A Protected Area Connectivity Evaluation and Strategy Development Framework for Post-2020 Biodiversity Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protected Areas and Ecological Zones
2.2. Resistance Surface
2.3. PA Connectivity Evaluation
2.3.1. Intra-Patch Connectivity
2.3.2. Inter-Patch Connectivity
2.3.3. Network Connectivity
2.3.4. PA–Landscape Connectivity
2.3.5. PAs with Good Connectivity
2.4. Strategy Development for PA Connectivity
2.4.1. Strategy Classification of PA Connectivity Based on Indicators
2.4.2. Spatial Priority Area for PA Connectivity Improvement
3. Results
3.1. Connectivity of PAs in China
3.2. PA Connectivity Strategy Classification
3.3. Spatial Priority Area to Improve PA Connectivity in China
4. Discussion
4.1. Importance of Intra-Patch Connectivity
4.2. Evaluation of Connectivity at the Patch Scale
4.3. Connectivity Indicators for Well-Connected PAs
4.4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz, S.; Fargione, J.; Chapin, F.S.; Tilman, D. Biodiversity Loss Threatens Human Well-Being. PLoS Biol. 2006, 4, e277. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of Regional Climate Change on Human Health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Keeley, A.T.H.; Ackerly, D.D.; Cameron, D.R.; Heller, N.E.; Huber, P.R.; Schloss, C.A.; Thorne, J.H.; Merenlender, A.M. New Concepts, Models, and Assessments of Climate-Wise Connectivity. Environ. Res. Lett. 2018, 13, 073002. [Google Scholar] [CrossRef]
- Littlefield, C.E.; McRae, B.H.; Michalak, J.L.; Lawler, J.J.; Carroll, C. Connecting Today’s Climates to Future Climate Analogs to Facilitate Movement of Species under Climate Change. Conserv. Biol. 2017, 31, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.E.; Woodley, S.; Welling, L.A.; Watson, J.E.M. (Eds.) Adapting to Climate Change: Guidance for Protected Area Managers and Planners; Best Practice Protected Area Guidelines Series No. 24; IUCN: Gland, Switzerland, 2017. [Google Scholar]
- Hilty, J.; Worboys, G.L.; Keeley, A.; Woodley, S.; Lausche, B.J.; Locke, H.; Carr, M.; Pulsford, I.; Pittock, J.; White, J.W.; et al. Guidelines for Conserving Connectivity through Ecological Networks and Corridors; Best Practice Protected Area Guidelines Series No. 30; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Foden, W.B.; Young, B.E. (Eds.) IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change; Occasional Paper of the IUCN Species Survival Commission No. 59; IUCN Species Survival Commission: Cambridge, UK; Gland, Switzerland, 2016. [Google Scholar]
- Liang, J.; Ding, Z.; Jiang, Z.; Yang, X.; Xiao, R.; Singh, P.B.; Hu, Y.; Guo, K.; Zhang, Z.; Hu, H. Climate Change, Habitat Connectivity, and Conservation Gaps: A Case Study of Four Ungulate Species Endemic to the Tibetan Plateau. Landsc. Ecol. 2021, 36, 1071–1087. [Google Scholar] [CrossRef]
- Grande, T.O.; Aguiar, L.M.S.; Machado, R.B. Heating a Biodiversity Hotspot: Connectivity Is More Important than Remaining Habitat. Landsc. Ecol. 2020, 35, 639–657. [Google Scholar] [CrossRef]
- Pascual-Hortal, L.; Saura, S. Comparison and Development of New Graph-Based Landscape Connectivity Indices: Towards the Priorization of Habitat Patches and Corridors for Conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Pimm, S.L.; Jenkins, C.N.; Li, B.V. How to Protect Half of Earth to Ensure It Protects Sufficient Biodiversity. Sci. Adv. 2018, 4, eaat2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chape, S.; Harrison, J.; Spalding, M.; Lysenko, I. Measuring the Extent and Effectiveness of Protected Areas as an Indicator for Meeting Global Biodiversity Targets. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.D.; Gillingham, P.K. The Performance of Protected Areas for Biodiversity under Climate Change. Biol. J. Linn. Society 2015, 115, 718–730. [Google Scholar] [CrossRef]
- Yang, R.; Cao, Y.; Hou, S.; Peng, Q.; Wang, X.; Wang, F.; Tseng, T.-H.; Yu, L.; Carver, S.; Convery, I.; et al. Cost-Effective Priorities for the Expansion of Global Terrestrial Protected Areas: Setting Post-2020 Global and National Targets. Sci. Adv. 2020, 6, eabc3436. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.H.; Robinson, S.P.; Wahle, C.; Davis, G.; Kroll, S.; Murray, S.; Schumacker, E.J.; Williams, M. The Central Importance of Ecological Spatial Connectivity to Effective Coastal Marine Protected Areas and to Meeting the Challenges of Climate Change in the Marine Environment. Aquat. Conserv. 2017, 27, 6–29. [Google Scholar] [CrossRef]
- Bauduin, S.; Cumming, S.G.; St-Laurent, M.H.; McIntire, E.J.B. Integrating Functional Connectivity in Designing Networks of Protected Areas under Climate Change: A Caribou Case-Study. PLoS ONE 2020, 15, e0238821. [Google Scholar] [CrossRef] [PubMed]
- Convention on Biological Diversity. Aichi Biodiversity Targets. 2010. Available online: https://www.cbd.int/sp/targets/ (accessed on 30 November 2021).
