Assessing Ecosystem Condition: Use and Customization of the Vegetation Departure Metric
Abstract
:1. Introduction
2. Methods: Departure and Vegetation Departure
2.1. Outline for Methods
2.2. Introduction to Departure
- The data sets being compared are representative of the populations of interest; i.e., are the different classes in the two data sets accurate enough to provide meaningful results when compared?
- The data sets being compared are compatible thematically; i.e., Class should represent the same condition in the two data sets being compared.
- The sample frame used to develop the data sets is sufficient to represent the populations of interest; i.e., is the area of application large enough to likely contain a representative set of all the classes.
2.3. LANDFIRE Vegetation Departure
3. Case Studies and Results
3.1. Methods for Case Studies
3.1.1. Case Study 1. Northern Hardwoods Results
3.1.2. Case Study 2. Sagebrush Steppe Results
4. Discussion
4.1. Challenges and Their Implications
4.2. Innovative Work and Future Opportunities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IUCN. Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0; Bland, L.M., Keith, D.A., Murray, N.J., Rodriguez, J.P., Eds.; International Union for Conservation of Nature: Gland, Switzerland, 2015. [Google Scholar]
- Noss, R.F. Indicators for monitoring biodiversity—A hierarchical approach. Conserv. Biol. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- Kremen, C. Managing ecosystem services: What do we need to know about their ecology? Ecol. Lett. 2005, 8, 468–479. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Keith, D.A.; Strassburg, B.B.N.; Venter, O.; Williams, B.; Nicholson, E. Set a global target for ecosystems. Nature 2020, 578, 360–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, E.; Watermeyer, K.E.; Rowland, J.A.; Sato, C.F.; Stevenson, S.L.; Andrade, A.; Brooks, T.M.; Burgess, N.D.; Cheng, S.-T.; Grantham, H.S.; et al. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat. Ecol. Evol. 2021, 5, 1338–1349. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.F. Preserving biodiversity: Species, ecosystems, or landscapes? Ecol. Appl. 1993, 3, 202–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noss, R.F. Ecosystems as conservation targets. Trends Ecol. Evol. 1996, 11, 351. [Google Scholar] [CrossRef]
- Cowling, R.M.; Knight, A.T.; Faith, D.P.; Ferrier, S.; Lombard, A.T.; Driver, A.; Rouget, M.; Maze, K.; Desmet, P.G. Nature conservation requires more than a passion for species. Conserv. Biol. 2004, 18, 1674–1676. [Google Scholar] [CrossRef]
- Keith, D.A.; Rodríguez, J.P.; Rodríguez-Clark, K.M.; Nicholson, E.; Aapala, K.; Alonso, A.; Asmussen, M.; Bachman, S.; Basset, A.; Barrow, E.G.; et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 2013, 8, e62111. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Driver, A.; Czúcz, B.; Keith, H.; Jackson, B.; Nicholson, E.; Dasoo, M. A review of ecosystem condition accounts: Lessons learned and options for further development. One Ecosyst. 2020, 5. [Google Scholar] [CrossRef]
- Farrell, C.; Coleman, L.; Kelly-Quinn, M.; Obst, C.; Eigenraam, M.; Norton, D.; O’Donoghue, C.; Kinsella, S.; Delargy, O.; Stout, J. Applying the System of Environmental Economic Accounting-Ecosystem Accounting (SEEA-EA) framework at catchment scale to develop ecosystem extent and condition accounts. One Ecosyst. 2021, 6, e65582. [Google Scholar] [CrossRef]
- Scott, J.M.; Davis, F.; Csuti, B.; Noss, R.; Butterfield, B.; Groves, C.; Anderson, H.; Caicco, S.; D’Erchia, F.; Edwards, T.C., Jr.; et al. Gap analysis: A geographic approach to protection of biological diversity. Wildl. Monogr. 1993, 123, 3–41. [Google Scholar]
- Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H.; Roberts, C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 2005, 8, 23–29. [Google Scholar] [CrossRef]
- Aycrigg, J.L.; Davidson, A.; Svancara, L.K.; Gergely, K.J.; McKerrow, A.; Scott, J.M. Representation of ecological systems within the protected areas network of the continental United States. PLoS ONE 2013, 8, e54689. [Google Scholar] [CrossRef] [Green Version]
- Sayre, R.; Karagulle, D.; Frye, C.; Boucher, T.; Wolff, N.H.; Breyer, S.; Wright, D.; Martin, M.; Butler, K.; Van Graafeiland, K.; et al. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Glob. Ecol. Conserv. 2020, 21, e00860. [Google Scholar] [CrossRef]
- CBD. Strategic Plan. for Biodiversity 2011–2020, Including Aichi Biodiversity Targets; Secretariate of the Convention on Biological Diversity, UN Environment Programme: Nairobi, Kenya, 2011; Available online: https://www.cbd.int/sp/ (accessed on 17 September 2021).
