Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site and Soil Characteristics
2.2. Climatic and Weather Data during the Crop Season
2.3. Brief Description of Field Treatments and Experimental Set-Up
2.4. Crop Management
2.5. Data Collection and Analysis
2.5.1. Soil Parameters
2.5.2. Plant Parameters
2.5.3. Partial Factor Productivity of N
2.5.4. Economic Analysis
2.6. Statistical Analysis
3. Results
3.1. Growth Parameters
3.2. Yield Attributes
3.3. Grain Yield
3.4. Nutrient Uptake
3.5. Nitrogen Use Efficiency
3.6. Physical and Chemical Properties of Soil
3.6.1. Available Nitrogen (N), Phosphorus (P) and Potassium (K)
3.6.2. Soil Organic Carbon (SOC)
3.6.3. Soil Temperature
3.6.4. Soil Bulk Density
3.6.5. Soil Penetration Resistance
3.6.6. Infiltration Rate
3.7. Wheat Grain Quality
3.8. Economics
4. Discussion
4.1. Growth Parameters, Dry Matter Production, Yield Attributes, and Grain Yield
4.2. N Use Efficiency
4.3. Grain Quality
4.4. Physio-Chemical Soil Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tirol-Padre, A.; Rai, M.; Kumar, V.; Gathala, M.; Sharma, P.C.; Sharma, S.; Nagar, R.K.; Deshwal, S.; Singh, L.K.; Jat, S.H.; et al. Quantifying changes to the global warming potential of rice wheat systems with the adoption of conservation agriculture in northwestern India. Agric. Ecosyst. Environ. 2016, 219, 56–67. [Google Scholar] [CrossRef]
- ICAR. Enhancing the Biodegradation of Rice Residue in Rice-Based Cropping Systems to Sustain Soil Health and Productivity; Technical Project Representative; Indian Council of Agricultural Research: New Delhi, India, 1999. [Google Scholar]
- Abdurrahman, M.I.; Chaki, S.; Saini, G. Stubble burning: Effects on health & environment, regulations and management practices. Environ. Adv. 2020, 2, 100011. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, P.; Choudhary, O.P.; Neemisha. Nitrogen and rice straw incorporation impact on nitrogen use efficiency, soil nitrogen pools and enzyme activity in rice-wheat system in north-western India. Field Crops Res. 2021, 266, 108–131. [Google Scholar] [CrossRef]
- Sidhu, H.S.; Manpreet, S.; Yadvinder, S.; Blackwell, J.; Lohan, S.K.; Humphreys, E.; Jat, M.L.; Vicky, S.; Sarbjeet, S. Development and evaluation of the TurboHappy Seeder for sowing wheat into heavy rice residues in NW India. Field Crops Res. 2015, 184, 201–212. [Google Scholar] [CrossRef]
- Yadvinder, S.; Singh, M.; Sidhu, H.S.; Khanna, P.K.; Kapoor, S.; Jain, A.K.; Singh, A.K.; Sidhu, G.K.; Singh, A.; Chaudhary, D.P.; et al. Options for Effective Utilization of Crop Residues; Directorate of Research, Punjab Agricultural University: Ludhiana, India, 2010. [Google Scholar]
- Chakraborty, D.; Garg, R.N.; Tomar, P.K.; Singh, R.; Sharma, S.K.; Singh, R.K.; Trivedi, S.M.; Mittal, R.B.; Sharma, P.K.; Kamble, K.H. Synthetic and organic mulching and nitrogen effect on winter wheat (Triticumaestivum L.) in a semi-arid environment. Agric. Water Manage. 2010, 97, 738–748. [Google Scholar] [CrossRef]
