Application of Risk Analysis in the Screening of Flood Disaster Hot Spots and Adaptation Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Materials
2.3. Management Subdivisions
2.4. Analytical Method
2.4.1. Risk Analysis
Index of Hazard
Index of Vulnerability
2.4.2. Water Storage Capacity
2.4.3. Extraction of Water Storage Space
2.4.4. K-means Clustering
2.4.5. SOBEK Hydrological Model
3. Results
3.1. Analysis of Flood Risk Model
3.1.1. Estimation and Verification of the Potential Excess Runoff
3.1.2. Flood Risk Model Results
3.2. Selection of Hot Spots for Land Adaptation
3.2.1. Water-Storage Capacity
- Soils types
- 2.
- Land use
3.2.2. Water Storage Capacity Difference
3.2.3. Depression Space
3.2.4. Flood Disaster Adjustment and Construction Location Screening
4. Discussion
4.1. Flood Risk Assessment
4.2. Adaptation Strategies for Flooded Locations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vojtek, M.; Vojteková, J. Flood hazard and flood risk assessment at the local spatial scale: A case study. Geomat. Nat. Hazards Risk 2016, 7, 1973–1992. [Google Scholar] [CrossRef]
- Aronsson-Storrier, M. The UN Global Assessment Report on Disaster Risk Reduction; UN. Office for Disaster Risk Reduction: Geneva, Switzerland, 2019; Volume 2. [Google Scholar]
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, B.R.C.; et al. Climate Change 2014 Part A: Global and Sectoral Aspects; Woodward, A., Ed.; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107641655. [Google Scholar]
- Papilloud, T.; Röthlisberger, V.; Loreti, S.; Keiler, M. Flood exposure analysis of road infrastructure—Comparison of different methods at national level. Int. J. Disaster Risk Reduct. 2020, 47, 101548. [Google Scholar] [CrossRef]
- Arosio, M.; Arrighi, C.; Cesarini, L.; Martina, M.L.V. Service accessibility risk (SAR) assessment for pluvial and fluvial floods in an urban context. Hydrology 2021, 8, 142. [Google Scholar] [CrossRef]
- Taubenböck, H.; Post, J.; Roth, A.; Zosseder, K.; Strunz, G.; Dech, S. A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing. Nat. Hazards Earth Syst. Sci. 2008, 8, 409–420. [Google Scholar] [CrossRef]
- Bohle, H.-G. Vulnerability and criticality: Perspectives from social geography. IHDP Updat. 2001, 2, 3–5. [Google Scholar]
- Mavhura, E. Analysing drivers of vulnerability to flooding: A systems approach. S. Afr. Geogr. J. 2019, 101, 72–90. [Google Scholar] [CrossRef]
- Fuchs, S.; Keiler, M.; Ortlepp, R.; Schinke, R.; Papathoma-Köhle, M. Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward. J. Hydrol. 2019, 575, 587–595. [Google Scholar] [CrossRef]
- Zischg, A.P.; Röthlisberger, V.; Mosimann, M.; Profico-Kaltenrieder, R.; Bresch, D.N.; Fuchs, S.; Kauzlaric, M.; Keiler, M. Evaluating targeted heuristics for vulnerability assessment in flood impact model chains. J. Flood Risk Manag. 2021, 14, e12736. [Google Scholar] [CrossRef]
- Pottier, N.; Penning-Rowsell, E.; Tunstall, S.; Hubert, G. Land use and flood protection: Contrasting approaches and outcomes in France and in England and Wales. Appl. Geogr. 2005, 25, 1–27. [Google Scholar] [CrossRef]
- Meyer, V.; Becker, N.; Markantonis, V.; Schwarze, R.; Van Den Bergh, J.C.J.M.; Bouwer, L.M.; Bubeck, P.; Ciavola, P.; Genovese, E.; Green, C.; et al. Assessing the costs of natural hazards—state of the art and knowledge gaps. Nat. Hazards Earth Syst. Sci. 2013, 13, 1351–1373. [Google Scholar] [CrossRef]
- Dadson, S.J.; Hall, J.W.; Murgatroyd, A.; Acreman, M.; Bates, P.; Beven, K.; Heathwaite, L.; Holden, J.; Holman, I.P.; Lane, S.N.; et al. A restatement of the natural science evidence concerning catchment-based “natural” flood management in the UK. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160706. [Google Scholar] [CrossRef] [Green Version]
- Kay, A.L.; Old, G.H.; Bell, V.A.; Davies, H.N.; Trill, E.J. An assessment of the potential for natural flood management to offset climate change impacts. Environ. Res. Lett. 2019, 14, 044017. [Google Scholar] [CrossRef]
- Lane, S.N. Natural flood management. Wiley Interdiscip. Rev. Water 2017, 4, e1211. [Google Scholar] [CrossRef] [Green Version]
- Teng, F.; Huang, W.; Ginis, I. Hydrological modeling of storm runoff and snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models. Nat. Hazards 2017, 911, 179–199. [Google Scholar] [CrossRef]
- Darbandsari, P.; Coulibaly, P. Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. J. Hydrol. Reg. Stud. 2020, 31, 100730. [Google Scholar] [CrossRef]
