The Impacts of Urbanization to Improve Agriculture Water Use Efficiency—An Empirical Analysis Based on Spatial Perspective of Panel Data of 30 Provinces of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. AWUE Evaluation Indicator System
2.1.2. Dynamic Spatial Econometric Models
2.2. Variable Selection
2.2.1. AWUE as Explained Variables
2.2.2. Urbanization as Core Explanatory Variables
2.2.3. Control Variables
2.3. Data Sources and Regional Distribution
3. Results and Discussions
3.1. Calculation of AWUE in China
3.2. Econometric Test Results and Regional Variability
3.2.1. Spatial Correlation Test and Econometric Model Selection
3.2.2. Analysis of the Impact of China’s Urbanization on AWUE
3.2.3. Analysis of the Impact of Different Regions Urbanization
3.3. Analysis of the Spatial Effect Decomposition
3.4. Analysis of the Impact of Different Dimensions of Urbanization
3.5. Policy Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gil, J. Water Value in Agriculture. Nat. Food 2020, 1, 530. [Google Scholar] [CrossRef]
- Wang, F.; Yu, C.; Xiong, L.; Chang, Y. How Can Agricultural Water Use Efficiency Be Promoted in China? A Spatial-Temporal Analysis. Resour. Conserv. Recycl. 2019, 145, 411–418. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- United Nations World Water Assessment Programme. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; Unesco: Paris, France, 2017. [Google Scholar]
- Shen, X.; Lin, B. The Shadow Prices and Demand Elasticities of Agricultural Water in China: A StoNED-Based Analysis. Resour. Conserv. Recycl. 2017, 127, 21–28. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Li, Y. Using Reclaimed Water for Agricultural and Landscape Irrigation in China: A Review. Irrig. Drain. 2017, 66, 672–686. [Google Scholar] [CrossRef]
- Tian, J.; Guo, S.; Deng, L.; Yin, J.; Pan, Z.; He, S.; Li, Q. Adaptive Optimal Allocation of Water Resources Response to Future Water Availability and Water Demand in the Han River Basin, China. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, M.; Xu, T. China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge. Sustainability 2017, 9, 2339. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The Impacts of Climate Change on Water Resources and Agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Huang, G.; Hoekstra, A.Y.; Krol, M.S.; Jägermeyr, J.; Galindo, A.; Yu, C.; Wang, R. Water-Saving Agriculture Can Deliver Deep Water Cuts for China. Resour. Conserv. Recycl. 2020, 154, 104578. [Google Scholar] [CrossRef]
- Liu, L. Assessment of Water Resource Security in Karst Area of Guizhou Province, China. Sci. Rep. 2021, 11, 7641. [Google Scholar] [CrossRef]
- Ma, T.; Sun, S.; Fu, G.; Hall, J.W.; Ni, Y.; He, L.; Yi, J.; Zhao, N.; Du, Y.; Pei, T.; et al. Pollution Exacerbates China’s Water Scarcity and Its Regional Inequality. Nat. Commun. 2020, 11, 650. [Google Scholar] [CrossRef] [Green Version]
- Ozcelik, N.; Rodríguez, M.; Lutter, S.; Sartal, A. Indicating the Wrong Track? A Critical Appraisal of Water Productivity as an Indicator to Inform Water Efficiency Policies. Resour. Conserv. Recycl. 2021, 168, 105452. [Google Scholar] [CrossRef]