- Balwinder-Singh; Humphreys, E.; Eberbach, P.L.; Katupitiya, A.; Yadvinder, S.; Kukal, S.S. Growth, yield and water productivity of zero-till wheat as affected by rice straw mulch and irrigation schedule. Field Crops Res. 2011, 121, 209–225. [Google Scholar] [CrossRef]
- Ram, H.; Dadhwal, V.; Vashist, K.K.; Kaur, H. Grain yield and water use efficiency of wheat (Triticumaestivum L.) in relation to irrigation levels and rice straw mulching in northwest India. Agric. Water Manage. 2013, 128, 92–101. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wei, Z. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India, Private Limited: New Delhi, India, 1973. [Google Scholar]
- Bhatti, D.S.; Kaur, S. Package of Practices for Rabi Crops; Punjab Agricultural University: Ludhiana, India, 2017; pp. 1–18. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Waternade, F.S.; Dean, L.A. Estimation of available phosphorous in soil by extraction with sodium bicarbonate. USDA Circ. 1954, 939, 1–19. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis: Part 1: Physical and Mineralogical Methods, 2nd ed.; Monograph Number 9; Klute, A., Ed.; ASA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Parr, J.R.; Bertrand, A.R. Water infiltration into soils. Adv. Agron. 1960, 12, 311–363. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: NewYork, NY, USA, 1984; 680p. [Google Scholar]
- Chen, H.; Lianga, Q.; Gonga, Y.; Kuzyakovb, Y.; Fana, M.; Plante, A.F. Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil Till. Res. 2019, 194, 105296. [Google Scholar] [CrossRef]
- Jin, K.; Cornelis, W.M.; Schiettecatte, W.; Lu, J.; Yao, Y.; Wu, H.; Gabriels, D.; Neve, S.D.; Cai, D.; Jin, J.; et al. Effects of different management practices on the soil–water balance and crop yield for improved dryland farming in the Chinese Loess Plateau. Soil Till. Res. 2007, 96, 131–144. [Google Scholar] [CrossRef]
- Chen, H.Q.; Billen, N.; Stahr, K.; Kuzyakov, Y. Effects of nitrogen and intensive mixing on decomposition of 14C-labelled maize (Zea mays L.) residue in soils of different land use types. Soil Till. Res. 2007, 96, 114–123. [Google Scholar] [CrossRef]
- Dadhwal, V. Effect of Irrigation and Rice Straw Mulching on Performance of Wheat (Triticum aestivum L.). Master’s Thesis, Punjab Agricultural University, Ludhiana, India, 2011. [Google Scholar]
- Sandhu, O.S.; Gupta, R.K.; Thind, H.S.; Jat, M.L.; Sidhu, H.S.; Yadvinder, S. Evaluation of N fertilization management strategies for increasing crop yields and nitrogen use efficiency in furrow irrigated maize-wheat system under permanent raised bed planting. Arch. Agron. Soil Sci. 2020, 66, 1302–1317. [Google Scholar] [CrossRef]
- Soyeb, H.M.A. Effect of Straw Mulch on the Production of Wheat. Master’s Thesis, Bangladesh Agricultural University, Mymensingh, Bangladesh, 2011. [Google Scholar]
- Thind, H.S.; Sharma, S.; Yadvinder, S.; Sidhu, H.S. Rice–wheat productivity and profitability with residue, tillage and green manure management. Nutr. Cycl. Agroecosys. 2019, 113, 113–125. [Google Scholar] [CrossRef]
- Yadvinder, S.; Sidhu, H.S. Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic Plains of India. Proc. Indian Natl. Sci. Acad. 2014, 80, 95–114. [Google Scholar] [CrossRef]
