The Influence of the Characteristics of Online Itinerary on Purchasing Behavior
Abstract
:1. Introduction
2. Literature Review and Hypotheses Development
2.1. The Theories of Consumer Behavior
2.2. Online Tourist Consumer Behavior
3. Research Method and Data Description
4. Model Estimation and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamarulzaman, Y. Adoption of travel e-shopping in the UK. Int. J. Retail Distrib. Manag. 2007, 35, 703–719. [Google Scholar] [CrossRef] [Green Version]
- Buhalis, D.; Law, R. Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research. Tour. Manag. 2008, 29, 609–623. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Chung, N.; Lee, C.K. The effect of perceived trust on electronic commerce: Shopping online for tourism products and services in South Korea. Tour. Manag. 2011, 32, 256–265. [Google Scholar] [CrossRef]
- Werthner, H.; Klein, S. Information Technology and Tourism—A Challenging Relationship, 1st ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- China’s Online Travel Sector Data in 2017. iResearch Global Website. Available online: http://www.iresearchchina.com/content/details7_40590.html (accessed on 6 January 2020).
- Jeong, M.; Choi, J. Effects of picture presentations on customers’ behavioral intentions on the Web. J. Travel Tour. Mark. 2004, 17, 193–204. [Google Scholar] [CrossRef]
- Meras, A.A. On-line contracting of tourism services and dynamic packages of tourism. Investig. Tur. 2016, 12, 163–182. [Google Scholar]
- Chiang, K.P.; Dholakia, R.R. Factors driving consumer intention to shop online: And empirical investigation. J. Consum. Psychol. 2003, 13, 177–183. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Y.; Liang, Y.; Tang, M. Exploiting user experience from online customer reviews for product design. Int. J. Inf. Manag. 2019, 46, 173–186. [Google Scholar] [CrossRef]
- Brown, M.R.; Muchira, R.; Gottlieb, U. Privacy concerns and the purchasing of travel services online. Inf. Technol. Tour. 2007, 9, 15–25. [Google Scholar] [CrossRef]
- Kah, J.A.; Vogt, C.; Mackay, K. Online travel information search and purchasing by Internet use experiences. Inf. Technol. Tour. 2008, 10, 227–243. [Google Scholar] [CrossRef]
- Chen, C.F.; Law, R. Identifying significant factors influencing consumer trust in an online travel site. Inf. Technol. Tour. 2006, 8, 197–214. [Google Scholar] [CrossRef]
- Law, R.; Bai, B. How do the preferences of online buyers and browsers differ on the design and content of travel websites? Int. J. Contemp. Hosp. Manag. 2008, 20, 388–400. [Google Scholar] [CrossRef]
- Law, R.; Bai, B.; Leung, B. Travel website uses and cultural influence: A comparison between American and Chinese travelers. Inf. Technol. Tour. 2008, 10, 215–225. [Google Scholar] [CrossRef]
- Wen, I. Online travelers’ decision makings: A new equation model to evaluate impacts of website, search intention, and trust. Inf. Technol. Tour. 2010, 12, 153–173. [Google Scholar] [CrossRef]
- Law, R.; Leung, K.; Wong, R.J. The impact of the Internet on travel agencies. Int. J. Contemp. Hosp. Manag. 2004, 16, 100–107. [Google Scholar] [CrossRef]
- Beldona, S.; Morrison, A.M.; O’Leary, J. Online shopping motivations and pleasure travel products: A correspondence analysis. Tour. Manag. 2005, 26, 561–570. [Google Scholar] [CrossRef]