- Liu, Y. Is the Natural Resource Production a Blessing or Curse for China’s Urbanization? Evidence from a Space–Time Panel Data Model. Econ. Model. 2014, 38, 404–416. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, Y.; Ding, X. How High-Quality Urbanization Affects Utilization Efficiency of Agricultural Water Resources in the Yellow River Basin under Double Control Action? Sustainability 2020, 12, 2869. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Shi, M.; Chen, K.Z.; Yang, H.; Wang, S. Water Scarcity Will Constrain the Formation of a World-Class Megalopolis in North China. NPJ Urban Sustain. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Y.; Lin, Z.; Wang, J.; He, G.; Li, H.; Li, L.; Wang, H.; Jiang, S.; He, F.; et al. Energy Reduction Effect of the South-to-North Water Diversion Project in China. Sci. Rep. 2017, 7, 15956. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, X.; Niu, J.; Tong, L.; Kang, S.; Du, T.; Li, S.; Ding, R. Irrigation Water Productivity Is More Influenced by Agronomic Practice Factors than by Climatic Factors in Hexi Corridor, Northwest China. Sci. Rep. 2016, 6, 37971. [Google Scholar] [CrossRef] [Green Version]
- Ommani, A.R.; Chizari, M. Analysis of Sustainable Water Resources Management (SWRM) in Agriculture. Nat. Prec. 2009, 1. [Google Scholar] [CrossRef]
- Avazdahandeh, S.; Khalilian, S. The Effect of Urbanization on Agricultural Water Consumption and Production: The Extended Positive Mathematical Programming Approach. Environ. Geochem. Health 2021, 43, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Florke, M.; Schneider, C.; McDonald, R.I. Water Competition between Cities and Agriculture Driven by Climate Change and Urban Growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Jat, M.L.; Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Gathala, M.K.; McDonald, A.; Gerard, B. Conservation Agriculture for Sustainable Intensification in South Asia. Nat. Sustain. 2020, 3, 336–343. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Z.; Li, B. Sustainability Assessment of Water Resources in Beijing. Water 2020, 12, 1999. [Google Scholar] [CrossRef]
- Cai, Y.; Yue, W.; Xu, L.; Yang, Z.; Rong, Q. Sustainable Urban Water Resources Management Considering Life-Cycle Environmental Impacts of Water Utilization under Uncertainty. Resour. Conserv. Recycl. 2016, 108, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Singh, A. Conjunctive Use of Water Resources for Sustainable Irrigated Agriculture. J. Hydrol. 2014, 519, 1688–1697. [Google Scholar] [CrossRef]
- Fang, Q.X.; Ma, L.; Green, T.R.; Yu, Q.; Wang, T.D.; Ahuja, L.R. Water Resources and Water Use Efficiency in the North China Plain: Current Status and Agronomic Management Options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
- Li, W.; Hai, X.; Han, L.; Mao, J.; Tian, M. Does Urbanization Intensify Regional Water Scarcity? Evidence and Implications from a Megaregion of China. J. Clean. Prod. 2020, 244, 118592. [Google Scholar] [CrossRef]
- Wang, Y. The Challenges and Strategies of Food Security under Rapid Urbanization in China. Sustainability 2019, 11, 542. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.; Wang, J.; Huang, J. Urbanization, Agricultural Water Use, and Regional and National Crop Production in China. Ecol. Model. 2015, 318, 226–235. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of Irrigated Agriculture on Food–Energy–Water–CO 2 Nexus across Metacoupled Systems. Nat. Commun. 2020, 11, 5837. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zeng, W.; Wu, M.; Guo, X.; Wang, W. Hybrid Analytical Framework for Regional Agricultural Water Resource Utilization and Efficiency Evaluation. Agric. Water Manag. 2020, 231, 106027. [Google Scholar] [CrossRef]