- Arora, V.K.; Sidhu, A.S.; Sandhu, K.S.; Thind, S.S. Effects of tillage intensity, planting time and nitrogen rate on wheat yield following rice. Expl. Agric. 2010, 46, 267–275. [Google Scholar] [CrossRef]
- Chandra, M. Effect of rice residue management on soil quality and productivity of wheat crop. Master’s Thesis, Indira Gandhi Krishi Vishwavidyalaya: Raipur, India, 2018. [Google Scholar]
- Dhar, D.; Datta, A.; Basak, N.; Paul, N.; Badole, S.; Thomas, T. Residual effect of crop residues on growth, yield attributes and soil properties of wheat under rice-wheat cropping system. Indian J. Agric. Res. 2014, 48, 373–378. [Google Scholar] [CrossRef]
- Dotaniya, M.L. Impact of crop residue management practices on yield and nutrient uptake in rice-wheat system. Curr. Adv. Agric. Sci. 2013, 5, 269–271. [Google Scholar]
- Grahmann, K.; Govaerts, B.; Simon, F.; Guzmán, C.; Soto, A.P.G.; Buerkert, A.; Verhulst, N. Nitrogen fertilizer placement and timing affects bread wheat (Triticum aestivum) quality and yield in an irrigated bed planting system. Nutr. Cycl. Agroecosys. 2016, 106, 185–199. [Google Scholar] [CrossRef]
- Sah, G.; Shah, S.C.; Sah, S.K.; Thapa, R.B.; McDonald, A.; Sidhu, H.S.; Gupta, R.K.; Tripathi, B.P.; Justice, S.E. Effects of tillage and crop establishment methods, crop residues, and nitrogen levels on wheat productivity, energy-savings and greenhouse gas emission under rice-wheat cropping system. Nepal J. Sci. Tech. 2014, 15, 1–10. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, R. Nutrient uptake, root density and yield of direct seeded rice-wheat as affected by tillage systems and N levels. Indian J. Ecol. 2014, 41, 146–151. [Google Scholar]
- Ali, L.; Mohy-Ud-Din, Q.; Ali, M. Effect of different doses of nitrogen fertilizer on the yield of wheat. Int. J. Agric. Biol. 2003, 5, 438–439. [Google Scholar]
- Das, A.; Lal, R.; Patel, D.P.; Idapuganti, R.G.; Layek, J.; Ngachan, S.V.; Ghosh, R.G.; Bordoloi, J.; Kumar, M. Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in North Eastern India. Soil Till. Res. 2014, 143, 50–58. [Google Scholar] [CrossRef]
- Rahman, M.A.; Sarker, M.A.Z.; Amin, M.F.; Jahan, A.H.S.; Akhter, M.M. Yield response and nitrogen use efficiency of wheat under different doses and split application of nitrogen fertilizer. Bangladesh J. Agric. Res. 2011, 36, 231–240. [Google Scholar] [CrossRef]
- Liu, D.; Shi, Y. Effects of different nitrogen fertilizer on quality and yield in winter wheat. Adv. J. Food Sci. Technol. 2013, 5, 646–649. [Google Scholar] [CrossRef]
- Mehta, A.; Kaur, M.; Gupta, S.K.; Singh, R.P. Physico-chemical, rheological and baking characteristics of bread wheat as affected by FYM and nitrogen management. Agril. Res. J. 2006, 43, 263–270. [Google Scholar]
- Yadvinder, S.; Singh, B.; Ladha, J.K.; Khind, C.S.; Khera, T.S.; Bueno, C.S. Effects of residue decomposition on productivity and soil fertility in rice-wheat rotation. Soil Sci. Soc. Am. J. 2004, 68, 854–864. [Google Scholar] [CrossRef]
