Integrated Remote Sensing and 3D GIS Methodology to Strengthen Public Participation and Identify Cultural Resources
Abstract
:1. Introduction
Modern Research Methods for Cultural Resources
- Interdisciplinary practice as a means of shaping and applying methodologies in the field. The interface between disciplines such as geography, archaeology, and computer science enables the combination of methodological tools so that cultural traces as well as their links to the territorial area can be identified.
- Supporting the active participation of residents in the production of information regarding their territorial resources, with the contribution of interactive representations and experts [15]. The extensive use of geovisualisation (geographic visualisation), is based on the fact that information on resources has a spatial dimension. However, in terms of archaeological resources, whereas their location enhances their links to the area, it does not in itself determine the spatial dimension of their issues.
- The utilisation of cutting-edge technologies and techniques. Progress in the fields of Geographical Information Systems (GIS), remote sensing, and more specialised technologies such as subsurface mapping applications with ground-penetrating radars (GPRs), was a decisive factor in the development of non-destructive methodologies to identify and valorise cultural resources. More specifically, advanced methods of spatial analysis, image processing (or even from UAVs—unmanned aerial vehicles) and interactive 3D geovisualisations, are increasingly applied in the spatial identification of resources [16,17,18,19].
2. Methodology
2.1. Methodological Challenges
- Preparation/support of resident participation, with the aim of activating memory. The region’s geographical environment is represented in 3D environment in order to allow residents to project onto space any information memory related to cultural heritage. This process enables the recording of places referred to in residents’ memories and can lead to a discovery, as with archaeological excavations, to a representation, a virtual configuration, and navigation in space as it was in the reference period determined by the supplier of information (e.g., before land consolidation) [9].
- The precise location on the ground and the geovisualisation of information using geographic information systems (GIS), remote sensing methods, and geophysical surveys.
2.2. Proposed Methodological Chain
- Information collection using conventional methods.
- Mobilisation of the local community to collect information with the contribution of 3D GIS interactive visualisations and mapping.
- Application of geoinformatic methods in mapping and identifying cultural resources.
2.2.1. Information Collection Using Conventional Methods
- Historical research: study of maps, land records, photographs, publications, primary sources, etc.
- Preliminary research: identification-analysis of the various characteristics that compose the landscape of the area’s cultural heritage.
2.2.2. Mobilisation of the Local Community: Collecting Information with the Contribution of 3D GIS Interactive Visualisations
- i.
- Meetings with the local community/residents
- Born at least 10 years before the interventions (land consolidation, change of use, etc.) in the agricultural landscape of the community.
- Observant and with a good sense of direction.
- With a reputation for having knowledge of information related to the local cultural heritage.
- ii.
- Creation of 3D interactive model
- Representation in a way that interlocutors and suppliers of information recognise, with the use of high-definition images, as well as additional elements which act as reference points.
- Reconstruction of the area with the use of past aerial photographs which depict, as accurately as possible, the various past surface material elements (springs, trees, shrubs, etc.) which function as reference points for the older residents of the area.
- To improve the functionality of the 3D interactive model, two main categories of spatial information should be provided:
- Recent cartographic data. Modern high-resolution aerial photographs and satellite images for a first identification of the layout and organisation of the reference area as it is today (roads, infrastructure, relief, etc.).
- Cartographic data from previous years. Use of aerial photographs and bibliographic sources to construct thematic maps from a time before the major material interventions occurred (land consolidation, levelling, clearing, etc.). The aim is to reconstruct the old landscape and restore landmarks in order to facilitate the identification of the information provided by residents.
2.2.3. Application of Geoinformatic Methods to Map and Identify Cultural Resources
- i.
- Recording Land Use Cover
- Conversion, which refers to the transition from one land cover/land use to another (e.g., from forest to grasslands, from natural vegetation to crops, etc.). More specifically, the information to be collected relates to: (a) vegetation zones, such as forests, scrubland, crops, meadows, etc., (b) the physiography of the area, such as slopes, hydrographic network, wetlands, etc., and (c) man-made structures, such as buildings, infrastructure, etc.
- Dynamic monitoring of changes, which represents the evolutionary course within the land cover/land use category itself (e.g., from dry farming to irrigated crop) due to changes in physical or functional properties. More specifically, the information that will be collected must refer to the intensity of the cultivation systems, the depth of ploughing, the irrigation period, etc.
- ii.
- Multispectral Images and Aerial Photographs as a means of detecting cultural resources
- iii.
