Real-Time Environmental Monitoring Platform for Wellness and Preventive Care in a Smart and Sustainable City with an Urban Landscape Perspective: The Case of Developing Countries
Abstract
:1. Introduction
2. An Environmental Monitoring Platform for Urban Studies in a Smart and Sustainable City
2.1. Internet of Things (IoT) in Environmental Monitoring for Urban Studies
2.2. Engaging with Environmental Data
2.3. Open Data
2.4. Design and Implementation Framework
3. Methodology
3.1. Open Data platform
3.2. Environmental Monitoring Sensors
3.3. Determining Air Quality Index
- I is the index to determine;
- C is the reading of the concentration of the contaminant;
- Cl is the bottom edge of the class where C is found;
- Ch is the top edge of the class where C is located;
- Il is the value of the index that corresponds to Cl;
- Ih is the value of the index that corresponds to Ch.
3.4. Interactive Visualization
3.5. Capacity Building
4. Results and Discussion
4.1. Case 1: Sahara Dust
4.2. Case 2: COVID-19 in Santo Domingo and Santiago de Los Caballeros
4.2.1. The Effect of the Curfew on Noise
4.2.2. The Effect of the Curfew on Air Quality
5. Conclusions
Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef]
- Osman, A.M.S. A novel big data analytics framework for smart cities. Future Gener. Comput. Syst. 2019, 91, 620–633. [Google Scholar] [CrossRef]
- Fialová, J.; Bamwesigye, D.; Łukaszkiewicz, J.; Fortuna-Antoszkiewicz, B. Smart Cities Landscape and Urban Planning for Sustainability in Brno City. Land 2021, 10, 870. [Google Scholar] [CrossRef]
- Commodore, A.; Wilson, S.; Muhammad, O.; Svendsen, E.; Pearce, J. Community-based participatory research for the study of air pollution: A review of motivations, approaches, and outcomes. Environ. Monit. Assess. 2017, 189, 378. [Google Scholar] [CrossRef] [PubMed]
- Baklanov, A.; Molina, L.T.; Gauss, M. Megacities, Air Quality and Climate. Atmos. Environ. 2016, 126, 235–249. [Google Scholar] [CrossRef]
- Maesano, C.; Morel, G.; Matynia, A.; Ratsombath, N.; Bonnety, J.; Legros, G.; Da Costa, P.; Prud’Homme, J.; Annesi-Maesano, I. Impacts on human mortality due to reductions in PM10 concentrations through different traffic scenarios in Paris, France. Sci. Total Environ. 2020, 698, 134257. [Google Scholar] [CrossRef]
- Araujo, L.N.; Belotti, J.T.; Alves, T.A.; Tadano, Y.D.S.; Siqueira, H. Ensemble method based on Artificial Neural Networks to estimate air pollution health risks. Environ. Model. Softw. 2020, 123, 104567. [Google Scholar] [CrossRef]
- Ramaiah, M.; Avtar, R.; Rahman, M. Land Cover Influences on LST in Two Proposed Smart Cities of India: Comparative Analysis Using Spectral Indices. Land 2020, 9, 292. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can Cities Become Smart without Being Sustainable? A Systematic Review of the Literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Zheng, S.; Huang, Y.; Sun, Y. Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning. Land 2022, 11, 1343. [Google Scholar] [CrossRef]
- Steigerwald, F.; Kossmann, M.; Schau-Noppel, H.; Buchholz, S.; Panferov, O. Delimitation of Urban Hot Spots and Rural Cold Air Formation Areas for Nocturnal Ventilation Studies Using Urban Climate Simulations. Land 2022, 11, 1330. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.-H.; Wang, Y.-F.; Hsieh, Y.-K.; Wan, S.; Zhang, J. Air Quality Index, Indicatory Air Pollutants and Impact of COVID-19 Event on the Air Quality near Central China. Aerosol Air Qual. Res. 2020, 20, 1204–1221. [Google Scholar] [CrossRef]
- Wu, M.; Yan, B.; Huang, Y.; Sarker, N.I. Big Data-Driven Urban Management: Potential for Urban Sustainability. Land 2022, 11, 680. [Google Scholar] [CrossRef]
- Liu, X.; Jayaratne, R.; Thai, P.; Kuhn, T.; Zing, I.; Christensen, B.; Lamont, R.; Dunbabin, M.; Zhu, S.; Gao, J.; et al. Low-cost sensors as an alternative for long-term air quality monitoring. Environ. Res. 2020, 185, 109438. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.; Bilal; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between Climate Indicators and COVID-19 Pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef]
- Barceló, M.A.; Varga, D.; Tobias, A.; Diaz, J.; Linares, C.; Saez, M. Long term effects of traffic noise on mortality in the city of Barcelona, 2004–2007. Environ. Res. 2016, 147, 193–206. [Google Scholar] [CrossRef]