- Hu, J.-L.; Wang, S.-C.; Yeh, F.-Y. Total-Factor Water Efficiency of Regions in China. Resour. Policy 2006, 31, 217–230. [Google Scholar] [CrossRef]
- Kaneko, S.; Tanaka, K.; Toyota, T.; Managi, S. Water Efficiency of Agricultural Production in China: Regional Comparison from 1999 to 2002. Int. J. Agric. Resour. Gov. Ecol. 2004, 3, 231–251. [Google Scholar] [CrossRef]
- van Halsema, G.E.; Vincent, L. Efficiency and Productivity Terms for Water Management: A Matter of Contextual Relativism versus General Absolutism. Agric. Water Manag. 2012, 108, 9–15. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Zhang, Q.; Zheng, M. Improving Agricultural Water Use Efficiency: A Quantitative Study of Zhangye City Using the Static CGE Model with a CES Water−Land Resources Account. Sustainability 2017, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Chen, J.; Wu, F.; Li, Z. An Integrated Analysis of Agricultural Water-Use Efficiency: A Case Study in the Heihe River Basin in Northwest China. Phys. Chem. Earth Parts A/B/C 2015, 89–90, 3–9. [Google Scholar] [CrossRef]
- Xue, S.; Yang, T.; Zhang, K.; Feng, J. Spatial Effect and Influencing Factors of Agricultural Water Environmental Efficiency in China. Appl. Ecol. Environ. Res. 2018, 16, 4491–4504. [Google Scholar] [CrossRef]
- Bao, C.; Chen, X. The Driving Effects of Urbanization on Economic Growth and Water Use Change in China: A Provincial-Level Analysis in 1997–2011. J. Geogr. Sci. 2015, 25. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Urban Land and Sustainable Resource Use: Unpacking the Countervailing Effects of Urbanization on Water Use in China, 1990–2014. Land Use Policy 2020, 90, 104307. [Google Scholar] [CrossRef]
- Ding, X.; Fu, Z.; Jia, H. Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt. Sustainability 2019, 11, 6571. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Liu, M.; Wang, X.; Liu, C.; Hou, Z.; Shi, J. Effects of Deficit Irrigation on Yield and Water Use of Greenhouse Grown Cucumber in the North China Plain. Agric. Water Manag. 2003, 61, 219–228. [Google Scholar] [CrossRef]
- Ahmed, Z.; Asghar, M.M.; Malik, M.N.; Nawaz, K. Moving towards a Sustainable Environment: The Dynamic Linkage between Natural Resources, Human Capital, Urbanization, Economic Growth, and Ecological Footprint in China. Resour. Policy 2020, 67, 101677. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.-D. Determinants of the Ecological Footprint: Role of Renewable Energy, Natural Resources, and Urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar] [CrossRef]
- Rashid, H.; Manzoor, M.M.; Mukhtar, S. Urbanization and Its Effects on Water Resources: An Exploratory Analysis. Asian J. Water Environ. Pollut. 2018, 15, 67–74. [Google Scholar] [CrossRef]
- Bai, X.; Chen, J.; Shi, P. Landscape Urbanization and Economic Growth in China: Positive Feedbacks and Sustainability Dilemmas. Environ. Sci. Technol. 2012, 46, 132–139. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Engel, B.A.; Sun, S.; Zhao, X.; Wu, P.; Wang, Y. The Impact of Urbanization and Aging on Food Security in Developing Countries: The View from Northwest China. J. Clean. Prod. 2021, 292, 126067. [Google Scholar] [CrossRef]
- Wu, Y.M. Estimation of Input-Output Elasticity of Regional Agricultural Production Elements in China: An Empirical Study Based on Spatial Econometric Model. Chin. Rural Econ 2010, 6, 25–37. [Google Scholar]