- Geophysical surveys and the contribution of ground-penetrating radar
3. Case Study Application
3.1. Study Area
3.2. Implementation of Methodology and Results
Multispectral Images and Aerial Photographs as a Means of Identifying Cultural Resources
4. Discussion and Conclusions
4.1. Discussion
- Functional flexibility, with the ability to switch between geospatial analysis scale, as well as the visualisation of all the thematic information over time for a substantiated evaluation, allow the transition:
- -
- from an individual testimony about the location of a cultural object to collective information for a more precise location in relation to other landmarks,
- -
- from the scale of the parcel (the point to be identified) to broader territorial units (landscape, geological formations, etc.) for the correlation and the final integration of multiple information sources, and
- -
- to different time periods, with the help of landscape visualisation, to understand and identify the various land uses/land covers and related landmarks.
- Enhancing transparency, trust and cooperation between the (public) bodies involved and the local community, enabling co-production of information.
4.2. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Choay, F. Dictionnaire de L’urbanisme et de L’aménagement (GRANDS DICTIONNAIRES); Presses Universitaires de France—PUF: Paris, France, 1988; ISBN 10:2130413749/13:9782130413745. [Google Scholar]
- Poulot, D. Une Histoire du Patrimoine en Occident, XVIIIe-XXIe siècle. Du Monument aux Valeurs; Collection: Le Noeud Gordien; Presses Universitaires de France: Paris, France, 2006. [Google Scholar]
- Talandier, M.; Navarre, F.; Cormier, L.; Landel, P.A.; Ruault, J.F.; Senil, N. Les Sites Patrimoniaux Exceptionnels: Une Ressource Pour les Territoires; Collection Recherche no 237; Editions du PUCA: Lyon, France, 2019; ISBN 978-2-11-138163-6. [Google Scholar]
- Landel, P.A.; Senil, N. Patrimoine et territoire, les nouvelles ressources du développement. Dévelop. Durable Territ. [En ligne] 2009, 12, 1–16. [Google Scholar] [CrossRef]
- Senil, N.; Landel, P.A. De la ressource territoriale à la ressource patrimoniale. In Au Cœur des Territoires Créatifs. Proximités et Ressources Territoriales; Eric, G., Bernard, P., Eds.; Presses Universitaires de Rennes: Rennes, France, 2016; ISBN 978-2-7535-4951-7. [Google Scholar]
- Pecqueur, B. Dans quelles conditions les objets patrimoniaux peuvent-ils être support d’activités? Revue Montagn. Médit. 2002, 15, 123–129. [Google Scholar]
- Pecqueur, B. Le tournant territorial de l’économie globale. Espac. Soc. 2006, 124–125, 17–32. [Google Scholar] [CrossRef]
- Camagni, R.; Maillat, D.; Matteaccioli, A. (Eds.) Ressources Naturelles et Culturelles, Milieux et Développement Local; EDES; Institut de Recherches Économiques et Regionals: Neuchâtel, Switzerland, 2004. [Google Scholar]
- Landel, P.A.; Teillet, P. La Place de la Culture dans la Recomposition des Territoires, Le cas des Pays issus de la loi Voynet; Edite par Observatoire des Politiques Culturelles: Grenoble, France, 2003. [Google Scholar]
- Kebir, L.; Wallet, F. New Common Goods, New Forms of Territorial Development? In Proceedings of the 55th European Regional Science Association Congress, Groningen, The Netherlands, 29 August 2017. [Google Scholar]
- Kaeser, M.A. Donner du sens à l’espace: Archéologie préventive et aménagement du territoire. In Le Patrimoine Culturel, un Bien Commun: Pour qui et Pourquoi? Schwabe/NIKE/OFC/ICOMOS: Basel, Switzerland, 2019; pp. 70–73. [Google Scholar]
- Goussios, D.; Faraslis, G.; Vallerand, F. Utilisation des Nouvelles Technologies et Gestion Participative de L’espace Rural Méditerranéen; Télédérection et SIG au Service du Diagnostic Territorial, Elaboration d’une Méthode et D’outils; Édité par Formation multipôle et pluridisciplinaire en développement rural; Institut Agronomique Méditerranéen: Montpellier, France, 2008; ISBN 2-85352-384-5. [Google Scholar]
- Lasaponara, R.; Masin, N. Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J. Archaeol. Sci. 2007, 34, 214–221. [Google Scholar] [CrossRef]
- Barge, O.; Rodier, X.; Davtian, G.; Saligny, L. L’utilisation des systèmes d’information géographique appliquée à l’archéologie française. Revue d’Archéométrie 2004, 28, 15–24. [Google Scholar] [CrossRef]