- Convention on Biological Diversity. First Draft of the Post-2020 Global Biodiversity Framework. 2021. Available online: https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (accessed on 30 November 2021).
- Hashemi, R.; Darabi, H. The Review of Ecological Network Indicators in Graph Theory Context: 2014–2021. Int. J. Environ. Res. 2022, 16, 1–26. [Google Scholar] [CrossRef]
- Keeley, A.T.H.; Beier, P.; Jenness, J.S. Connectivity Metrics for Conservation Planning and Monitoring. Biol. Conserv. 2021, 255, 109008. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A New Habitat Availability Index to Integrate Connectivity in Landscape Conservation Planning: Comparison with Existing Indices and Application to a Case Study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Saura, S.; Estreguil, C.; Mouton, C.; Rodríguez-Freire, M. Network Analysis to Assess Landscape Connectivity Trends: Application to European Forests (1990–2000). Ecol. Indic. 2011, 11, 407–416. [Google Scholar] [CrossRef]
- Saura, S.; Bastin, L.; Battistella, L.; Mandrici, A.; Dubois, G. Protected Areas in the World’s Ecoregions: How Well Connected Are They? Ecol. Indic. 2017, 76, 144–158. [Google Scholar] [CrossRef]
- Saura, S.; Bertzky, B.; Bastin, L.; Battistella, L.; Mandrici, A.; Dubois, G. Protected Area Connectivity: Shortfalls in Global Targets and Country-Level Priorities. Biol. Conserv. 2018, 219, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Saura, S.; Williams, B.; Ramírez-Delgado, J.P.; Arafeh-Dalmau, N.; Allan, J.R.; Venter, O.; Dubois, G.; Watson, J.E.M. Just Ten Percent of the Global Terrestrial Protected Area Network Is Structurally Connected via Intact Land. Nat. Commun. 2020, 11, 4563. [Google Scholar] [CrossRef] [PubMed]
- Saura, S.; Bertzky, B.; Bastin, L.; Battistella, L.; Mandrici, A.; Dubois, G. Global Trends in Protected Area Connectivity from 2010 to 2018. Biol. Conserv. 2019, 238, 108183. [Google Scholar] [CrossRef] [PubMed]
- Brennan, A.; Naidoo, R.; Greenstreet, L.; Mehrabi, Z.; Ramankutty, N.; Kremen, C. Functional Connectivity of the World’s Protected Areas. Science 2022, 376, 1101–1104. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, R.; Carver, S. Linking Wilderness Mapping and Connectivity Modelling: A Methodological Framework for Wildland Network Planning. Biol. Conserv. 2020, 251, 108679. [Google Scholar] [CrossRef]
- Spanowicz, A.G.; Jaeger, J.A.G. Measuring Landscape Connectivity: On the Importance of within-Patch Connectivity. Landsc. Ecol. 2019, 34, 2261–2278. [Google Scholar] [CrossRef]
- Urban, D.; Keitt, T. Landscape Connectivity: A Graph-Theoretic Perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
- Guo, Z.; Cui, G. The Comprehensive Geographical Regionalization of China Supporting Natural Conservation. Shengtai Xuebao Acta Ecol. Sin. 2014, 34, 1284–1294. [Google Scholar] [CrossRef]
- Hoctor, T.S.; Carr, M.H.; Zwick, P.D. Identifying a Linked Reserve System Using a Regional Landscape Approach: The Florida Ecological Network. Conserv. Biol. 2000, 14, 984–1000. [Google Scholar] [CrossRef]
