.099 | 1.000 | ||
Pb | 0.153 | −0.159 | −0.187 | 0.236 | 1.000 | |
Zn | 0.452 ** | 0.386 | 0.639 ** | 0.186 | –0.066 | 1.000 |
Cd | Cr | Cu | Hg | Pb | Zn | |
---|---|---|---|---|---|---|
Cd | 1.000 | |||||
Cr | 0.537 ** | 1.000 | ||||
Cu | −0.487 | 0.438 ** | 1.000 | |||
Hg | −0.166 | 0.997 | 0.355 ** | 1.000 | ||
Pb | 0.662 ** | −0.242 * | −0.172 | −0.190 | 1.000 | |
Zn | −0.355 | 0.305 | 0.140 | −0.406 ** | −0.123 | 1.000 |
Component | Cd | Cr | Cu | Hg | Pb | Zn | Characteristic Value | Variance (%) | Cumulative Variance (%) |
---|---|---|---|---|---|---|---|---|---|
PC1 (topsoil) | 0.367 | 0.753 | 0.877 | 0.088 | −0.346 | 0.796 | 2.232 | 37.194 | 37.194 |
PC2 (topsoil) | 0.644 | −0.105 | 0.017 | 0.708 | 0.688 | 0.311 | 1.497 | 24.949 | 62.143 |
PC1 (surface water) | −0.907 | 0.723 | 0.683 | 0.235 | −0.665 | 0.420 | 2.478 | 41.300 | 41.300 |
PC2 (surface water) | 0.021 | −0.192 | 0.275 | 0.881 | −0.125 | −0.762 | 1.494 | 24.898 | 66.198 |
Item | Cd | Cr | Cu | Hg | Pb | Zn |
---|---|---|---|---|---|---|
PC1 (topsoil) (%) | 13.48 | 69.03 | 72.81 | 26.74 | 20.01 | 75.67 |
PC2 (topsoil) (%) | 71.03 | 11.38 | 5.21 | 52.19 | 48.76 | 2.12 |
Other | 15.49 | 19.59 | 21.98 | 21.07 | 31.23 | 22.21 |
Measured average concentration (mg·kg−1) | 0.22 ± 0.12 | 81.60 ± 42.06 | 31.29 ± 20.04 | 0.035 ± 0.031 | 22.46 ± 7.42 | 85.71 ± 24.90 |
Estimated average concentration (mg·kg−1) | 0.26 ± 0.10 | 81.97 ± 42.51 | 30.83 ± 21.88 | 0.035 ± 0.036 | 22.37 ± 7.53 | 86.33 ± 24.79 |
Ratio (E/O) | 1.05 | 1.01 | 1.03 | 1.08 | 1.03 | 0.99 |
R2 | 0.82 | 0.79 | 0.88 | 0.83 | 0.91 | 0.84 |
PC1(surface water) | 8.69 | 68.81 | 81.92 | 52.37 | 29.23 | 60.48 |
Other | 91.31 | 31.19 | 18.08 | 47.63 | 70.77 | 39.52 |
Measured average concentration (µg·L−1) | 0.26 ± 0.75 | 3.49 ± 1.26 | 1.17 ± 0.66 | 0.009 ± 0.014 | 0.87 ± 0.51 | 63.93 ± 52.60 |
Estimated average concentration (µg·L−1) | 0.29 ± 0.74 | 3.44 ± 1.35 | 1.22 ± 0.65 | 0.009 ± 0.015 | 0.88 ± 0.54 | 63.79 ± 54.46 |
Ratio (E/O) | 1.02 | 1.01 | 1.02 | 1.04 | 1.03 | 1.01 |
R2 | 0.87 | 0.94 | 0.92 | 0.81 | 0.86 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Yang, B.; Xue, Z.; Wang, Z. Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source Area of the Middle Route of the South-to-North Water Diversion Project, China. Land 2021, 10, 934. https://doi.org/10.3390/land10090934
Tan L, Yang B, Xue Z, Wang Z. Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source Area of the Middle Route of the South-to-North Water Diversion Project, China. Land. 2021; 10(9):934. https://doi.org/10.3390/land10090934
Chicago/Turabian StyleTan, Li, Bin Yang, Zhibin Xue, and Zhanqi Wang. 2021. "Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source Area of the Middle Route of the South-to-North Water Diversion Project, China" Land 10, no. 9: 934. https://doi.org/10.3390/land10090934
APA StyleTan, L., Yang, B., Xue, Z., & Wang, Z. (2021). Assessing Heavy Metal Contamination Risk in Soil and Water in the Core Water Source Area of the Middle Route of the South-to-North Water Diversion Project, China. Land, 10(9), 934. https://doi.org/10.3390/land10090934