- Bogdanovych, A.; Berger, H.; Simoff, S.; Sierra, C. Travel agents vs. online booking: Tackling the shortcomings of nowadays online tourism portals. In Proceedings of the International Conference on Information Technology and Travel & Tourism, Lausanne, Switzerland, 18–20 January 2006. [Google Scholar]
- Watson, J.B. Behaviorism, 2nd ed.; K. Paul, Trench, Trubner & co.: London, UK, 1931. [Google Scholar]
- Michel, L.; Howard, J.A. Nonlinear relations in a complex model of buyer behavior. J. Consum. Res. 1980, 6, 377–388. [Google Scholar]
- Ajzen, I.; Fishbein, M. Attitudes and the attitude-behavior relation: Reasoned and automatic processes. Eur. Rev. Soc. Psychol. 2000, 11, 1–33. [Google Scholar] [CrossRef]
- Ajzen, I.; Driver, B.L. Prediction of leisure participation from behavioral, normative, and control beliefs: An application of the theory of planned behavior. Leis. Sci. 1991, 13, 185–204. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Liu, P. Empirical Study on the Influencing Factors of Urban Residents’ Sports Leisure Consumption Intention. Master’s Thesis, Zhejiang Gongshang University, Hangzhou, China, 2015. (In Chinese). [Google Scholar]
- Lee, H.Y.; Qu, H.L.; Kim, Y.S. A study of the impact of personal innovativeness on online travel shopping behavior—A case study of Korean travelers. Tour. Manag. 2007, 28, 886–897. [Google Scholar] [CrossRef]
- Amaro, S.; Duarte, P. An integrative model of consumers’ intentions to purchase travel online. Tour. Manag. 2015, 46, 64–79. [Google Scholar] [CrossRef]
- Agag, G.; El-Masry, A. Understanding consumer intention to participate in online travel community and effects on consumer intention to purchase travel online and WOM: An integration of innovation diffusion theory and TAM with trust. Comput. Hum. Behav. 2016, 60, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.U.; Kumar, P. Factors influencing consumer intention to shop online in Nigeria: A conceptual study. Vision 2020, 1–8. [Google Scholar] [CrossRef]
- Giao, H.; Vuong, B.; Quan, T. The influence of website quality on consumer’s e-loyalty through the mediating role of e-trust and e-satisfaction: An evidence from online shopping in Vietnam. Uncertain Supply Chain Manag. 2020, 8, 351–370. [Google Scholar] [CrossRef]
- Berbegal-Mirabent, J.; Mas-Machuca, M.; Marimon, F. Antecedents of online purchasing behaviour in the tourism sector. Ind. Manag. 2016, 116, 87–102. [Google Scholar] [CrossRef]
- Chetioui, Y.; Lebdaoui, H.; Chetioui, H. Factors influencing consumer attitudes toward online shopping: The mediating effect of trust. EuroMed J. Bus. 2020, in press. [Google Scholar] [CrossRef]
- Pennington-Gray, L.; Vogt, C. Examining welcome center visitors’ travel and information behaviors: Does location of centers or residency matter. J. Travel Res. 2003, 41, 272–280. [Google Scholar] [CrossRef]
- Wen, F.; Sha, Z.Q. Online word of mouth in online stores: The mediating role of trust and the moderating role of gender. Manag. Rev. 2011, 23, 41–48. (In Chinese) [Google Scholar]
- Luo, H.Y.; Li, Z.N.; Lin, X.D. The influence mechanism of online word-of-mouth: The mediator of trust and the moderator of gender and involvement. J. Syst. Manag. 2019, 28, 401–414. [Google Scholar]