- E.O. 14008 of 27 January 2021. Tackling the Climate Crisis at Home and Abroad. 86 FR 7619. Executive Office of the President, 2021-02177. Available online: https://www.federalregister.gov/documents/2021/02/01/2021-02177/tackling-the-climate-crisis-at-home-and-abroad (accessed on 26 October 2021).
- Noss, R.F. From plant communities to landscapes in conservation inventories: A look at The Nature Conservancy (USA). Biol. Conserv. 1987, 41, 11–37. [Google Scholar] [CrossRef]
- Hunter, M.L., Jr.; Jacobson, G.L., Jr.; Webb, T., III. Paleoecology and the coarse-filter approach to maintaining biological diversity. Conserv. Biol. 1988, 2, 375–385. [Google Scholar] [CrossRef]
- Groves, C.R. Drafting a Conservation Blueprint; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Parrish, J.D.; Braun, D.P.; Unnasch, R.S. Are we conserving what we say we are? Measuring ecological integrity within protected areas. Bioscience 2003, 53, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Gaston, K.J.; Jackson, S.F.; Cantú-Salazar, L.; Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 93–113. [Google Scholar] [CrossRef] [Green Version]
- Pringle, R.M. Upgrading protected areas to conserve wild biodiversity. Nature 2017, 546, 91–99. [Google Scholar] [CrossRef]
- Schulze, K.; Knights, K.; Coad, L.; Geldmann, J.; Leverington, F.; Eassom, A.; Marr, M.; Butchart, S.H.M.; Hockings, M.; Burgess, N.D. An assessment of threats to terrestrial protected areas. Conserv. Lett. 2017, 11, e12435. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.I.; Kareiva, P.; Forman, R.T.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Daskin, J.H.; Pringle, R.M. Warfare and wildlife declines in Africa’s protected areas. Nature 2018, 553, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Tabor, K.; Hewson, J.; Tien, H.; González-Roglich, M.; Hole, D.; Williams, J.W. Tropical protected areas under increasing threats from climate change and deforestation. Land 2018, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Swaty, R.; Blankenship, K.; Hagen, S.; Fargione, J.; Smith, J.; Patton, J. Accounting for ecosystem alteration doubles estimates of conservation risk in the conterminous United States. PLoS ONE 2011, 6, e23002. [Google Scholar] [CrossRef] [Green Version]
- Franklin, J.F.; Van Pelt, R.S. Spatial aspects of structural complexity in old-growth forests. J. For. 2004, 102, 22–28. [Google Scholar] [CrossRef]
- Jucker, T.; Hardwick, S.R.; Both, S.; Elias, D.M.O.; Ewers, R.M.; Milodowski, D.T.; Swinfield, T.; Coomes, D.A. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Chang. Biol 2018, 24, 5243–5258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zellweger, F.; De Frenne, P.; Lenoir, J.; Vangansbeke, P.; Verheyen, K.; Bernhardt-Römermann, M.; Baeten, L.; Hédl, R.; Berki, I.; Brunet, J.; et al. Forest microclimate dynamics drive plant responses to warming. Science 2020, 368, 772–775. [Google Scholar] [CrossRef]
- Ma, L.; Hurtt, G.; Tang, H.; Lamb, R.; Campbell, E.; Dubayah, R.; Guy, M.; Huang, W.; Lister, A.; Lu, J.; et al. High-resolution forest carbon modelling for climate mitigation planning over the RGGI region, USA. Environ. Res. Lett. 2021, 16, 045014. [Google Scholar] [CrossRef]
- Issa, S.; Dahy, B.; Ksiksi, T.; Saleous, N. A review of terrestrial carbon assessment methods using geo-spatial technologies with emphasis on arid lands. Remote Sens. 2020, 12, 2008. [Google Scholar] [CrossRef]
- MacArthur, R.H.; MacArthur, J.W. On bird species diversity. Ecology 1961, 42, 594–598. [Google Scholar] [CrossRef]
- Goetz, S.J.; Steinberg, D.; Betts, M.G.; Holmes, R.T.; Doran, P.J.; Dubayah, R.; Hofton, M. Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology 2010, 91, 1569–1576. [Google Scholar] [CrossRef]
- Whitehurst, A.S.; Swatantran, A.; Blair, J.B.; Hofton, M.A.; Dubayah, R. Characterization of canopy layering in forested ecosystems using full waveform lidar. Remote Sens. 2013, 5, 2014–2036. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, N.B.; Urban, D.L.; White, P.S.; Moody, A.; Klein, R.N. Vegetation dynamics vary across topographic and fire severity gradients following prescribed burning in Great Smoky Mountains National Park. For. Ecol. Manag. 2016, 365, 1–11. [Google Scholar] [CrossRef]