- Lee, E.Y.; Jerrett, M.; Ross, Z.; Coogan, P.F.; Seto, E.Y. Assessment of traffic-related noise in three cities in the United States. Environ. Res. 2014, 132, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.T.; Mendes, J.F. City Noise-Air: An environmental quality index for cities. Sustain. Cities Soc. 2012, 4, 1–11. [Google Scholar] [CrossRef]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Omidvarborna, H.; Pilla, F.; Lewin, N. A primary school driven initiative to influence commuting style for dropping-off and picking-up of pupils. Sci. Total Environ. 2020, 727, 138360. [Google Scholar] [CrossRef] [PubMed]
- Riley, M.; Kirkwood, J.; Jiang, N.; Ross, G. Air Quality Monitoring in NSW: From Long Term Trend Monitoring to Integrated Urban Services. Air Qual. Clim. Chang. 2020, 54, 44–51. [Google Scholar]
- Cujia, A.; Agudelo-Castañeda, D.; Pacheco-Bustos, C.; Teixeira, E.C. Forecast of PM10 time-series data: A study case in Caribbean cities. Atmos. Pollut. Res. 2019, 10, 2053–2062. [Google Scholar] [CrossRef]
- Van Roode, S.; Ruiz-Aguilar, J.J.; González-Enrique, J.; Turias, I.J. An artificial neural network ensemble approach to generate air pollution maps. Environ. Monit. Assess. 2019, 191, 727. [Google Scholar] [CrossRef]
- Borrego, C.; Costa, A.m.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; et al. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos. Environ. 2016, 147, 246–263. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can Commercial Low-Cost Sensor Platforms Contribute to Air Quality Monitoring and Exposure Estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Borge, R.; Narros, A.; Artíñano, B.; Yagüe, C.; Gómez-Moreno, F.J.; de la Paz, D.; Román-Cascón, C.; Díaz, E.; Maqueda, G.; Sastre, M.; et al. Assessment of microscale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign. Atmos. Environ. 2016, 140, 432–445. [Google Scholar] [CrossRef]
- Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.; et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Tech. 2014, 7, 3325–3336. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of Low-Cost Sensing Technologies for Air Quality Monitoring and Exposure Assessment: How Far Have They Gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef] [PubMed]
- De Vito, S.; Esposito, E.; Castell, N.; Schneider, P.; Bartonova, A. On the robustness of field calibration for smart air quality monitors. Sensors Actuators B Chem. 2020, 310, 127869. [Google Scholar] [CrossRef]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Mueller, S.F.; Mallard, J.W. Contributions of Natural Emissions to Ozone and PM2.5 as Simulated by the Community Multiscale Air Quality (CMAQ) Model. Environ. Sci. Technol. 2011, 45, 4817–4823. [Google Scholar] [CrossRef] [PubMed]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Pritchard, H.; Gabrys, J. From Citizen Sensing to Collective Monitoring: Working through the Perceptive and Affective Problematics of Environmental Pollution. GeoHumanities 2016, 2, 354–371. [Google Scholar] [CrossRef]
- Hubbell, B.J.; Kaufman, A.; Rivers, L.; Schulte, K.; Hagler, G.; Clougherty, J.; Cascio, W.; Costa, D. Understanding social and behavioral drivers and impacts of air quality sensor use. Sci. Total Environ. 2018, 621, 886–894. [Google Scholar] [CrossRef]
- Mahajan, S.; Kumar, P.; Pinto, J.A.; Riccetti, A.; Schaaf, K.; Camprodon, G.; Smári, V.; Passani, A.; Forino, G. A citizen science approach for enhancing public understanding of air pollution. Sustain. Cities Soc. 2020, 52, 101800. [Google Scholar] [CrossRef]
- Rickenbacker, H.; Brown, F.; Bilec, M. Creating environmental consciousness in underserved communities: Implementation and outcomes of community-based environmental justice and air pollution research. Sustain. Cities Soc. 2019, 47, 101473. [Google Scholar] [CrossRef]
- Chen, L.-J.; Ho, Y.-H.; Lee, H.-C.; Wu, H.-C.; Liu, H.-M.; Hsieh, H.-H.; Huang, Y.-T.; Lung, S.-C.C. An Open Framework for Participatory PM2.5 Monitoring in Smart Cities. IEEE Access 2017, 5, 14441–14454. [Google Scholar] [CrossRef]
- Mahajan, S.; Luo, C.-H.; Wu, D.-Y.; Chen, L.-J. From Do-It-Yourself (DIY) to Do-It-Together (DIT): Reflections on designing a citizen-driven air quality monitoring framework in Taiwan. Sustain. Cities Soc. 2020, 66, 102628. [Google Scholar] [CrossRef]
- Che, W.; Frey, H.C.; Fung, J.C.; Ning, Z.; Qu, H.; Lo, H.K.; Chen, L.; Wong, T.-W.; Wong, M.K.; Lee, O.C.; et al. PRAISE-HK: A personalized real-time air quality informatics system for citizen participation in exposure and health risk management. Sustain. Cities Soc. 2020, 54, 101986. [Google Scholar] [CrossRef]
- Open Data Handbook. Available online: https://opendatahandbook.org/ (accessed on 13 September 2022).