- Hagag, W.; Clark, L.; Wheeler, C. A framework for understanding the website preferences of Egyptian online travel consumers. Int. J. Cul.Tour. Hosp Res. 2015, 9, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.J.; Kim, W.G.; Han, J.S. A perceptual mapping of online travel agencies and preference attributes. Tour. Manag. 2007, 28, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Bai, B.; Law, R.; Wen, I. The impact of website quality on customer satisfaction and purchase intentions: Evidence from Chinese online visitors. Int. J. Hosp. Manag. 2008, 27, 391–402. [Google Scholar] [CrossRef]
- Khare, A.; Khare, A. Travel and tourism industry yet to exploit the Internet fully in India. J. Data Mark. Cust. Strategy Manag. 2010, 17, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Hyun, S.S. Role of motivations for luxury cruise traveling, satisfaction, and involvement in building traveler loyalty. Int. J. Hosp. Manag. 2018, 70, 75–84. [Google Scholar] [CrossRef]
- Kolsaker, A.; Lee-Kelley, L.; Choy, P.C. The reluctant Hong Kong consumer: Purchasing travel online. Int. J. Consum. Stud. 2010, 28, 295–304. [Google Scholar] [CrossRef]
- Kim, W.G.; Ma, X.; Dong, J.K. Determinants of Chinese hotel customers’ e-satisfaction and purchase intentions. Tour. Manag. 2006, 27, 890–900. [Google Scholar] [CrossRef]
- Law, R. Disintermediation of hotel reservations: The perception of different groups of online buyers in Hong Kong. Int. J. Contemp. Hosp. Manag. 2009, 21, 766–772. [Google Scholar] [CrossRef]
- Jensen, J.M. Shopping orientation and online travel shopping: The role of travel experience. Int. J. Tour. Res. 2012, 14, 56–70. [Google Scholar] [CrossRef]
- Lin, P.J.; Jones, E.; Westwood, S. Perceived risk and risk-relievers in online travel purchase intentions. J. Hosp. Mark. Manag. 2009, 18, 782–810. [Google Scholar] [CrossRef]
- Wong, J.; Law, R. Analysing the intention to purchase on hotel websites: A study of travellers to Hong Kong. Int. J. Hosp. Manag. 2005, 24, 311–329. [Google Scholar] [CrossRef]
- Giannakos, M.N.; Pappas, I.O.; Mikalef, P. Absolute price as a determinant of perceived service quality in hotels: A qualitative analysis of online customer reviews. Int. J. Hosp. Manag. 2014, 1, 62–80. [Google Scholar] [CrossRef]
- Vijayasarathy, L.R. Product characteristics and internet shopping intentions. Internet Res. 2002, 12, 411–426. [Google Scholar] [CrossRef]
- Anckar, B.; Walden, P. Self-booking of high-and low-complexity travel products: Exploratory findings. Inf. Technol. Tour. 2001, 4, 151–165. [Google Scholar] [CrossRef]
- Peng, L.F.; Lai, L.L. A service innovation evaluation framework for tourism e-commerce in China based on BP neural network. Electron. Mark. 2014, 24, 37–46. [Google Scholar] [CrossRef]
- Buckley, R.; Mossaz, A.C. Decision making by specialist luxury travel agents. Tour. Manag. 2016, 55, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Mirehie, M.; Gibson, H.J.; Khoo-Lattimore, C.; Prayag, G. An exploratory study of hospitality needs and preferences of U.S. Girlfriend Getaways. J. Hosp. Mark. Manag. 2018, 27, 811–832. [Google Scholar] [CrossRef]
- Tussyadiah, I.P.; Pesonen, J. Impacts of peer-to-peer accommodation use on travel patterns. J. Travel Res. 2016, 55, 1022–1040. [Google Scholar] [CrossRef]
- Tussyadiah, I.P.; Zach, F. Identifying salient attributes of peer-to-peer accommodation experience. J. Hosp. Mark. Manag. 2017, 34, 636–652. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Ballester, E.; Hernandez-Espallardo, M. Effect of brand associations on consumer reactions to unknown on-line brands. Int. J. Electron. Commer. 2008, 12, 81–113. [Google Scholar] [CrossRef]