- Abbasi, A.; Sajid, A.; Haq, N.; Rahman, S.; Misbah, Z.; Sanober, G.; Ashraf, M.; Kazi, A.G. Agricultural Pollution: An Emerging Issue. Improv. Crops Era Clim. Chang. 2014, 347–387. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of Pesticide Pollution at the Global Scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Balwinder-Singh; McDonald, A.J.; Srivastava, A.K.; Gerard, B. Addendum: Tradeoffs between Groundwater Conservation and Air Pollution from Agricultural Fires in Northwest India. Nat. Sustain. 2020, 3, 972. [Google Scholar] [CrossRef]
- Eisenstein, M. Natural Solutions for Agricultural Productivity. Nature 2020, 588, S58–S59. [Google Scholar] [CrossRef] [PubMed]
- Tone, K. A Slacks-Based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A Strange Case of the Cost and Allocative Efficiencies in DEA. J. Oper. Res. Soc. 2002, 53, 1225–1231. [Google Scholar] [CrossRef]
- Tone, K. Slacks-Based Measure of Efficiency. Handb. Data Envel. Anal. 2011, 195–209. [Google Scholar] [CrossRef]
- Hu, Z.; Yu, G.; Fu, Y.; Sun, X.; Li, Y.; Shi, P.; Wang, Y.; Zheng, Z. Effects of Vegetation Control on Ecosystem Water Use Efficiency within and among Four Grassland Ecosystems in China. Glob. Chang. Biol. 2008, 14, 1609–1619. [Google Scholar] [CrossRef]
- Bao, C.; Chen, X. Spatial Econometric Analysis on Influencing Factors of Water Consumption Efficiency in Urbanizing China. J. Geogr. Sci. 2017, 27, 1450–1462. [Google Scholar] [CrossRef] [Green Version]
- Jiadai, Y.; Pengpeng, X.; Zhijin, H. Impact of Urbanization on Ecological Efficiency in China: An Empirical Analysis Based on Provincial Panel Data. Ecol. Indic. 2021, 129, 107827. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: New York, NY, USA, 2009; ISBN 0-429-13808-3. [Google Scholar]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the Relationship between Urbanization and Urban Eco-Efficiency: Evidence from Prefecture-Level Cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Chishti, M.Z.; Ozturk, I.; Irfan, M.; Ahmad, M. Asymmetric Investigation to Track the Effect of Urbanization, Energy Utilization, Fossil Fuel Energy and CO2 Emission on Economic Efficiency in China: Another Outlook. Environ. Sci. Pollut. Res. 2021, 28, 17319–17330. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Lagrange Multiplier Test Diagnostics for Spatial Dependence and Spatial Heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Tolk, J.A.; Howell, T.A. Water Use Efficiencies of Grain Sorghum Grown in Three USA Southern Great Plains Soils. Agric. Water Manag. 2003, 59, 97–111. [Google Scholar] [CrossRef]
- Tallec, T.; Béziat, P.; Jarosz, N.; Rivalland, V.; Ceschia, E. Crops’ Water Use Efficiencies in Temperate Climate: Comparison of Stand, Ecosystem and Agronomical Approaches. Agric. For. Meteorol. 2013, 168, 69–81. [Google Scholar] [CrossRef]
- Wallace, J.S. Increasing Agricultural Water Use Efficiency to Meet Future Food Production. Agric. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlík, P.; Oenema, O.; Lee, M.R.F.; Zhang, F. China’s Livestock Transition: Driving Forces, Impacts, and Consequences. Sci. Adv. 2018, 4, eaar8534. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Yao, M. Spatial-Temporal Evolution and Trend Prediction of Agricultural Eco-Efficiency in China: 1978–2016. Acta Geogr. Sin. 2018, 73, 2168–2183. [Google Scholar]
- BaoYi, W.; WeiGuo, Z. Cross-provincial differences in determinants of agricultural eco-efficiency in China: An analysis based on panel data from 31 provinces in 1996–2015. China Rural Econ. 2018, 1, 12–34. [Google Scholar]