- Moradkhani, H.; Sorooshian, S. General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis. In Hydrological Modelling and the Water Cycle; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–24. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, J.; Wang, H.; Qin, J.; Dong, L. Large-watershed flood forecasting with high-resolution distributed hydrological model. Hydrol. Earth Syst. Sci. 2017, 21, 735–749. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghobari, H.; Dewidar, A.; Alataway, A. Estimation of Surface Water Runoff for a Semi-Arid Area Using RS and GIS-Based SCS-CN Method. Water 2020, 12, 1924. [Google Scholar] [CrossRef]
- Shrestha, S.; Cui, S.; Xu, L.; Wang, L.; Manandhar, B.; Ding, S. Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China. Land 2021, 10, 839. [Google Scholar] [CrossRef]
- Richards, P.L.; Brenner, A.J. Delineating source areas for runoff in depressional landscapes: Implications for hydrologic modeling. J. Great Lakes Res. 2004, 30, 9–21. [Google Scholar] [CrossRef]
- Böhm, H.R.; Haupter, B.; Heiland, P.; Dapp, K. Implementation of flood risk management measures into spatial plans and policies. River Res. Appl. 2004, 20, 255–267. [Google Scholar] [CrossRef]
- Maddock, I. The importance of physical habitat assessment for evaluating river health. Freshw. Biol. 1999, 41, 373–391. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Aven, T. Risk Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 9781119057796. [Google Scholar]
- Kumar, T.; Jhariya, D.C. Identification of rainwater harvesting sites using SCS-CN methodology, remote sensing and Geographical Information System techniques. Geocarto Int. 2017, 32, 1367–1388. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds-the two-CN system approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015. [Google Scholar] [CrossRef] [Green Version]
- Elhakeem, M.; Papanicolaou, A.N. Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA. Water Resour. Manag. 2009, 23, 2455–2473. [Google Scholar] [CrossRef]
- BEVEN, K.J.; KIRKBY, M.J. A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.; Kirkby, M.; Freer, J.E.; Lamb, R. A history of TOPMODEL. Hydrol. Earth Syst. Sci. 2021, 25, 527–549. [Google Scholar] [CrossRef]
- Morel-Seytoux, H.J.; Verdin, J.P. Extension of the Soil Conservation Service Rainfall-Runoff Methodology for Ungaged Watersheds; National Technical Information Service: Washington, DC, USA, 1981.
- Shi, P.J.; Yuan, Y.; Zheng, J.; Wang, J.A.; Ge, Y.; Qiu, G.Y. The effect of land use/cover change on surface runoff in Shenzhen region, China. Catena 2007, 69, 35. [Google Scholar] [CrossRef]
- Shi, N.; Liu, X.; Guan, Y. Research on k-means clustering algorithm: An improved k-means clustering algorithm. In Proceedings of the 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, Ji’an, China, 2–4 April 2010; pp. 63–67. [Google Scholar] [CrossRef]
- Yadav, J.; Sharma, M. A Review of K-mean Algorithm. Int. J. Eng. Trends Technol. 2013, 4, 2972–2976. [Google Scholar]
- Water Resources Planning Institute, WRA. MOEA-Common Tools For Drainage Hydraulic Simulation. Available online: https://en.wrap.gov.tw/cp.aspx?n=26503 (accessed on 8 July 2021).
- Wu, S.W. A Study of Soil Loss Tolerance in the Liukuei Experimental Forest Using Conceptual Models. Master’s Thesis, National Chung Hsing University, Taichung, Taiwan, 2020. [Google Scholar]
- Chiu, C.A.; Lin, H.C.; Liao, M.C.; Tseng, Y.H.; Ou, C.H.; Lu, K.C.; Tzeng, H.Y. A Physiognomic Classification Scheme of Potential Vegetation of Tn. Quart. J. Forest Res. 2008, 30, 89–111. [Google Scholar]
- Klijn, F.; Van Buuren, M.; Van Rooij, S.A.M. Flood-risk management strategies for an uncertain future: Living with rhine river floods in the Netherlands? AMBIO J. Hum. Environ. 2004, 33, 141–147. [Google Scholar] [CrossRef]
- Saghafian, B.; Farazjoo, H.; Bozorgy, B.; Yazdandoost, F. Flood intensification due to changes in land use. Water Resour. Manag. 2008, 22, 1051–1067. [Google Scholar] [CrossRef]
- Wheater, H.; Evans, E. Land use, water management and future flood risk. Land Use Policy 2009, 26, S251–S264. [Google Scholar] [CrossRef]
- Chang, H.S.; Su, Q. Exploring the coupling relationship of stormwater runoff distribution in watershed from the perspective of fairness. Urban Clim. 2021, 36, 100792. [Google Scholar] [CrossRef]
- Stürck, J.; Poortinga, A.; Verburg, P.H. Mapping ecosystem services: The supply and demand of flood regulation services in Europe. Ecol. Indic. 2014, 38, 198–211. [Google Scholar] [CrossRef]
- Shen, J.; Du, S.; Huang, Q.; Yin, J.; Zhang, M.; Wen, J.; Gao, J. Mapping the city-scale supply and demand of ecosystem flood regulation services—A case study in Shanghai. Ecol. Indic. 2019, 106, 105544. [Google Scholar] [CrossRef]
- Juracek, K.E. Estimation of Potential Runoff-Contributing Areas; US Geological Survey: Reston, VA, USA, 2001.