- Haugo, R.; Zanger, C.; Demeo, T.; Ringo, C.; Shlisky, A.; Blankenship, K.; Simpson, M.; Mellen-McLean, K.; Kertis, J.; Stern, M. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA. For. Ecol. Manag. 2015, 335, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Alexander, H.D.; Siegert, C.; Brewer, J.S.; Kreye, J.; Lashley, M.A.; McDaniel, J.K.; Paulson, A.K.; Renninger, H.J.; Varner, J.M. Mesophication of oak landscapes: Evidence, knowledge gaps, and future research. Bioscience 2021, 71, 531–542. [Google Scholar] [CrossRef]
- Clements, F.E. The relict method in dynamic ecology. J. Ecol. 1934, 22, 39–68. [Google Scholar] [CrossRef]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; John Wiley & Sons: Wiley, NY, USA, 1974. [Google Scholar]
- Hann, W.J.; Strohm, D.J. Fire regime condition class and associated data for fire and fuels planning: Methods and applications. In Fire, Fuel Treatments, and Ecological Restoration: Conference Proceedings, Fort Collins, CO, USA, 16–18 April 2002; RMRS-P-29; Omi, P.N., Joyce, L.A., Eds.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2003; pp. 397–433. Available online: http://www.fs.fed.us/rm/pubs/rmrs_p029.pdf (accessed on 26 October 2021).
- Tulloch, A.I.T.; McDonald, J.; Cosier, P.; Sbrocchi, C.; Stein, J.; Lindenmayer, D.; Possingham, H.P. Using ideal distributions of the time since habitat was disturbed to build metrics for evaluating landscape condition. Ecol. Appl. 2018, 28, 709–720. [Google Scholar] [CrossRef]
- Rollins, M.G. LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int. J. Wildland Fire 2009, 18, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Low, G.; Provencher, L.; Abele, S.L. Enhanced conservation action planning: Assessing landscape condition and predicting benefits of conservation strategies. J. Conservat. Plan. 2010, 6, 36–60. Available online: http://appliedconservation.com/wp-content/uploads/2013/07/JCP_v6_3_Low.pdf (accessed on 22 October 2021).
- Vogler, K.C.; Ager, A.A.; Day, M.A.; Jennings, M.; Bailey, J.D. Prioritization of forest restoration projects: Tradeoffs between wildfire protection, ecological restoration and economic objectives. Forests 2015, 6, 4403–4420. [Google Scholar] [CrossRef] [Green Version]
- Ager, A.A.; Day, M.A.; Vogler, K. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. J. Environ. Manag. 2016, 176, 157–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belote, R.T.; Cooper, R.M.; Daniels, R.A. Contemporary composition of land use, ecosystems, and conservation status along the Lewis and Clark National Historic Trail. Nat. Areas J. 2017, 37, 17–29. [Google Scholar] [CrossRef]
- Evers, C.R.; Ager, A.A.; Nielsen-Pincus, M.; Palaiologou, P.; Bunzel, K. Archetypes of community wildfire exposure from national forests of the western US. Landsc. Urban. Plan. 2019, 182, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Blankenship, K.; Swaty, R.; Hall, K.R.; Hagen, S.; Pohl, K.; Shlisky Hunt, A.; Patton, J.; Frid, L.; Smith, J. Vegetation dynamics models: A comprehensive set for natural resource assessment and planning in the United States. Ecosphere 2021, 12, e03484. [Google Scholar] [CrossRef]
- Bray, R.T.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Keane, R.E.; Holsinger, L.; Parsons, R.A. Evaluating Indices that Measure Departure of Current Landscape Composition from Historical Conditions (No. 83); US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Barrett, S.; Havlina, D.; Jones, J.; Hann, W.; Frame, C.; Hamilton, D.; Schon, K.; Demeo, T.; Hutter, L.; Menakis, J. Interagency Fire Regime Condition Class. Guidebook. Version 3.0, September 2010; USDA Forest Service, US Department of the Interior, and The Nature Conservancy: Moscow, ID, USA, 2010. Available online: https://landfire.gov/frcc/frcc_guidebooks.php (accessed on 28 October 2021).