- Mughal, M.A.Z. Rural Urbanization, Land, and Agriculture in Pakistan. Asian Geogr. 2019, 36, 81–91. [Google Scholar] [CrossRef]
- Brückner, M. Economic Growth, Size of the Agricultural Sector, and Urbanization in Africa. J. Urban Econ. 2012, 71, 26–36. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Qu, Z.; Guo, T.; Sun, Y.; Rabiei, M.; Cao, Q. Feasibility Evaluation of Hydraulic Fracturing in Hydrate-Bearing Sediments Based on Analytic Hierarchy Process-Entropy Method (AHP-EM). J. Nat. Gas Sci. Eng. 2020, 81, 103434. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A Systematic Literature Review on Machine Learning Applications for Sustainable Agriculture Supply Chain Performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Tokarev, K.E. Agricultural Crops Programmed Cultivation Using Intelligent System of Irrigated Agrocoenoses Productivity Analyzing. J. Phys. Conf. Ser. 2021, 1801, 012030. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, W.; Li, G.; Qiu, H. Farm Machinery Use and Maize Yields in China: An Analysis Accounting for Selection Bias and Heterogeneity. Aust. J. Agric. Resour. Econ. 2020, 64, 1282–1307. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, H.; Liu, S.; Zhang, H. Technological Innovation, Environmental Regulation, and Green Total Factor Efficiency of Industrial Water Resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
- Tan, Y.; Qian, L.; Sarkar, A.; Nurgazina, Z.; Ali, U. Farmer’s Adoption Tendency towards Drought Shock, Risk-Taking Networks and Modern Irrigation Technology: Evidence from Zhangye, Gansu, PRC. Int. J. Clim. Chang. Strateg. Manag. 2020. [Google Scholar] [CrossRef]
- Chuchird, R.; Sasaki, N.; Abe, I. Influencing Factors of the Adoption of Agricultural Irrigation Technologies and the Economic Returns: A Case Study in Chaiyaphum Province, Thailand. Sustainability 2017, 9, 1524. [Google Scholar] [CrossRef] [Green Version]
- Samian, M.; Mahdei, K.N.; Saadi, H.; Movahedi, R. Identifying Factors Affecting Optimal Management of Agricultural Water. J. Saudi Soc. Agric. Sci. 2015, 14, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Qian, Z. MaxDea Pro 6.3 Manual; Beijing Realworld Softw. Co. Ltd.: Beijing, China, 2014. [Google Scholar]
- Bao, C.; Fang, C. Water Resources Flows Related to Urbanization in China: Challenges and Perspectives for Water Management and Urban Development. Water Resour. Manag. 2012, 26, 531–552. [Google Scholar] [CrossRef]
- Shao, Y.; Xie, Y.; Wang, C.; Yue, J.; Yao, Y.; Li, X.; Liu, W.; Zhu, Y.; Guo, T. Effects of Different Soil Conservation Tillage Approaches on Soil Nutrients, Water Use and Wheat-Maize Yield in Rainfed Dry-Land Regions of North China. Eur. J. Agron. 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Franczyk, J.; Chang, H. Spatial Analysis of Water Use in Oregon, USA, 1985–2005. Water Resour. Manag. 2009, 23, 755–774. [Google Scholar] [CrossRef]
- Rebel, G.; Park, K.C.; Felippa, C.A. A Contact Formulation Based on Localized Lagrange Multipliers: Formulation and Application to Two-Dimensional Problems. Int. J. Numer. Methods Eng. 2002, 54, 263–297. [Google Scholar] [CrossRef]
- Kissling, W.D.; Carl, G. Spatial Autocorrelation and the Selection of Simultaneous Autoregressive Models. Glob. Ecol. Biogeogr. 2008, 17, 59–71. [Google Scholar] [CrossRef]
- Chen, Z.; Song, S. Efficiency and Technology Gap in China’s Agriculture: A Regional Meta-Frontier Analysis. China Econ. Rev. 2008, 19, 287–296. [Google Scholar] [CrossRef]