- Gaffney, V.; Stancic, Z. GIS Approaches to Regional Analysis: A Case Study of the Island of Hvar; Oxbow Books: Oxford, UK, 1991. [Google Scholar] [CrossRef]
- Khan, L.Z.; Rather, A.M.; Kuchhy, A.N.; Ahmad, F.U.; Murtaza, O.K. Geoinformatics for cultural heritage mapping—A case study of Srinagar city, Jammu and Kashmir. Int. J. Technol. Res. Eng. 2015, 2, 1234–1241. [Google Scholar]
- Masini, N.; Lasaponara, R. Sensing the Past from Space: Approaches to Site Detection. In Sensing the Past; Masini, N., Soldovieri, F., Eds.; Geotechnologies and the Environment, 16; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Kaimaris, D. Ancient theaters in Greece and the contribution of geoinformatics to their macroscopic constructional features. Sci. Cult. 2018, 4, 9–25. [Google Scholar]
- Nicu, C.I.; Mihu-Pintilie, A.; Williamson, J. GIS-Based and Statistical Approaches in Archaeological Predictive Modelling (NE Romania). Sustainability 2019, 11, 5969. [Google Scholar] [CrossRef]
- D’Orazio, T.; Da Pelo, P.; Marani, R.; Guaragnella, C. Automated Extraction of Archaeological Traces by a Modified Variance Analysis. Remote Sens. 2015, 7, 3565–3587. [Google Scholar] [CrossRef]
- Gupta, E.; Das, S.; Rajani, M.B. Archaeological Exploration in Srirangapatna and Its Environ Through Remote Sensing Analysis. J. Indian Soc. Remote. Sens. 2017, 45, 1057–1063. [Google Scholar] [CrossRef]
- Conyers, L.; Cameron, C. Ground-Penetrating Radar Techniques and Three-Dimensional Computer Mapping in the American Southwest. J. Field Archaeol. 1998, 25, 417–430. [Google Scholar] [CrossRef]
- Brunet, M. Brief historiography of landscape archeology. Archaeol. Arts 2003, 87, 44–49. (In Greek) [Google Scholar]
- Lasaponara, R.; Masini, N. Advances on Remote Sensing for Archaeology and Cultural Heritage Management. In Proceedings of the 1st International EARSeL Workshop, Rome, Italy, 30 September–4 October 2008. [Google Scholar]
- Wilson, R.J.; D’Cruz, M. Virtual and interactive environments for work of the future. Int. J. Hum. Comput. Studies 2005, 64, 158–169. [Google Scholar] [CrossRef]
- Stott, A.; Haines-Young, R. Linking land cover, intensity of use and botanical diversity in an accounting framework in the UK. In Environmental Accounting in Theory and Practice. Economy & Environment; Uno, K., Bartelmus, P., Eds.; Springer: Dordrecht, The Netherlands, 1998; Volume 11. [Google Scholar] [CrossRef]
- Baulies, X.; Szejwach, G. LUCC Data Requirements Workshop: Survey of Needs, Gaps and Priorities on Data for Land-Use/Land-Cover Change Research; Institut Cartografic de Catalunya: Barcelona, Spain, 1997. [Google Scholar]
- Masini, N.; Marzo, C.; Manzari, P.; Belmonte, A.; Sabia, C.; Lasaponara, R. On the characterization of temporal and spatial patterns of archaeological crop-marks. J. Cult. Herit. 2018, 32, 124–132. [Google Scholar] [CrossRef]
- Campbell, B.J.; Wynne, H.R. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA; London, UK, 2011. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation, 7th ed.; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Calleja, J.F.; Requejo, P.O.; Díaz-Álvarez, N.; Peón, J.; Gutiérrez, N.; Martín-Hernández, E.; Cebada, R.A.; Rubio, M.D.; Fernández, Á.P. Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 555–573. [Google Scholar] [CrossRef]
- Cowley, C.D.; Moriarty, C.; Geddes, G.; Brown, G.L.; Wade, T.; Nichol, J.C. UAVs in context: Archaeological airborne recording in a national body of survey and record. Drones 2018, 2, 2. [Google Scholar] [CrossRef]
- Parcak, S.H. Satellite Remote Sensing for Archaeology; Routledge Taylor and Francis Group Press: London, UK, 2009. [Google Scholar]
- Traviglia, A.; Cottica, D. Remote sensing applications and archaeological research in the Northern Lagoon of Venice: The case of the lost settlement of Constanciacus. J. Archaeol. Sci. 2011, 38, 2040–2050. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V.; Lasaponara, R.; Masini, N.; Hadjimitsis, D.G. Study of the Variations of Archaeological Marks at Neolithic Site of Lucera, Italy Using High-Resolution Multispectral Datasets. Remote Sens. 2016, 8, 723. [Google Scholar] [CrossRef]
- Caspari, G.; Sadykov, T.; Blochin, J.; Buess, M.; Nieberle, M.; Balz, T. Integrating Remote Sensing and Geophysics for Exploring Early Nomadic Funerary Architecture. In the "Siberian Valley of the Kings". Sensors 2019, 19, 3074. [Google Scholar] [CrossRef]