- Zhu, D.H.; Zhang, Z.J.; Chang, Y.P.; Liang, S. Good discounts earn good reviews in return? Effects of price promotion on online restaurant reviews. Int. J. Hosp. Manag. 2019, 77, 178–186. [Google Scholar] [CrossRef]
- Park, J.Y.; Jang, S.C. Did I get the best discount? Counterfactual thinking of tourism products. J. Travel Res. 2018, 57, 17–30. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Hyun-A, L.; Choi, J. Perceived product value and attitude change affecting Web-based price discount level and scarcity. J. Inf. Syst. 2018, 27, 157–173. [Google Scholar]
- Heide, J.B. Interorganizational governance in marketing channels. J. Mark. 1994, 1, 71–85. [Google Scholar] [CrossRef]
- Fam, K.S.; Foscht, T.; Collins, R.D. Trust and the online relationship—An exploratory study from New Zealand. Tour. Manag. 2004, 25, 195–207. [Google Scholar] [CrossRef]
- Amaro, S.; Duarte, P. Travellers’ intention to purchase travel online: Integrating trust and risk to the theory of planned behaviour. Anatolia 2016, 27, 389–400. [Google Scholar] [CrossRef]
- Magnani, M. The economic and behavioral consequences of online user reviews. J. Econ. Surv. 2020, 34, 263–292. [Google Scholar] [CrossRef]
- Wu, J.; Hong, Q.; Cao, M.; Liu, Y.; Fujita, H. A group consensus-based travel destination evaluation method with online reviews. Appl. Intell. 2021, in press. [Google Scholar] [CrossRef]
- Kong, D.; Yang, J.; Duan, H.; Yang, S. Helpfulness and economic impact of multidimensional rating systems: Perspective of functional and hedonic characteristics. J. Consum. Behav. 2020, 19, 80–95. [Google Scholar] [CrossRef]
- Hong, S.; Pittman, M. eWOM anatomy of online product reviews: Interaction effects of review number, valence, and star ratings on perceived credibility. Int. J. Advert. 2020, 39, 892–920. [Google Scholar] [CrossRef]
- Ye, Q.; Law, R.; Gu, B.; Chen, W. The influence of user-generated content on traveler behavior: An empirical investigation on the effects of e-word-of-mouth to hotel online bookings. Comput. Hum. Behav. 2011, 27, 634–639. [Google Scholar] [CrossRef]
- Gretze, U.; Yoo, K.H. Use and impact of online travel reviews. In Proceedings of the International Conference on Information and Communication Technologies in Tourism, Innsbruck, Austria, 23–25 January 2008. [Google Scholar]
- Gretze, U.; Fesenmaier, D.R.; Lee, Y.J.; Tussyadiah, I. Narrating travel experiences: The role of new media. In Tourist Experiences: Contemporary Perspectives, 1st ed.; Sharpley, R., Stone, P., Eds.; Routledge: New York, NY, USA, 2010; pp. 171–182. [Google Scholar]
- Schuckert, M.; Liu, X.W.; Law, R. Hospitality and tourism online reviews: Recent trends and future directions. J. Travel Tour. Mark. 2015, 32, 608–621. [Google Scholar] [CrossRef]
- Info Graphics Mania. Online Travel Statistics. 2012. Available online: http://infographicsmania.com/online-travel-statistics-2012 (accessed on 31 March 2020).
- Li, J.; Li, X.; Yen, D.C.; Zhang, P.Z. Impact of online review grouping on consumers’ system usage behavior: A system restrictiveness perspective. J. Glob. Inf. Manag. 2016, 24, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.W.; Park, S. What makes a useful online review? Implication for travel product websites. Tour. Manag. 2015, 47, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Mudambi, S.M.; Schuff, D. What makes a helpful online review? A study of customer reviews on amazon.com. MIS Q 2010, 34, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Yang, Y.; Yuksel, U. The impact of a new online channel: An empirical study. Ann. Tour. Res. 2015, 54, 136–155. [Google Scholar] [CrossRef]