- LANDFIRE. Vegetation Departure Layer, LANDFIRE 2.0.0; U.S. Department of the Interior, U.S. Geological Survey & U.S. Department of Agriculture, U.S. Forest Service: Washington, DC, USA, 2021. Available online: http://landfire.cr.usgs.gov/viewer/ (accessed on 23 September 2021).
- LANDFIRE. Biophysical settings models and descriptions. In LANDFIRE Biophysical Settings Models and Descriptions; [Online]; U.S. Department of Agriculture, U.S. Forest Service & U.S. Department of the Interior, U.S. Geological Survey, Washington, D.C., and The Nature Conservancy: Arlington, VA, USA, 2020. Available online: https://landfire.gov/bps-models.php (accessed on 1 October 2020).
- LANDFIRE. Biophysical Setting Layer, LANDFIRE 2.0.0; U.S. Department of the Interior, U.S. Geological Survey & U.S. Department of Agriculture, U.S. Forest Service: Washington, DC, USA, 2021. Available online: http://landfire.cr.usgs.gov/viewer/ (accessed on 23 November 2020).
- LANDFIRE. Succession Classes Layer, LANDFIRE 2.0.0; U.S. Department of the Interior, U.S. Geological Survey & U.S. Department of Agriculture, U.S. Forest Service: Washington, DC, USA, 2021. Available online: http://landfire.cr.usgs.gov/viewer/ (accessed on 20 November 2020).
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Hengl, T.; Walsh, M.G.; Sanderman, J.; Wheeler, I.; Harrison, S.P.; Prentice, I.C. Global mapping of potential natural vegetation: An assessment of machine learning algorithms for estimating land potential. PeerJ 2018, 6, e5457. [Google Scholar] [CrossRef] [Green Version]
- Provencher, L.; Badik, K.; Anderson, T.; Tuhy, J.; Fletcher, D.; York, E.; Byer, S. Landscape conservation forecasting for data-poor at-risk species on western public lands, United States. Climate 2021, 9, 79. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef] [Green Version]
- Pickett, S.T.A.; Thompson, J.N. Patch dynamics and the design of nature reserves. Biol. Conserv. 1978, 13, 27–37. [Google Scholar] [CrossRef]
- Wimberly, M.C.; Spies, T.A.; Long, C.J.; Whitlock, C. Simulating historical variability in the amount of old forests in the Oregon Coast Range. Conserv. Biol. 2000, 14, 167–180. [Google Scholar] [CrossRef]
- Karau, E.C.; Keane, R.E. Determining landscape extent for succession and disturbance simulation modeling. Landsc. Ecol. 2007, 22, 993–1006. [Google Scholar] [CrossRef]
- Keane, R.E.; Hessburg, P.F.; Landres, P.B.; Swanson, F.J. The use of historical range and variability (HRV) in landscape management. For. Ecol. Manag. 2009, 258, 1025–1037. [Google Scholar] [CrossRef]
- LANDFIRE. Biophysical setting, 13022_41_50_51, Laurentian-Acadian Northern Hardwoods Forest—Hemlock. In LANDFIRE Biophysical Settings Models and Descriptions; [Online]; LANDFIRE—U.S. Forest Service, U.S. Geological Survey & The Nature Conservancy (Producers): Washington, DC, USA, 2020. Available online: https://landfire.gov/bps-models.php (accessed on 1 October 2020).