- Nikiforova, A. Smarter Open Government Data for Society 5.0: Are Your Open Data Smart Enough? Sensors 2021, 21, 5204. [Google Scholar] [CrossRef] [PubMed]
- Worthy, B. The impact of open data in the uk: Complex, unpredictable, and political. Public Adm. 2015, 93, 788–805. [Google Scholar] [CrossRef]
- Sołtysik-Piorunkiewicz, A.; Zdonek, I. How Society 5.0 and Industry 4.0 Ideas Shape the Open Data Performance Expectancy. Sustainability 2021, 13, 917. [Google Scholar] [CrossRef]
- Neves, F.T.; Neto, M.D.C.; Aparicio, M. The impacts of open data initiatives on smart cities: A framework for evaluation and monitoring. Cities 2020, 106, 102860. [Google Scholar] [CrossRef]
- Welle Donker, F.; van Loenen, B. How to Assess the Success of the Open Data Ecosystem? Int. J. Digit. Earth 2017, 10, 284–306. [Google Scholar] [CrossRef]
- Máchová, R.; Lněnička, M. Evaluating the Quality of Open Data Portals on the National Level. J. Theor. Appl. Electron. Commer. Res. 2017, 12, 21–41. [Google Scholar] [CrossRef]
- Lnenicka, M.; Nikiforova, A. Transparency-by-Design: What Is the Role of Open Data Portals? Telemat. Inform. 2021, 61, 101605. [Google Scholar] [CrossRef]
- Lněnička, M.; Machova, R.; Volejníková, J.; Linhartová, V.; Knezackova, R.; Hub, M. Enhancing transparency through open government data: The case of data portals and their features and capabilities. Online Inf. Rev. 2021, 45, 1021–1038. [Google Scholar] [CrossRef]
- Roman, D.; Reeves, N.; Gonzalez, E.; Celino, I.; El Kader, S.A.; Turk, P.; Soylu, A.; Corcho, O.; Cedazo, R.; Calegari, G.R.; et al. An analysis of pollution Citizen Science projects from the perspective of Data Science and Open Science. Data Technol. Appl. 2021, 55, 622–642. [Google Scholar] [CrossRef]
- Oficina Nacional de Estadística (ONE) Datos y Estadísticas. Available online: https://www.one.gob.do/datos-y-estadisticas/ (accessed on 9 September 2022).
- Clemente, P.J.; Lozano-Tello, A. Model Driven Development Applied to Complex Event Processing for Near Real-Time Open Data. Sensors 2018, 18, 4125. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V. Smartcampus.pucmm: Plataforma de Monitoreo de Variables Medioambientales. Available online: https://github.com/victormlgh/smartcampus.pucmm (accessed on 13 September 2022).
- Plug & Sense Waspmote Encapsulated Version Easyly Deploy IoT Networks. Available online: https://www.libelium.com/iot-products/plug-sense/ (accessed on 9 September 2022).
- Mayer, H.; Kalberlah, F. Two impact related air quality indices as tools to assess the daily and long-term air pollution. Int. J. Environ. Pollut. 2009, 36, 19. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Office of Air Quality Planning and Standards; United States Environmental Protection Agency: Research Triangle Park, NC, USA, 1998. Available online: https://www3.epa.gov/airquality/index.html (accessed on 9 September 2022).
- Van den Elshout, S.; Léger, K.; Nussio, F. Comparing Urban Air Quality in Europe in Real Time a Review of Existing Air Quality Indices and the Proposal of a Common Alternative. Environ. Int. 2008, 34, 720–726. [Google Scholar] [CrossRef]
- van den Elshout, S.; Léger, K.; Heich, H. CAQI Common Air Quality Index—Update with PM2.5 and Sensitivity Analysis. Sci. Total Environ. 2014, 488–489, 461–468. [Google Scholar] [CrossRef]
- Ruggieri, M.; Plaia, A. An aggregate AQI: Comparing different standardizations and introducing a variability index. Sci. Total Environ. 2012, 420, 263–272. [Google Scholar] [CrossRef]
- Smart Campus—Pontificia Universidad Católica Madre y Maestra. Available online: https://smartcampus.pucmm.edu.do/ (accessed on 9 September 2022).