- Duan, W.J.; Gu, B.; Whinston, A.B. The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry. J. Retail. 2008, 84, 233–242. [Google Scholar] [CrossRef]
- Rahmi, B. Analysis of factors affecting customer trust in online hotel booking website usage. EJTHR 2020, 10, 106–117. [Google Scholar]
- Nisar, T.M.; Prabhakar, G.; Ilavarasan, P.V.; Baabdullah, A.M. Up the ante: Electronic word of mouth and its effects on firm reputation and performance. J. Retail. Consum. Serv. 2020, 53, 101726. [Google Scholar] [CrossRef]
- Perles-Ribes, J.F.; Ramón-Rodríguez, A.B.; Moreno-Izquierdo, L.; Such-Devesa, M.J. Online reputation and destination competitiveness: The case of Spain. Tour. Anal. 2019, 24, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Aw, E.C.-X.; Basha, N.K.; Ng, S.I.; Ho, J.A. Searching online and buying offline: Understanding the role of channel-, consumer-, and product-related factors in determining webrooming intention. J. Retail. Consum. Serv. 2021, 58, 102328. [Google Scholar] [CrossRef]
- Caber, M.; Albayrak, T.; Aksoy, S. Tangible and intangible elements of tourism products and their relationships with overall customer satisfaction: A comparison of six countries. In Proceedings of the International Conference on Business, Economics and Tourism Management, Singapore, Singapore, 26–28 February 2010. [Google Scholar]
- Lim, W.M.; Yap, S.F.; Makkar, M. Home sharing in marketing and tourism at a tipping point: What do we know, how do we know, and where should we be heading? J. Bus. Res. 2021, 122, 534–566. [Google Scholar] [CrossRef]
- Fang, B.; Ye, Q.; Kucukusta, D.; Law, R. Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics. Tour. Manag. 2016, 52, 498–506. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Educational: Hoboken, NJ, USA, 2013. [Google Scholar]
- Dann, D.; Teubner, T.; Weinhardt, C. Poster child and guinea pig—Insights from a structured literature review on Airbnb. Int. J. Contemp. Hosp. Manag. 2019, 31, 427–473. [Google Scholar] [CrossRef]
- Gutt, D.; Herrmann, P. Sharing means caring? Hosts’ price reaction to rating visibility. In Proceedings of the European Conference on Information Systems, Münster, Germany, 26–29 May 2015. [Google Scholar]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis, 3rd ed.; Chapman and Hall: New York, NY, USA, 2013. [Google Scholar]
- Pedersen, E.J.; Millder, D.L.; Simpson, G.L.; Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. Ecology 2019, 7, e6876. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, H.; Dai, W.; Burns, K. Evaluation of industrial green development and industrial green competitiveness: Evidence from Chinese urban agglomerations. Ecol. Indic. 2021, 124, 107371. [Google Scholar] [CrossRef]
- Chege, S.M.; Wang, D.P. The influence of technology innovation on SME performance through environmental sustainability practices in Kenya. Technol. Soc. 2020, 60, 101210. [Google Scholar] [CrossRef]
- Serrao, C.; Duarte, I.; Castro, L.; Teixeira, A. Burnout and depression in Portuguese healthcare workers during the COVID-19 Pandemic-The mediating role of psychological resilience. Int. J. Environ. Res. Public Health 2021, 18, 636. [Google Scholar] [CrossRef] [PubMed]