- Yadvinder, S.; Gupta, R.K.; Singh, J.; Singh, G.; Singh, G.; Ladda, J.K. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice-wheat system in northwestern India. Nutr. Cycl. Agroecosyst. 2010, 88, 471–480. [Google Scholar] [CrossRef]
- Sidhu, B.S.; Beri, V. Rice residue management: Farmer’s Perspective. Indian J. Air Pollut. Control. 2008, 8, 61–67. [Google Scholar]
- Verma, N.K.; Pandey, B.K. Effect of varying rice residue management practices on growth and yield of wheat and soil organic carbon in rice-wheat sequence. Global J. Sci. Frontier Res. Agric. Vety. Sci. 2013, 13, 33–38. [Google Scholar]
- Bhattacharyya, R.; Kundu, S.; Pandey, S.C.; Singh, K.P.; Gupta, H.S. Tillage and irrigation effects on crop yields and soil properties under the rice-wheat system in the Indian Himalayas. Agric. Water Manag. 2008, 95, 993–1002. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Goudeseune, B.; DeCorte, P.; Lichter, K.; Dendooven, L.; Deckers, J. Conservation agriculture as a sustainable option for the central Mexican highlands. Soil Till. Res. 2009, 103, 222–230. [Google Scholar] [CrossRef]
- Kushwaha, C.P.; Tripathi, S.K.; Singh, K.P. Soil organic matter and water stable aggregates under different tillage and residue conditions in a tropical dry land agroecosystem. Appl. Soil Ecol. 2001, 16, 229–241. [Google Scholar] [CrossRef]
- Lu, J.; Hirasawa, T. Study on intermittent irrigation for paddy rice: I. Water use efficiency. Pedosphere 2001, 11, 48–56. [Google Scholar]
- Benbi, D.K.; Singh, P.; Toor, A.S.; Verma, G. Manure and fertilizer application effects on aggregate and mineral-associated organic carbon in a loamy soil under rice-wheat system. Commun. Soil Sci. Plant Anal. 2016, 47, 1828–1844. [Google Scholar] [CrossRef]
- Singh, P.; Benbi, D.K. Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena 2018, 166, 171–180. [Google Scholar] [CrossRef]
- Pinheiro, E.F.M.; Pereira, M.G.; Anjos, L.H.C. Aggregates distribution and soil organic matter under different tillage system for vegetable crops in a Red Latosol from Brazil. Soil Till. Res. 2004, 77, 79–84. [Google Scholar] [CrossRef]
- Gupta, P.K.; Sahai, S.; Singh, N.; Dixit, C.K.; Singh, D.P.; Sharma, C.; Tiwari, M.K.; Gupta, R.K.; Garg, S.C. Residue burning in rice–wheat cropping system: Causes and implications. Curr. Sci. 2004, 87, 1713–1717. [Google Scholar]
- Zhao, X.; Yuan, G.; Wang, H.; Lu, D.; Chen, X.; Zhou, J. Effects of full straw incorporation on soil fertility and crop yield in rice-wheat rotation for silty clay loamy cropland. Agronomy 2019, 9, 133. [Google Scholar] [CrossRef]
- Bijay-Singh; Shan, Y.H.; Johnson-Beebout, S.E.; Yadvinder, S.; Buresh, R.J. Crop residue management for lowland rice-based cropping systems in Asia. Adv. Agron. 2008, 98, 117–199. [Google Scholar]
- Singh, R.; Serawat, M.; Singh, A.; Babli. Effect of tillage and crop residue management on soil physical properties. J. Soil Salin. Water Qual. 2018, 10, 200–206. [Google Scholar]
- McGarry, D.; Bridge, B.J.; Radford, B.J. Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil Till. Res. 2000, 53, 105–115. [Google Scholar] [CrossRef]