- Carter, C.A.; Zhong, F.; Zhu, J. Advances in Chinese Agriculture and Its Global Implications. Appl. Econ. Perspect. Policy 2012, 34, 1–36. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H. Productivity Growth in China’s Agriculture During 1985–2010. J. Integr. Agric. 2013, 12, 1896–1904. [Google Scholar] [CrossRef]
- Vazquez-Cognet, J.J. The Production of Mathematical Problems: A Diminishing Marginal Returns Experiment. Int. Rev. Econ. Educ. 2008, 7, 103–116. [Google Scholar] [CrossRef] [Green Version]
- LeSage, J.P. The Theory and Practice of Spatial Econometrics; University of Toledo: Toledo, OH, USA, 1999; Volume 28. [Google Scholar]
- Zhang, B.; Fu, Z.; Wang, J.; Zhang, L. Farmers’ Adoption of Water-Saving Irrigation Technology Alleviates Water Scarcity in Metropolis Suburbs: A Case Study of Beijing, China. Agric. Water Manag. 2019, 212, 349–357. [Google Scholar] [CrossRef]
Variable | Unit | Variable Definition | |
---|---|---|---|
Inputs | Planting area | khm2 | Total area planted by agriculture |
Labor input | 10,000 labor | Total agricultural labor input | |
Mechanical power | 10,000 kW | Total agricultural machinery power | |
Water input | 10,000 m3 | Total agricultural water input | |
Fertilizer input | 10,000 t | Total agricultural fertilizer input | |
Pesticide input | 10,000 t | Total agricultural pesticide input | |
Desirable Outputs | Agricultural output value | Hundred million yuan (1999 prices) | The total agricultural output value |
Undesirable outputs | carbon emission | 10,000 t | Direct or indirect carbon emissions for fertilizers, pesticides, agricultural film, agricultural diesel, irrigation, and water consumption, and tillage loss |
non-point source pollution | 10,000 t | Chemical fertilizer loss, pesticide residue, and film residue |
Variables | Mean | Std. | Min | Max | |
---|---|---|---|---|---|
Explained variable | AWUE | 0.376 | 0.272 | 0.021 | 1.146 |
Core explanatory variables | purban | 0.088 | 0.048 | 0.003 | 0.313 |
lurban | 0.112 | 0.073 | 0.002 | 0.353 | |
eurban | 0.117 | 0.097 | 0.002 | 0.509 | |
urban | 0.333 | 0.189 | 0.075 | 1.000 | |
Control variables | indus | 12.670 | 6.919 | 0.350 | 36.450 |
edu | 8.441 | 1.105 | 5.438 | 12.675 | |
pre | 934.044 | 519.227 | 96.390 | 2346.610 | |
gap | 2.863 | 0.568 | 1.845 | 4.758 | |
open | 0.313 | 0.383 | 0.016 | 1.799 | |
water | 2132.005 | 2476.411 | 27.2 | 16,134.400 | |
area | 1977.496 | 1493.353 | 109.700 | 6119.600 | |
mach | 0.532 | 0.269 | 0.120 | 1.420 |
1999 | 2003 | 2007 | 2011 | 2015 | 2018 | Mean | Ranking | ||
---|---|---|---|---|---|---|---|---|---|
Eastern region | Beijing | 0.20 | 0.22 | 0.34 | 0.53 | 0.76 | 1.00 | 0.46 | 9 |
Tianjin | 0.25 | 0.27 | 0.29 | 0.51 | 0.75 | 1.00 | 0.48 | 8 | |
Hebei | 0.18 | 0.22 | 0.37 | 0.68 | 0.85 | 0.82 | 0.51 | 5 | |
Liaoning | 0.19 | 0.21 | 0.32 | 0.50 | 0.81 | 0.75 | 0.44 | 12 | |
Shanghai | 0.18 | 0.21 | 0.27 | 0.35 | 0.39 | 0.45 | 0.30 | 21 | |
Jiangsu | 0.17 | 0.15 | 0.20 | 0.30 | 0.75 | 1.00 | 0.35 | 17 | |
Zhejiang | 0.15 | 0.17 | 0.25 | 0.43 | 0.59 | 0.71 | 0.38 | 15 | |
Fujian | 0.13 | 0.16 | 0.23 | 0.40 | 0.60 | 0.69 | 0.37 | 16 | |
Shandong | 0.24 | 0.35 | 0.56 | 0.89 | 1.00 | 1.00 | 0.66 | 3 | |
Guangdong | 0.13 | 0.12 | 0.25 | 0.42 | 0.67 | 0.84 | 0.38 | 13 | |
Hainan | 0.22 | 0.15 | 0.22 | 0.41 | 0.62 | 0.77 | 0.38 | 14 | |
Mean | 0.19 | 0.20 | 0.30 | 0.49 | 0.71 | 0.82 | 0.43 | ||
Central region | Shanxi | 0.21 | 0.26 | 0.33 | 0.61 | 0.74 | 0.71 | 0.48 | 7 |