Variables | Measured Value | Mean/Frequency | Standard Deviation/Percentage | Variable Description |
---|---|---|---|---|
Sales volume | 4366 | 29.56 | 28.91 | The minimum value is 0 and the maximum value is 946 |
Price | 4366 | 7223 | 18,992 | The minimum value is 7 and the maximum value is 252,803 |
Destination choice | 4366 | Classified variable | ||
Chinese domestic tourism | 2667 | 61.09% | ||
East Asia and Southeast Asia | 796 | 18.23% | ||
Europe and America, other overseas tourism destinations | 903 | 20.68% | ||
Travel type | 4366 | Classified variable | ||
Group travel | 584 | 13.38% | ||
Independent travel | 2871 | 65.76% | ||
Semi-self-help travel | 9 | 0.21% | ||
Private travel | 902 | 20.65% | ||
Product quality | 4366 | Classified variable | ||
Ordinary | 2845 | 65.16% | ||
Light luxury | 639 | 14.64% | ||
Luxury | 882 | 20.20% | ||
Length of travel | 4366 | Classified variable | ||
Short-term | 1511 | 34.61% | ||
Mid-term | 1508 | 34.54% | ||
Long-term | 1347 | 30.85% | ||
Type of hotels | 4366 | 2 | 0.740 | Classified variable |
Economy | 1996 | 45.72% | ||
Comfort | 1189 | 27.23% | ||
Luxury | 1181 | 27.05% | ||
The popularity of travel agencies | 4366 | Classified variable | ||
Common | 2187 | 50.09% | ||
Niche | 1152 | 26.39% | ||
Well-known | 1027 | 23.52% | ||
Preferential activities | ||||
Discounts for early decision | 4366 | 0 | 0.0600 | 0 = No; 1 = Yes |
Multi-person reduction measures | 4366 | 0.0100 | 0.0700 | 0 = No; 1 = Yes |
Membership prices | 4366 | 0 | 0.0700 | 0 = No; 1 = Yes |
Gift cards | 4366 | 0.0500 | 0.210 | 0 = No; 1 = Yes |
Service commitments: | ||||
Refund at any time | 4366 | 0.680 | 0.470 | 0 = No; 1 = Yes |
Truthful description | 4366 | 0.940 | 0.240 | 0 = No; 1 = Yes |
No more self-pay | 4366 | 0.230 | 0.420 | 0 = No; 1 = Yes |
Travel guarantee | 4366 | 0.110 | 0.310 | 0 = No; 1 = Yes |
Promise that a group formed | 4366 | 0.470 | 0.500 | 0 = No; 1 = Yes |
No shopping | 4366 | 0.300 | 0.460 | 0 = No; 1 = Yes |
Tourist feedback | ||||
User evaluation | 4366 | 4.990 | 0.0300 | The higher the number, the better the evaluation |
Satisfaction | 4366 | 99.83 | 0.460 | The higher the number, the better the evaluation |
Credit rating | 4366 | 2.100 | 1.960 | The higher the number, the better the evaluation |
Variables | Coefficient | Standard Deviation | t | P | Confidence Interval | |
---|---|---|---|---|---|---|
Destination choice (benchmark group: domestic) | ||||||
East Asia and Southeast Asia | 0.125 *** | 0.02157 | 5.78 | 0.000 | 0.08239 | 0.16696 |
Europe and America, other overseas tourism destinations | 0.117 *** | 0.01686 | 6.94 | 0.000 | 0.08395 | 0.15006 |
Logarithm of price | −0.031 *** | 0.00700 | −4.50 | 0.000 | −0.04523 | −0.01778 |
Travel type (benchmark: group travel) | ||||||
Independent travel | 0.024 | 0.01560 | 1.57 | 0.117 | −0.00610 | −0.05520 |
Semi-self-help travel | −0.043 | 0.10303 | −0.42 | 0.674 | −0.24539 | 0.15858 |
Private travel | 0.072 *** | 0.02466 | 2.90 | 0.004 | 0.02323 | 0.11991 |
Product quality (benchmark: ordinary) | ||||||
Light luxury | 0.007 | 0.01296 | 0.57 | 0.571 | −0.01799 | 0.03262 |
Luxury | −0.026 | 0.01680 | −1.58 | 0.113 | −0.05958 | 0.00632 |
Length of travel (benchmark: short-term) | ||||||