- Marulli, J.; Mallarach, J.M. A GIS Methodology for Assessing Ecological Connectivity: Application to the Barcelona Metropolitan Area. Landsc. Urban Plan. 2005, 71, 243–262. [Google Scholar] [CrossRef]
- Beier, P.; Spencer, W.; Baldwin, R.F.; McRae, B.H. Toward Best Practices for Developing Regional Connectivity Maps. Conserv. Biol. 2011, 25, 879–892. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, A.P.; Riggio, J.; Tait, A.M.; Baillie, J.E.M. Global Areas of Low Human Impact (‘Low Impact Areas’) and Fragmentation of the Natural World. Sci. Rep. 2019, 9, 14179. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Carver, S.; Yang, R. Mapping Wilderness in China: Comparing and Integrating Boolean and WLC Approaches. Landsc. Urban Plan. 2019, 192, 103636. [Google Scholar] [CrossRef]
- Belote, R.T.; Dietz, M.S.; McRae, B.H.; Theobald, D.M.; McClure, M.L.; Irwin, G.H.; McKinley, P.S.; Gage, J.A.; Aplet, G.H. Identifying Corridors among Large Protected Areas in the United States. PLoS ONE 2016, 11, e0154223. [Google Scholar] [CrossRef]
- Dickson, B.G.; Albano, C.M.; McRae, B.H.; Anderson, J.J.; Theobald, D.M.; Zachmann, L.J.; Sisk, T.D.; Dombeck, M.P. Informing Strategic Efforts to Expand and Connect Protected Areas Using a Model of Ecological Flow, with Application to the Western United States. Conserv. Lett. 2017, 10, 564–571. [Google Scholar] [CrossRef]
- Correa Ayram, C.A.; Mendoza, M.E.; Etter, A.; Pérez Salicrup, D.R. Anthropogenic Impact on Habitat Connectivity: A Multidimensional Human Footprint Index Evaluated in a Highly Biodiverse Landscape of Mexico. Ecol. Indic. 2017, 72, 895–909. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Oakleaf, J.R.; Theobald, D.M.; Baruch-Mordo, S.; Kiesecker, J. Managing the Middle: A Shift in Conservation Priorities Based on the Global Human Modification Gradient. Glob. Chang. Biol. 2019, 25, 811–826. [Google Scholar] [CrossRef]
- Bunn, A.G.; Urban, D.L.; Keitt, T.H. Landscape Connectivity: A Conservation Application of Graph Theory. J. Environ. Manag. 2000, 59, 265–278. [Google Scholar] [CrossRef]
- Gurrutxaga, M.; Rubio, L.; Saura, S. Key Connectors in Protected Forest Area Networks and the Impact of Highways: A Transnational Case Study from the Cantabrian Range to the Western Alps (SW Europe). Landsc. Urban Plan. 2011, 101, 310–320. [Google Scholar] [CrossRef]
- Naidoo, R.; Brennan, A. Connectivity of Protected Areas Must Consider Landscape Heterogeneity: A Response to Saura et al. Biol. Conserv. 2019, 239, 108316. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A Software Package for Quantifying the Importance of Habitat Patches for Landscape Connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Chetkiewicz, C.-L.B.; Clair, C.C.S.; Boyce, M.S. Corridors for Conservation: Integrating Pattern and Process. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 317–342. [Google Scholar] [CrossRef]
- Gilbert-Norton, L.; Wilson, R.; Stevens, J.R.; Beard, K.H. A Meta-analytic Review of Corridor Effectiveness. Conserv. Biol. 2010, 24, 660–668. [Google Scholar] [CrossRef]