- LANDFIRE. Biophysical setting, 11250_6_12_13_15_16_17_18_23_24_25_28, Inter-Mountain Basins Big Sagebrush Steppe. In LANDFIRE Biophysical Settings Models and Descriptions; [Online]; LANDFIRE—U.S. Forest Service, U.S. Geological Survey & The Nature Conservancy (Producers): Washington, DC, USA, 2020. Available online: https://landfire.gov/bps-models.php (accessed on 17 September 2020).
- LANDFIRE. Existing Vegetation Type Layer, LANDFIRE 2.0.0; U.S. Department of the Interior, U.S. Geological Survey & U.S. Department of Agriculture, U.S. Forest Service: Washington, DC, USA, 2021. Available online: http://landfire.cr.usgs.gov/viewer/ (accessed on 23 September 2021).
- LANDFIRE. Existing Vegetation Cover Layer, LANDFIRE 2.0.0; U.S. Department of the Interior, U.S. Geological Survey & U.S. Department of Agriculture, U.S. Forest Service: Washington, DC, USA, 2021. Available online: http://landfire.cr.usgs.gov/viewer/ (accessed on 23 September 2021).
- LANDFIRE. Existing Vegetation Height Layer, LANDFIRE 2.0.0; U.S. Department of the Interior, U.S. Geological Survey & U.S. Department of Agriculture, U.S. Forest Service: Washington, DC, USA, 2021. Available online: http://landfire.cr.usgs.gov/viewer/ (accessed on 23 September 2021).
- Center for Resilience Science. Secured Areas Spatial Database (CONUS); The Nature Conservancy: Boston, MA, USA, 2021; Available online: https://tnc.maps.arcgis.com/home/item.html?id=e033e6bf6069459592903a04797b8b07 (accessed on 13 September 2021).
- Frelich, L.E.; Lorimer, C.G. Natural disturbance regimes in hemlock-hardwood forests of the upper Great Lakes region. Ecol. Monogr. 1991, 61, 145–164. [Google Scholar] [CrossRef]
- Hupperts, S.F.; Dickinson, Y.L.; Webster, C.R.; Kern, C.C. Promoting structural and species diversity in Great Lakes northern hardwoods: A conceptual model and its application. Forestry 2019, 92, 16–25. [Google Scholar] [CrossRef]
- Whitney, G.G. An ecological history of the Great Lakes forest of Michigan. J. Ecol. 1987, 75, 667–684. [Google Scholar] [CrossRef]
- Schulte, L.A.; Mladenoff, D.J.; Crow, T.R.; Merrick, L.C.; Cleland, D.T. Homogenization of northern US Great Lakes forests due to land use. Landsc. Ecol. 2007, 22, 1089–1103. [Google Scholar] [CrossRef] [Green Version]
- Knapp, S.P.; Kern, C.C.; Webster, C.R. Harvested opening size affects cohort development and failures in a second-growth northern hardwood forest. For. Ecol. Manag. 2021, 482, 118804. [Google Scholar] [CrossRef]
- Schroeder, M.A.; Aldridge, C.L.; Apa, A.D.; Bohne, J.R.; Braun, C.E.; Bunnell, S.D.; Connelly, J.W.; Deibert, P.A.; Gardner, S.C.; Hilliard, M.A.; et al. Distribution of Sage-Grouse in North America. Condor 2004, 106, 363–376. Available online: http://www.jstor.org/stable/1370643 (accessed on 29 October 2021). [CrossRef]
- Miller, R.F.; Eddleman, L. Spatial and Temporal Changes of Sage Grouse Habitat in the Sagebrush Biome. Technical Bulletin 151; Oregon State University, Agricultural Experiment Station: Corvallis, OR, USA, 2001; Available online: https://ir.library.oregonstate.edu/concern/technical_reports/vx021g30s (accessed on 8 December 2021).
- West, N.E. Synecology and disturbance regimes of sagebrush steppe ecosystems. In Proceedings: Sagebrush Steppe Ecosystem Symposium; Entwistle, P.G., DeBolt, A.M., Kaltenecker, J.H., Steenhof, K., Eds.; Bureau of Land Management: Boise, ID, USA, 2000; pp. 15–26. Available online: https://s13.amazonaws.com/sfc-dynamic-content/uploadfiles/152/SSSymp.pdf (accessed on 29 October 2021).