Name | Resolution | Data Source | Purpose |
---|---|---|---|
DEM | 20 m × 20 m | Department of Land Administration | Terrain analysis |
Rainfall | Daily data | Water Resources Agency | Return period estimation |
Discharge | Daily data | Water Resources Agency | Runoff |
Soil type | 1/5000 | Agricultural Research Institute | CN, S value |
Classification | Soil Texture | SCS Soil Classification |
---|---|---|
0 | Coarse sand and sand | A |
1 | Fine sand, loamy sand, and loamy coarse sand | |
2 | Loamy fine sand, coarse sandy loam, sandy loam, fine sandy, and loamy soil | |
3 | Fine sand, very fine sand loamy, and fine sandy loam | |
4 | Alfalfa loam and bauxite | B |
5 | Loam | |
6 | Sandy clay loam | C |
7 | Clayey loam and silty clay | D |
8 | Enamel clay and sandy clay | |
9 | Clay |
SCS Soil Classification | A | B | C | D |
---|---|---|---|---|
Construction site | 74 | 84 | 90 | 92 |
Coniferous forest | 25 | 55 | 72 | 77 |
Surface water | 94 | 93 | 95 | 96 |
Upland field | 62 | 71 | 78 | 81 |
Park and cemetery | 39 | 61 | 74 | 80 |
Security forest | 25 | 55 | 70 | 77 |
Wasteland | 77 | 86 | 91 | 94 |
Wetlands | 92 | 93 | 94 | 95 |
Broadleaf forest | 36 | 60 | 73 | 79 |
Paddy field | 70 | 79 | 84 | 88 |
Orchard | 45 | 66 | 77 | 83 |
Other woodland | 38 | 62 | 74 | 80 |
Discharge | A Estimated (M.M3) | B Observed (M.M3) | C Base Flow (M.M3) | D B-C (M.M3) | E A-D (M.M3) | |
---|---|---|---|---|---|---|
Date | ||||||
2018/08/24 | 388.7 | 306.9 | 16.82 | 290.08 | 98.6 | |
2017/06/03 | 1092.1 | 1081.6 | 26.40 | 1055.18 | 37.2 | |
2016/09/27 | 478.3 | 267.4 | 17.69 | 249.73 | 228.6 | |
2015/08/08 | 403.5 | 133.2 | 9.95 | 123.20 | 280.6 | |
2014/07/23 | 492.8 | 284.6 | 6.61 | 277.97 | 214.8 | |
2013/07/13 | 685.9 | 571.7 | 21.57 | 550.09 | 145.8 | |
2012/08/02 | 1028.8 | 861.2 | 20.89 | 840.33 | 188.5 | |
2011/07/19 | 267.8 | 92.5 | 7.72 | 84.77 | 183.0 |
Water-Storage Capacity Difference | Small | Medium | Large | |
---|---|---|---|---|
Depression Space | ||||
Small | Self-sufficient | Strengthen management | Strengthen management | |
Medium | Offsite compensation | Self-sufficient | Strengthen management | |
Large | Offsite compensation | Offsite compensation | Self-sufficient |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, E.-C.; Li, P.-W.; Wu, S.-W.; Lin, C.-Y. Application of Risk Analysis in the Screening of Flood Disaster Hot Spots and Adaptation Strategies. Land 2022, 11, 36. https://doi.org/10.3390/land11010036
Huang E-C, Li P-W, Wu S-W, Lin C-Y. Application of Risk Analysis in the Screening of Flood Disaster Hot Spots and Adaptation Strategies. Land. 2022; 11(1):36. https://doi.org/10.3390/land11010036
Chicago/Turabian StyleHuang, Er-Chiang, Pei-Wen Li, Shao-Wei Wu, and Chao-Yuan Lin. 2022. "Application of Risk Analysis in the Screening of Flood Disaster Hot Spots and Adaptation Strategies" Land 11, no. 1: 36. https://doi.org/10.3390/land11010036
APA StyleHuang, E. -C., Li, P. -W., Wu, S. -W., & Lin, C. -Y. (2022). Application of Risk Analysis in the Screening of Flood Disaster Hot Spots and Adaptation Strategies. Land, 11(1), 36. https://doi.org/10.3390/land11010036