- Stewart, C. Detection of Archaeological Residues in Vegetated Areas Using Satellite Synthetic Aperture Radar. Remote Sens. 2017, 9, 118. [Google Scholar] [CrossRef]
- Pavelka, K.; Šedina, J.; Matoušková, E. High Resolution Drone Surveying of the Pista Geoglyph in Palpa, Peru. Geosciences 2018, 8, 479. [Google Scholar] [CrossRef]
- Campana, S. Drones in Archaeology. State-of-the-art and Future Perspectives. Archaeol. Prospect. 2017, 24, 275–297. [Google Scholar] [CrossRef]
- Baker, G.S.; Jordan, T.; Pardy, J. Introduction to Ground Penetrating Radar (GPR). In Stratigraphic Analyses Using GPR; Baker, G., Jol, H., Eds.; Geological Society of America: Boulder, CO, USA, 2007; pp. 1–18. [Google Scholar]
- Klotzsche, A.; Jonard, F.; Looms, M.; van der Kruk, J.; Huisman, J. Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zone J. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-penetrating Radar for Archaeological Mapping. In Remote Sensing in Archaeology. Interdisciplinary Contributions to Archaeology; Wiseman, J., El-Baz, F., Eds.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Zhao, W.; Tian, G.; Forte, E.; Pipan, M.; Wang, Y.; Li, X.; Shi, Z.; Liu, H. Advances in GPR data acquisition and analysis for archaeology. Geophys. J. Int. 2015, 202, 62–71. [Google Scholar] [CrossRef]
- Bianco, C.; de Lara, G.; Giannotta, T.M.; Leucci, G.; Meo, F.; Persico, R. The Messapic Site of Muro Leccese: New Results from Integrated Geophysical and Archaeological Surveys. Remote Sens. 2019, 11, 1478. [Google Scholar] [CrossRef]
- La Torre, G.F.; Karapanou, S.; Noula, V.; Venuti, M. The archaeological profile of Scotoussa four years after the start of the Italian-Greek program. In Proceedings of the 6th AETHSE (Archaeological Meeting of Thessaly and Central Greece), 2015–2017, Volos, Greece, 1–4 March 2018. [Google Scholar]
- La Torre, G.F.; Karapanou, S. Ricerche Arccheologiche Italo-Greche a Scotoussa (Tessaglia): Primi Risultati. Atti Della Pontif. Accad. Romana Di Archeol. Rend. 2018, 90, 157–174. [Google Scholar]
- Goussios, D.; Faraslis, I.; Mardakis, P. The Territorial Approach to the Integration of RES in Mountain Areas. Participatory Planning with the Support of 3D Representations: Examples of Application in the Eastern Mediterranean. J. Alp. Res. Rev. Geogr. Alp. 2021. Available online: http://journals.openedition.org/rga/9534 (accessed on 31 December 2021). [CrossRef]
- Senabre Hidalgo, E.; Wagener, A.; Wandl-Vogt, E.; Robert, L. Manifesto sprint on biocultural diversity: An experimental approach to knowledge cocreation, discourse design and collaborative writing. Cogent Arts Humanit. 2022, 9, 2050603. [Google Scholar] [CrossRef]
- UNESCO. Links between Biological and Cultural Diversity—Concepts, Methods and Experiences. In a Report of an International Workshop, UNESCO, Paris-France, 2008. Available online: https://unesdoc.unesco.org/images/0015/001592/159255E.pdf (accessed on 10 June 2022).
- Eriksson, O. What is biological cultural heritage and why should we care about it? An example from Swedish rural landscapes and forests. Nat. Conserv. 2018, 28, 1–32. [Google Scholar] [CrossRef]
- Mansilla Quiñones, P.; Manriquez, H.; Moreira-Muñoz, A. Virtual Heritage: A Model of Participatory Knowledge Construction Toward Biogeocultural Heritage Conservation. In Global Geographical Heritage, Geoparks and Geotourism, Geoconservation and Development; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goussios, D.; Faraslis, I. Integrated Remote Sensing and 3D GIS Methodology to Strengthen Public Participation and Identify Cultural Resources. Land 2022, 11, 1657. https://doi.org/10.3390/land11101657
Goussios D, Faraslis I. Integrated Remote Sensing and 3D GIS Methodology to Strengthen Public Participation and Identify Cultural Resources. Land. 2022; 11(10):1657. https://doi.org/10.3390/land11101657
Chicago/Turabian StyleGoussios, Dimitris, and Ioannis Faraslis. 2022. "Integrated Remote Sensing and 3D GIS Methodology to Strengthen Public Participation and Identify Cultural Resources" Land 11, no. 10: 1657. https://doi.org/10.3390/land11101657
APA StyleGoussios, D., & Faraslis, I. (2022). Integrated Remote Sensing and 3D GIS Methodology to Strengthen Public Participation and Identify Cultural Resources. Land, 11(10), 1657. https://doi.org/10.3390/land11101657