- Tripathi, R.P.; Gaur, M.K.; Rawat, M.S. Puddling effects on soil physical properties and rice performance under shallow water table conditions of Tarai. J. Indian Soc. Soil Sci. 2003, 51, 118–124. [Google Scholar]
Treatments | Abbreviations |
---|---|
Main Plot: Residue Management Practices | |
Scenario 1. Planting after removal of rice and wheat straw residue | |
Puddled transplanted rice + zero till drill sown wheat | R1 |
Puddled transplanted rice + conventional tillage sown wheat | R2 |
Scenario 2. Planting with rice residue in wheat and removal of wheat straw in rice | |
Puddled transplanted rice + zero till sown wheat with Happy Seeder rice straw as mulch | R3 |
Puddled transplanted rice + conventional tillage sown wheat and straw incorporation with disc harrow | R4 |
Puddled transplanted rice + zero till sown wheat and straw incorporation with rotavator | R5 |
Scenario 3. Planting with both rice and wheat residue | |
Puddled transplanted rice + zero till sown wheat with Happy Seeder with rice straw as mulch | R6 |
Scenario 4. Planting after partial burning of rice and wheat residue | |
Puddled transplanted rice + zero till drill sown wheat (Farmer practice) | R7 |
Sub-plot: Fertilizer N levels (kg ha−1) | |
I. 100 | N1 |
II. 125 | N2 |
III. 150 | N3 |
Treatments | Amount of Crop Residue Added (Mg ha−1) | Nutrient Addition with Residue (kg ha−1) | |||
---|---|---|---|---|---|
Rice | Wheat | N | P | K | |
Residue management practices | |||||
R1 | - | - | - | - | - |
R2 | - | - | - | - | - |
R3 | 8.21 | - | 44.9 | 7.79 | 222.0 |
R4 | 8.27 | - | 45.2 | 7.85 | 223.6 |
R5 | 8.27 | - | 45.2 | 7.85 | 223.6 |
R6 | 8.33 | 6.69 | 45.6 + 26.8 | 7.90 + 8.03 | 225.2 + 80.3 |
R7 | - | - | - | - | - |
Source | DF | F Ratio | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Height (cm) | Tillers Density (m−2) | Chlorophyll Content Index | LAI | PAR Interception | Spikes m−2 | Spike Length (cm) | Grains Spike−1 | 1000- Grain Weight (g) | Grain Yield (Mg ha−1) | PFP (kg Grain kg N−1) | ||
At Harvest | At 120 DAS | |||||||||||
Rep | 2 | 1.44 | 3.04 | 4.32 | 0.11 | 12.96 | 1.52 | 0.66 | 4.01 | 0.60 | 1.89 | 1.94 |
Y | 1 | 31.01 * | 17.91 ns | 53.74 * | 4.46 ns | 46.04 * | 12.95 ns | 3.07 ns | 9.21 ns | 0.04 ns | 6.79 ns | 6.66 ns |
R | 6 | 3.31 * | 9.28 * | 11.60 * | 6.54 * | 23.45 * | 8.90 * | 16.30* | 2.93 * | 0.46 ns | 9.34 * | 10.39 * |
YxR | 6 | 0.70 ns | 0.15 ns | 0.10 ns | 0.10 ns | 0.22 ns | 0.16 ns | 0.45 ns | 0.02 ns | 0.02 ns | 0.13 ns | 0.13 ns |
N | 2 | 0.49 ns | 2.81 ns | 59.9 * | 1.96 ns | 2.63 ns | 1.99 ns | 4.90 * | 2.70 ns | 0.01 ns | 1.97 ns | 2687.5 * |
RxN | 12 | 0.09 ns | 0.03 ns | 1.25 ns | 0.05 ns | 0.60 ns | 0.04 ns | 1.33 ns | 0.02 ns | 0.04 ns | 4.83 * | 8.82 * |
YxN | 2 | −0.00 ns | 0.00 ns | 2.88 ns | 0.00 ns | 0.06 ns | 0.02 ns | 0.44 ns | 0.00 ns | 0.00 ns | 0.02 ns | 4.40 * |
YxRxN | 12 | 0.06 ns | 0.03 ns | 1.30 ns | 0.03 ns | 0.46 ns | 0.03 ns | 0.90 ns | 0.00 ns | 0.04 ns | 0.11 ns | 0.12 ns |
Treatments | Plant Height (cm) | Tillers (m−2) | Chlorophyll Content Index | LAI | PAR Interception | Spike Density m−2 | Spike Length (cm) | Grains Spike−1 | 1000- Grain weight (g) | Grain Yield (Mg ha−1) | PFP (kg Grain kg N−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