Jilin | 0.19 | 0.22 | 0.33 | 0.43 | 0.54 | 0.41 | 0.35 | 18 | |
Heilongjiang | 0.08 | 0.10 | 0.16 | 0.23 | 0.32 | 0.72 | 0.23 | 24 | |
Anhui | 0.18 | 0.23 | 0.30 | 0.35 | 0.48 | 0.51 | 0.33 | 19 | |
Jiangxi | 0.09 | 0.13 | 0.14 | 0.18 | 0.30 | 0.33 | 0.19 | 26 | |
Henan | 0.28 | 0.35 | 0.65 | 1.00 | 1.00 | 1.00 | 0.71 | 2 | |
Hubei | 0.15 | 0.19 | 0.30 | 0.57 | 0.70 | 0.93 | 0.45 | 10 | |
Hunan | 0.10 | 0.11 | 0.22 | 0.45 | 0.58 | 0.47 | 0.32 | 20 | |
Mean | 0.16 | 0.20 | 0.30 | 0.48 | 0.58 | 0.64 | 0.38 | ||
Western region | Neimenggu | 0.08 | 0.08 | 0.15 | 0.26 | 0.33 | 0.34 | 0.20 | 25 |
Guangxi | 0.08 | 0.08 | 0.17 | 0.36 | 0.44 | 0.87 | 0.28 | 22 | |
Chongqing | 0.47 | 0.45 | 0.74 | 1.00 | 1.00 | 1.15 | 0.79 | 1 | |
Sichuan | 0.22 | 0.23 | 0.38 | 0.65 | 0.66 | 1.07 | 0.50 | 6 | |
Guizhou | 0.20 | 0.18 | 0.28 | 0.43 | 0.91 | 1.00 | 0.45 | 11 | |
Yunnan | 0.05 | 0.04 | 0.06 | 0.09 | 0.14 | 0.66 | 0.14 | 29 | |
Shaanxi | 0.22 | 0.23 | 0.35 | 0.68 | 0.96 | 1.06 | 0.56 | 4 | |
Gansu | 0.09 | 0.10 | 0.17 | 0.31 | 0.45 | 0.45 | 0.24 | 23 | |
Qinghai | 0.07 | 0.05 | 0.12 | 0.14 | 0.21 | 0.49 | 0.15 | 27 | |
Ningxia | 0.02 | 0.03 | 0.05 | 0.10 | 0.14 | 0.16 | 0.08 | 28 | |
Xinjiang | 0.03 | 0.04 | 0.06 | 0.08 | 0.29 | 0.74 | 0.17 | 30 | |
Mean | 0.14 | 0.14 | 0.23 | 0.37 | 0.50 | 0.73 | 0.32 | ||
China | Mean | 0.16 | 0.18 | 0.28 | 0.45 | 0.60 | 0.74 | 0.38 |
Year | W01 | WD | WE | Year | W01 | WD | WE |
---|---|---|---|---|---|---|---|
1999 | 0.213 ** (2.139) | 0.007 (1.038) | 0.037 *** (2.539) | 2009 | 0.254 *** (2.427) | 0.024 (1.443) | 0.053 *** (3.081) |
2000 | 0.242 *** (2.368) | 0.014 (1.20) | 0.044 *** (2.806) | 2010 | 0.308 *** (2.845) | 0.039 * (1.784) | 0.066 *** (3.54) |
2001 | 0.21 ** (2.042) | 0.015 (1.215) | 0.050 *** (2.993) | 2011 | 0.278 *** (2.567) | 0.01 (1.064) | 0.054 *** (3.128) |
2002 | 0.247 *** (2.369) | 0.022 (1.376) | 0.048 *** (2.931) | 2012 | 0.316 *** (2.857) | 0.04 * (1.78) | 0.073 *** (3.795) |
2003 | 0.303 *** (2.787) | 0.047** (1.977) | 0.066 *** (3.545) | 2013 | 0.302 *** (2.726) | 0.033 (1.602) | 0.075 *** (3.837) |
2004 | 0.290 *** (2.716) | 0.027 (1.509) | 0.050 *** (3.006) | 2014 | 0.296 *** (2.665) | 0.029 (1.506) | 0.067 *** (3.562) |
2005 | 0.282 *** (2.664) | 0.022 (1.374) | 0.051 *** (3.037) | 2015 | 0.266 *** (2.413) | 0.037 * (1.70) | 0.073 *** (3.778) |
2006 | 0.257 ** (2.449) | 0.027 (1.512) | 0.058 *** (3.264) | 2016 | 0.246 ** (2.246) | 0.045 * (1.873) | 0.083 *** (4.13) |
2007 | 0.253 *** (2.432) | 0.017 (1.258) | 0.051*** (3.014) | 2017 | 0.143 * (1.422) | 0.027 (0.180) | 0.062 *** (3.395) |
2008 | 0.233 ** (2.264) | 0.015 (1.217) | 0.048 *** (2.923) | 2018 | 0.152 * (1.502) | 0.004 (0.725) | 0.038 *** (2.531) |
Test | W01 | WD | WE | |||
---|---|---|---|---|---|---|
χ2 | p Value | χ2 | p Value | χ2 | p Value | |
LM-lag | 533.491 | 0.000 | 877.756 | 0.000 | 189.844 | 0.000 |
Robust LM-lag | 204.157 | 0.000 | 475.154 | 0.000 | 85.478 | 0.000 |
LM-error | 330.174 | 0.000 | 407.019 | 0.000 | 104.659 | 0.000 |
Robust LM-error | 0.539 | 0.359 | 4.418 | 0.036 | 0.2935 | 0.588 |
Variable | W01 | WE | ||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
l.lnurban | 1.022 *** (25.61) | 1.025 *** (28.80) | 0.092 *** (31.06) | 1.164 *** (33.18) |
lnurban | 0.095 ** (1.96) | 0.154 *** (2.88) | 0.092 ** (1.88) | 0.163 *** (3.23) |
ρ | 0.383 *** (7.30) | 0.220 *** (4.39) | 0.276 *** (5.61) | 0.229 *** (6.78) |
control variable | YES | YES | YES | YES |
Adj-R2 | 0.914 | 0.914 | 0.910 | 0.910 |