Mid-term | 0.044 ** | 0.02175 | 2.03 | 0.042 | 0.00159 | 0.08688 |
Long-term | 0.001 | 0.01442 | 0.09 | 0.928 | −0.02697 | 0.02958 |
Type of hotels (benchmark: economy) | ||||||
Comfort | −0.036 *** | 0.01382 | −2.62 | 0.009 | −0.06327 | −0.00909 |
Luxury | −0.028 ** | 0.01368 | −2.01 | 0.045 | −0.05427 | −0.00063 |
The popularity of travel agencies (benchmark: common) | ||||||
Niche | −0.027 ** | 0.01177 | −2.31 | 0.021 | −0.05023 | −0.00408 |
Well-known | −0.026 | 0.01567 | −1.64 | 0.100 | −0.05647 | 0.00495 |
Constant term | 28.32 *** | 1.26878 | 22.32 | 0.000 | 25.83490 | 30.80981 |
Number of samples | 4357 | |||||
adj. R-sq | 0.195 | |||||
F | 34.99 *** |
Variables | Coefficient | Standard Deviation | t | p | Confidence Interval | |
---|---|---|---|---|---|---|
Preferential activities | ||||||
Discount for early decision | 0.345 *** | 0.08255 | 4.18 | 0.000 | 0.18305 | 0.50671 |
Multi-person reduction measures | 0.358 *** | 0.06556 | 5.46 | 0.000 | 0.22961 | 0.48665 |
Membership prices | 0.621 *** | 0.06829 | 9.10 | 0.000 | 0.48741 | 0.75521 |
Gift cards | −0.022 | 0.02657 | −0.84 | 0.398 | −0.07452 | 0.02965 |
Service commitments | ||||||
Refund at any time | 0.004 | 0.01159 | 0.34 | 0.737 | −0.01883 | 0.02659 |
Truthful description | 0.058 ** | 0.02309 | 2.52 | 0.012 | 0.01288 | 0.10345 |
No more self-pay | −0.005 | 0.01295 | −0.36 | 0.717 | −0.03009 | 0.02070 |
Travel guarantee | −0.021 | 0.02282 | −0.94 | 0.348 | −0.06614 | 0.02333 |
Promise that a group formed | 0.034 ** | 0.01419 | 2.39 | 0.017 | 0.00615 | 0.06177 |
No shopping | 0.013 | 0.01312 | 0.97 | 0.334 | −0.01313 | 0.03860 |
Constant term | 28.32 *** | 1.26878 | 22.32 | 0.000 | 25.83490 | 30.80981 |
Number of samples | 4357 | |||||
adj. R-sq | 0.195 | |||||
F | 34.99 *** |
Variables | Coefficient | Standard Deviation | t | p | Confidence Interval | |
---|---|---|---|---|---|---|
Tourist feedback | ||||||
User evaluation | −0.461 ** | 0.18891 | −2.44 | 0.015 | −0.83101 | −0.09028 |
Satisfaction | −0.226 *** | 0.01103 | −20.50 | 0.000 | −0.24779 | −0.20454 |
Credit rating (benchmark: 1 diamond) | ||||||
2 diamonds | 0.092 *** | 0.02317 | 3.96 | 0.000 | 0.04635 | 0.13721 |
3 diamonds | 0.062 *** | 0.01674 | 3.91 | 0.000 | 0.03267 | 0.09832 |
4 diamonds | 0.048 *** | 0.01653 | 2.93 | 0.003 | 0.01596 | 0.08078 |
5 diamonds | 0.057 *** | 0.01404 | 4.07 | 0.000 | 0.02965 | 0.08472 |
Crown | 0.079 *** | 0.01495 | 5.26 | 0.000 | 0.04939 | 0.10801 |
Constant term | 28.32 *** | 1.26878 | 22.32 | 0.000 | 25.83490 | 30.80981 |
Number of samples | 4357 | |||||
adj. R-sq | 0.195 | |||||
F | 34.99 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Q.; Hu, H.; Su, X.; Morrison, A.M. The Influence of the Characteristics of Online Itinerary on Purchasing Behavior. Land 2021, 10, 936. https://doi.org/10.3390/land10090936
Jin Q, Hu H, Su X, Morrison AM. The Influence of the Characteristics of Online Itinerary on Purchasing Behavior. Land. 2021; 10(9):936. https://doi.org/10.3390/land10090936
Chicago/Turabian StyleJin, Qian, Hui Hu, Xiaozhi Su, and Alastair M. Morrison. 2021. "The Influence of the Characteristics of Online Itinerary on Purchasing Behavior" Land 10, no. 9: 936. https://doi.org/10.3390/land10090936
APA StyleJin, Q., Hu, H., Su, X., & Morrison, A. M. (2021). The Influence of the Characteristics of Online Itinerary on Purchasing Behavior. Land, 10(9), 936. https://doi.org/10.3390/land10090936