- Wang, Q.; Gu, J.; Wang, X. The impact of Sahara dust on air quality and public health in European countries. Atmos. Environ. 2020, 241, 117771. [Google Scholar] [CrossRef]
- Consulta Externa. Available online: http://www.consultoria.gov.do/consulta/ (accessed on 9 September 2022).
Variable | Unit of Measurement | Measurement Period |
---|---|---|
Carbon monoxide (CO) | Parts per million (ppm) | 20 min |
Sulfur dioxide (SO2) | ||
Ozone (O3) | ||
Nitrogen dioxide (NO2) | ||
Ultrafine particulate matter (PM1) | Micrograms per cubic meter (µg/m3) | 20 min |
Fine particulate matter (PM2.5) | ||
Coarse particulate matter (PM10) | ||
Temperature | Degrees Celsius (°C) | 20 min |
Relative humidity | Percentage (%) | |
Barometric pressure | Pascal (Pa) | |
Noise | Additive decibels (dBA) | 10 min |
Battery capacity | Percentage (%) | 20 min |
Battery voltage | Volts (V) | |
Battery charge current | Milliampere (mA) |
Period | Decree | Start Date | End Date | Weekday Schedule | Weekend Schedule | Free Mobility |
---|---|---|---|---|---|---|
14 | 007-21 | 11 January 2021 | 26 January 2021 | 5:00 p.m.–5:00 a.m. (+1) | 12:00 p.m.–5:00 a.m. (+1) | 3 h |
13 | 740-20 | 1 January 2021 | 10 January 2021 | 5:00 p.m.–5:00 a.m. (+1) | 12:00 p.m.–5:00 a.m. (+1) | 2 h (weekdays) |
12 | 698-20 | 15 December 2020 | 31 December 2020 | 7:00 p.m.–5:00 a.m. (+1) | 7:00 p.m.–5:00 a.m. (+1) | 3 h |
11 | 684-20 | 2 December 2020 | 14 December 2020 | 9:00 p.m.–5:00 a.m. (+1) | 7:00 p.m.–5:00 a.m. (+1) | |
10 | 619-20 | 12 November 2020 | 1 December 2020 | |||
9 | 554-20 | 18 October 2020 | 11 November 2020 | |||
8 | 504-20 | 28 September 2020 | 17 October 2020 | |||
7 | 431-20 | 3 September 2020 | 27 September 2020 | 7:00 p.m.–5:00 a.m. (+1) | 5:00 p.m.–5:00 a.m. (+1) | |
6 | 298-20 | 9 August 2020 | 2 September 2020 | |||
5 | 266-20 | 21 July 2020 | 9 August 2020 | |||
4 | No curfew | 28 June 2020 | 20 July 2020 | |||
3 | 214-20 | 14 June 2020 | 27 June 2020 | 8:00 p.m.–5:00 a.m. (+1) | 8:00 p.m.–5:00 a.m. (+1) | |
2 | 188-20 | 2 June 2020 | 13 June 2020 | 7:00 p.m.–5:00 a.m. (+1) | 7:00 p.m.–5:00 a.m. (+1) Sat5:00 p.m.–5:00 a.m. (+1) Sun | |
1 | 161-20 | 18 May 2020 | 1 June 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, V.; Peralta, M.; Faxas-Guzmán, J.; Frómeta, Y.G. Real-Time Environmental Monitoring Platform for Wellness and Preventive Care in a Smart and Sustainable City with an Urban Landscape Perspective: The Case of Developing Countries. Land 2022, 11, 1635. https://doi.org/10.3390/land11101635
Gonzalez V, Peralta M, Faxas-Guzmán J, Frómeta YG. Real-Time Environmental Monitoring Platform for Wellness and Preventive Care in a Smart and Sustainable City with an Urban Landscape Perspective: The Case of Developing Countries. Land. 2022; 11(10):1635. https://doi.org/10.3390/land11101635
Chicago/Turabian StyleGonzalez, Victor, Manuel Peralta, Juan Faxas-Guzmán, and Yokasta García Frómeta. 2022. "Real-Time Environmental Monitoring Platform for Wellness and Preventive Care in a Smart and Sustainable City with an Urban Landscape Perspective: The Case of Developing Countries" Land 11, no. 10: 1635. https://doi.org/10.3390/land11101635
APA StyleGonzalez, V., Peralta, M., Faxas-Guzmán, J., & Frómeta, Y. G. (2022). Real-Time Environmental Monitoring Platform for Wellness and Preventive Care in a Smart and Sustainable City with an Urban Landscape Perspective: The Case of Developing Countries. Land, 11(10), 1635. https://doi.org/10.3390/land11101635