- Davies, K.W.; Bates, J.D.; Boyd, C.S. Effects of intermediate-term grazing rest on sagebrush communities with depleted understories: Evidence of a threshold. Rangel. Ecol. Manag. 2016, 69, 173–178. [Google Scholar] [CrossRef]
- Whisenant, S. Changing fire frequencies on Idaho’s Snake River Plains: Ecological and management implications. In Proceedings: Symposium on Cheatgrass Invasion, Shrub Die-off, and other Aspects of Shrub Biology and Management, Las Vegas, NV, USA, 5 April 1989; Gen. Tech. Rep. INT-276; McArthur, E.D., Romney, E.M., Smith, S.D., Tueller, P.T., Eds.; U.S. Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1990; pp. 4–10. Available online: https://www.fs.fed.us/rm/pubs_int/int_gtr276/int_gtr276_004_010.pdf (accessed on 5 October 2021).
- Brooks, M.L.; D’Antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiThomaso, J.M.; Hobbs, R.J.; Pellant, M.; Pyke, D. Effects of invasive alien plants on fire regimes. Bioscience 2004, 54, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.F.; Tausch, R.J.; McArthur, E.D.; Johnson, D.D.; Sanderson, S.C. Age Structure and Expansion of Piñon-Juniper Woodlands: A Regional Perspective in the Intermountain West. Research Paper. RMRS-RP-69; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008; Available online: https://www.fs.fed.us/rm/pubs/rmrs_rp069.pdf (accessed on 17 September 2021).
- Forest Stewardship Council-US. FSC-US Forest Management Standard (v1.0) (Complete with FF Indicators and Guidance). Approved by FSC-IC, 8 July 2010. 2010. Available online: https://us.fsc.org/preview.fsc-us-forest-management-standard-with-family-forest-indicators.a-189.pdf (accessed on 26 October 2021).
- U.S. Forest Service. National Forest System Land Management Planning, 36 CFR Part 219 [2012 Planning Rule]. Federal Register 2012, 77, 21162–21276. Available online: https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5362536.pdf (accessed on 10 October 2021).
- Safford, H.D.; Wiens, J.A.; Hayward, G.D. The growing importance of the past in managing ecosystems of the future. In Historical Environmental Variation in Conservation and Natural Resource Management; Chapter 24; Wiens, J.A., Hayward, G.D., Safford, H.D., Giffen, C.M., Eds.; John Wiley & Sons: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Walston, L.J.; Hartmann, H.M. Development of a landscape integrity model framework to support regional conservation planning. PLoS ONE 2018, 13, e0195115. [Google Scholar] [CrossRef] [Green Version]
Class | Data Set A Value | Data Set B Value | Similarity (Minimum of Data set A and B) | Sum of Similarity | Departure (100 − Similarity) |
---|---|---|---|---|---|
Class 1 | 10 | 15 | 10 | 75 | 25 |
Class 2 | 30 | 15 | 15 | ||
Class 3 | 50 | 40 | 40 | ||
Class 4 | 10 | 30 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swaty, R.; Blankenship, K.; Hall, K.R.; Smith, J.; Dettenmaier, M.; Hagen, S. Assessing Ecosystem Condition: Use and Customization of the Vegetation Departure Metric. Land 2022, 11, 28. https://doi.org/10.3390/land11010028
Swaty R, Blankenship K, Hall KR, Smith J, Dettenmaier M, Hagen S. Assessing Ecosystem Condition: Use and Customization of the Vegetation Departure Metric. Land. 2022; 11(1):28. https://doi.org/10.3390/land11010028
Chicago/Turabian StyleSwaty, Randy, Kori Blankenship, Kimberly R. Hall, Jim Smith, Megan Dettenmaier, and Sarah Hagen. 2022. "Assessing Ecosystem Condition: Use and Customization of the Vegetation Departure Metric" Land 11, no. 1: 28. https://doi.org/10.3390/land11010028
APA StyleSwaty, R., Blankenship, K., Hall, K. R., Smith, J., Dettenmaier, M., & Hagen, S. (2022). Assessing Ecosystem Condition: Use and Customization of the Vegetation Departure Metric. Land, 11(1), 28. https://doi.org/10.3390/land11010028