LogL | 196.455 | 196.455 | 168.316 | 174.794 |
Sigma2 | 0.020 *** (5.47) | 0.021 *** (5.35) | 0.022 *** (5.68) | 0.022 *** (5.53) |
Sample size | 600 | 600 | 600 | 600 |
Variable | W01 | WE | ||||
---|---|---|---|---|---|---|
East | Cen. | West | East | Cen. | West | |
l.lneff | 0.882 *** (19.62) | 1.164 *** (37.89) | 1.331 *** (30.26) | 0.929 *** (21.83) | 1.091 *** (21.88) | 1.519 *** (39.16) |
lnurban | 0.270 ** (3.93) | 1.061 *** (7.56) | 0.308 *** (4.24) | 0.156 ** (2.21) | 1.582 ** (13.70) | 0.712 *** 6.51 |
ρ | 0.195 *** (3.21) | 0.541 *** (7.34) | 0.221 *** (3.11) | 0.172 (1.60) | 0.548 *** (7.38) | 0.386 *** (5.23) |
control variable | YES | YES | YES | YES | YES | YES |
Adj-R2 | 0.927 | 0.533 | 0.866 | 0.932 | 0.628 | 0.565 |
LogL | 108.764 | −123.220 | −78.310 | 115.217 | −354.402 | −1074.11 |
Sigma2 | 0.019 *** 3.39 | 0.016 *** 3.78 | 0.024 *** 3.15 | 0.019 *** 3.40 | 0.017 *** 4.47 | 0.028 *** 3.41 |
sample size | 220 | 160 | 220 | 220 | 160 | 220 |
Variable | Overall (China) | East | Cen. | West | |
---|---|---|---|---|---|
Short-term effect | Direct | 0.153 *** (2.94) | 0.269 *** (3.39) | 1.196 *** (3.57) | 0.308 *** (4.31) |
Indirect | 0.040 *** (2.33) | 0.042 * (1.91) | 0.731 * (1.69) | 0.065 ** (2.01) | |
Long-term effect | Direct | −0.943 (−0.13) | 3.292 (0.04) | −0.519 (−0.05) | −1.080 *** (−3.97) |
Indirect | 0.714 (0.10) | −2.822 (−0.986) | −2.530 (−0.27) | 0.443 ** (2.31) |
Variable | W01 | WE | ||||
---|---|---|---|---|---|---|
East | Cen. | West | East | Cen. | West | |
L.lneff | 1.106 *** (29.16) | 1.116 *** (28.94) | 1.129 *** (29.07) | 1.023 *** (26.44) | 1.283 *** (33.86) | 1.428 *** (37.72) |
lnPurban | 0.050 * (1.93) | 0.003 (0.14) | ||||
lnLurban | 0.100 *** (4.56) | 0.139 *** (6.50) | ||||
lnEurban | 0.088 *** 3.35 | 0.119 *** (6.52) | ||||
ρ | 0.334 *** (6.51) | 0.313 *** (6.63) | 0.322 *** (6.22) | 0.061 * (1.87) | 0.307 *** (9.33) | 0.686 *** (14.40) |
control variable | YES | YES | YES | YES | YES | YES |
Sigma2 | 0.021 *** (5.35) | 0.021 *** (5.24) | 0.021 *** (5.29) | 0.022 *** (5.57) | 0.022 *** (5.34) | 0.021 *** (5.51) |
R2 | 0.9062 | 0.906 | 0.904 | 0.923 | 0.885 | 0.775 |
LogL | 156.786 | 166.388 | 154.495 | 240.853 | 49.017 | −210.406 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Sarkar, A.; Hou, M.; Liu, W.; Guo, X.; Zhao, K.; Zhao, M. The Impacts of Urbanization to Improve Agriculture Water Use Efficiency—An Empirical Analysis Based on Spatial Perspective of Panel Data of 30 Provinces of China. Land 2022, 11, 80. https://doi.org/10.3390/land11010080
Lu W, Sarkar A, Hou M, Liu W, Guo X, Zhao K, Zhao M. The Impacts of Urbanization to Improve Agriculture Water Use Efficiency—An Empirical Analysis Based on Spatial Perspective of Panel Data of 30 Provinces of China. Land. 2022; 11(1):80. https://doi.org/10.3390/land11010080
Chicago/Turabian StyleLu, Weinan, Apurbo Sarkar, Mengyang Hou, Wenxin Liu, Xinyi Guo, Kai Zhao, and Minjuan Zhao. 2022. "The Impacts of Urbanization to Improve Agriculture Water Use Efficiency—An Empirical Analysis Based on Spatial Perspective of Panel Data of 30 Provinces of China" Land 11, no. 1: 80. https://doi.org/10.3390/land11010080
APA StyleLu, W., Sarkar, A., Hou, M., Liu, W., Guo, X., Zhao, K., & Zhao, M. (2022). The Impacts of Urbanization to Improve Agriculture Water Use Efficiency—An Empirical Analysis Based on Spatial Perspective of Panel Data of 30 Provinces of China. Land, 11(1), 80. https://doi.org/10.3390/land11010080