- Bodin, Ö.; Saura, S. Ranking Individual Habitat Patches as Connectivity Providers: Integrating Network Analysis and Patch Removal Experiments. Ecol. Model. 2010, 221, 2393–2405. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, F.; Cai, Z.; Dai, Y.; Liu, D.; Song, P.; Hou, Y.; Gao, H.; Zhang, T. Resistance-Based Connectivity Model to Construct Corridors of the Przewalski’s Gazelle (Procapra Przewalskii) in Fragmented Landscape. Sustainability 2021, 13, 1656. [Google Scholar] [CrossRef]
- Diniz, M.F.; Cushman, S.A.; Machado, R.B.; de Marco Júnior, P. Landscape Connectivity Modeling from the Perspective of Animal Dispersal. Landsc. Ecol. 2020, 35, 41–58. [Google Scholar] [CrossRef]
- Carroll, K.A.; Hansen, A.J.; Inman, R.M.; Lawrence, R.L.; Hoegh, A.B. Testing Landscape Resistance Layers and Modeling Connectivity for Wolverines in the Western United States. Glob. Ecol. Conserv. 2020, 23, e01125. [Google Scholar] [CrossRef]
- Barnett, K.; Belote, R.T. Modeling an Aspirational Connected Network of Protected Areas across North America. Ecol. Appl. 2021, 31, e02387. [Google Scholar] [CrossRef] [PubMed]
- Belote, R.T.; Beier, P.; Creech, T.; Wurtzebach, Z.; Tabor, G. A Framework for Developing Connectivity Targets and Indicators to Guide Global Conservation Efforts. Bioscience 2020, 70, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Ecological Zone | PCintra of PAs (%) | PCinter of PAs (%) | PCnet of PAs (%) | PCland of PAs (%) |
---|---|---|---|---|---|
Ⅰ1 | Northern Daxing’anling cold-temperate semi-humid zone | 96.33 | 65.06 | 67.17 | 10.18 |
Ⅰ2 | Southern Daxing’anling temperate semi-humid zone | 92.11 | 20.59 | 23.16 | 3.32 |
Ⅰ3 | Xiaoxing’anling temperate semi-humid zone | 91.28 | 49.57 | 50.87 | 8.63 |
Ⅰ4 | Northeast Plain temperate semi-humid zone | 74.44 | 1.52 | 7.62 | 0.38 |
Ⅰ5 | Changbai Mountain temperate humid semi-humid zone | 84.97 | 3.98 | 17.01 | 2.57 |
Ⅰ6 | Liaodong Peninsula warm-temperate semi-humid zone | 77.20 | 2.21 | 6.20 | 0.31 |
Ⅱ1 | Yanshan Mountain warm-temperate semi-humid zone | 77.64 | 1.26 | 7.78 | 0.36 |
Ⅱ2 | Haihe Plain warm-temperate semi-humid zone | 59.36 | 0.09 | 12.87 | 0.33 |
Ⅱ3 | Shanxi Plateau warm-temperate semi-humid zone | 82.92 | 2.51 | 8.48 | 0.24 |
Ⅱ4 | Northern Shaanxi and Longzhong Plateau warm-temperate semi-arid zone | 81.11 | 4.07 | 14.31 | 0.41 |
Ⅱ5 | Southern Taihang and northern Qinling warm-temperate semi-humid zone | 78.71 | 5.64 | 11.75 | 0.48 |
Ⅱ6 | Yellow and Huai River Plain warm-temperate semi-humid zone | 55.20 | 0.01 | 10.60 | 0.29 |
Ⅱ7 | Shandong Peninsula warm-temperate semi-humid zone | 64.65 | 0.10 | 9.22 | 0.16 |
Ⅲ1 | Middle and lower reaches of Yangtze River northern subtropical humid zone | 69.97 | 0.49 | 8.84 | 0.38 |
Ⅲ2 | Middle and lower reaches of Yangtze River central subtropical humid zone | 79.52 | 0.84 | 4.28 | 0.19 |
Ⅲ3 | Southeast China humid south subtropical zone | 80.57 | 0.78 | 5.18 | 0.20 |
Ⅲ4 | Taiwan Island tropical subtropical humid zone | 92.02 | 23.89 | 82.76 | 16.27 |
Ⅲ5 | Southeast China tropical humid zone | 82.20 | 1.90 | 37.81 | 1.01 |
Ⅲ6 | Hainan Island tropical humid zone | 84.57 | 21.78 | 73.35 | 12.19 |
Ⅳ1 | Qinba Mountains northern subtropical humid zone | 88.27 | 7.23 | 27.21 | 3.92 |
Ⅳ2 | Sichuan basin and marginal mountains subtropical humid zone | 88.25 | 30.58 | 48.33 | 5.68 |
Ⅳ3 | Guizhou plateau and marginal mountains subtropical humid zone | 79.79 | 2.57 | 6.56 | 0.24 |
Ⅳ4 | Northern Transverse Mountains subtropical humid semi-humid zone | 93.23 | 12.59 | 21.61 | 3.36 |
Ⅳ5 | Southern Transverse Mountains central subtropical humid zone | 81.58 | 9.18 | 15.38 | 1.60 |
Ⅳ6 | Southwest China tropical subtropical humid zone | 81.61 | 2.00 | 6.00 | 0.36 |
Ⅳ7 | Eastern edge of the Himalayas tropical humid zone | 93.56 | 33.41 | 79.35 | 6.59 |
Ⅴ1 | Xiliaohe River temperate semi-arid zone | 81.07 | 4.50 | 16.99 | 1.48 |
Ⅴ2 | Eastern Inner Mongolia Plateau temperate semi-arid zone | 90.28 | 6.20 | 17.50 | 2.78 |
Ⅴ3 | Ordos Plateau and surrounding mountains temperate semi-arid zone | 83.97 | 14.15 | 21.96 | 2.42 |
Ⅵ1 | Western Inner Mongolia Plateau temperate arid zone | 95.22 | 31.23 | 37.19 | 5.25 |
Ⅵ2 | Northern Xinjiang temperate arid semi-arid zone | 92.79 | 12.29 | 29.03 | 3.79 |
Ⅵ3 | Southern Xinjiang temperate warm temperate arid zone | 97.65 | 10.85 | 52.16 | 4.11 |
Ⅶ1 | Kunlun Mountains alpine arid zone | 99.68 | 32.30 | 87.34 | 39.65 |
Ⅶ2 | Qaidam and Qilian Mountains alpine arid semi-arid zone | 94.84 | 51.87 | 72.50 | 17.02 |
Ⅶ3 | Qiangtang Plateau alpine arid zone | 99.02 | 76.71 | 91.59 | 40.50 |
Ⅶ4 | East Tibet and south Qinghai alpine semi-humid zone | 95.20 | 48.74 | 81.37 | 27.88 |
Ⅶ5 | Southern Tibetan alpine semi-humid semi-arid zone | 93.29 | 13.45 | 55.92 | 9.17 |
Ⅷ1 | South China Sea islands tropical humid zone | — | — | — | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Wang, P.; Wang, X.; Wang, F.; Tseng, T.-H.; Cao, Y.; Hou, S.; Peng, J.; Yang, R. A Protected Area Connectivity Evaluation and Strategy Development Framework for Post-2020 Biodiversity Conservation. Land 2022, 11, 1670. https://doi.org/10.3390/land11101670
Zhao Z, Wang P, Wang X, Wang F, Tseng T-H, Cao Y, Hou S, Peng J, Yang R. A Protected Area Connectivity Evaluation and Strategy Development Framework for Post-2020 Biodiversity Conservation. Land. 2022; 11(10):1670. https://doi.org/10.3390/land11101670
Chicago/Turabian StyleZhao, Zhicong, Pei Wang, Xiaoshan Wang, Fangyi Wang, Tz-Hsuan Tseng, Yue Cao, Shuyu Hou, Jiayuan Peng, and Rui Yang. 2022. "A Protected Area Connectivity Evaluation and Strategy Development Framework for Post-2020 Biodiversity Conservation" Land 11, no. 10: 1670. https://doi.org/10.3390/land11101670
APA StyleZhao, Z., Wang, P., Wang, X., Wang, F., Tseng, T.-H., Cao, Y., Hou, S., Peng, J., & Yang, R. (2022). A Protected Area Connectivity Evaluation and Strategy Development Framework for Post-2020 Biodiversity Conservation. Land, 11(10), 1670. https://doi.org/10.3390/land11101670