Crop residue management practices | |||||||||||
R1 | 92.9 c | 339 d | 19.2 c | 2.86 b | 75.3 b | 331 d | 10.7 b | 43.4 c | 39.3 a | 4.91 b | 40.3 b |
R2 | 95.5 ab | 351 cd | 19.3 c | 2.97 b | 75.1 b | 352 c | 10.3 b | 44.9 bc | 39.1 a | 4.95 b | 40.5 b |
R3 | 95.1 ab | 368 ab | 22.1 ab | 3.46 a | 82.4 a | 360 abc | 11.7 a | 49.8 ab | 41.1 a | 5.41 a | 44.5 a |
R4 | 96.0 a | 370 ab | 22.3 ab | 3.54 a | 81.9 a | 368 ab | 11.9 a | 50.3 ab | 40.9 a | 5.56 a | 45.8 a |
R5 | 96.4 a | 371 ab | 21.6 b | 3.66 a | 83.3 a | 365 ab | 11.5 a | 50.7 ab | 39.9 a | 5.50 a | 45.3 a |
R6 | 94.5 abc | 378 a | 23.1 a | 3.74 a | 84.1 a | 367 a | 11.9 a | 52.2 a | 41.3 a | 5.61 a | 46.2 a |
R7 | 94.0 bc | 361 bc | 19.4 c | 3.04 b | 75.8 b | 354 bc | 10.7 b | 45.5 bc | 39.7 a | 5.06 b | 41.5 b |
LSD (p ≤ 0.05) | 1.9 | 12.8 | 1.42 | 0.41 | 2.46 | 12 | 0.47 | 5.8 | NS | 0.29 | 2.34 |
Nitrogen levels | |||||||||||
N1 | 94.8 a | 358 a | 18.9 a | 3.23 a | 79.3 a | 350 a | 11.1 b | 46.5 a | 40.1 a | 5.26 a | 52.6 a |
N2 | 95.2 a | 363 a | 20.7 a | 3.31 a | 79.3 a | 354 a | 11.2 ab | 48.0 a | 40.2 a | 5.30 a | 42.4 b |
N3 | 94.8 a | 369 a | 23.3 a | 3.43 a | 80.5 a | 358 a | 11.4 a | 49.9 a | 40.2 a | 5.30 a | 35.4 c |
LSD (p ≤ 0.05) | NS | NS | 0.81 | NS | NS | NS | 0.2 | NS | NS | NS | 0.5 |
Interaction | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.11 | 1.25 |
Treatments | Nitrogen Levels | ||
---|---|---|---|
N1 | N2 | N3 | |
R1 | 4.79 h | 4.94 g | 5.03 f |
R2 | 4.83 g | 4.95 f g | 5.07 f |
R3 | 5.44 de | 5.42 de | 5.39 e |
R4 | 5.61 a | 5.57 bc | 5.50 bcde |
R5 | 5.54 bcd | 5.52 bcd | 5.45 cde |
R6 | 5.70 a | 5.62 ab | 5.52 bcd |
R7 | 4.93 | 5.07 | 5.18 |
LSD (p ≤ 0.05) (R × N) | 0.12 |
Treatments | Grain | Straw | ||||
---|---|---|---|---|---|---|
N | P | K | N | P | K | |
Residue management practices | ||||||
R1 | 81.3 b | 11.6 b | 19.1 b | 28.3 c | 2.86 b | 54.5 c |
R2 | 78.4 b | 11.7 b | 18.7 b | 28.1 c | 2.84 b | 55.5 c |
R3 | 94.2 a | 15.2 a | 22.0 a | 33.5 a | 3.53 a | 66.2 ab |
R4 | 95.4 a | 15.2 a | 23.3 a | 33.3 ab | 3.38 a | 65.3 ab |
R5 | 93.7 a | 14.2 a | 22.3 a | 32.8 ab | 3.41 a | 65.9 ab |
R6 | 97.4 a | 14.8 a | 23.3 a | 34.6 a | 3.63 a | 70.8 a |
R7 | 82.6 b | 12.3 b | 20.3 b | 29.7 bc | 3.03 b | 59.4 bc |
LSD (p ≤ 0.05) | 6.3 | 1.4 | 1.6 | 3.6 | 0.32 | 7.5 |
Fertilizer N levels | ||||||
N1 | 85.0 c | 13.0 a | 21.2 a | 30.3 b | 3.07 b | 59.6 b |
N2 | 89.2 b | 13.9 a | 21.1 a | 31.3 ab | 3.27 ab | 62.7 ab |
N3 | 92.8 a | 13.8 a | 21.5 a | 32.7 a | 3.37 | 65.2 a |
LSD (p ≤ 0.05) | 2.9 | NS | NS | 1.4 | 0.21 | 3.5 |
Interaction | NS | NS | NS | NS | NS | NS |
Treatments | Up to Emergence | 30 DAS | 60 DAS | 90 DAS | At Harvest | ||
---|---|---|---|---|---|---|---|
min | max | min | max | max | max | max | |
R1 | 14.2 bc | 21.7 a | 9.9 b | 18.9 a | 14.6 ab | 15.1 ab | 30.0 a |
R2 | 14.1 c | 22.3 a | 9.9 b | 19.4 a | 14.7 a | 15.3 a | 29.8 ab |
R3 | 15.2 a | 20.1 c | 10.9 a | 16.8 c | 13.5 c | 14.4 c | 29.3 bc |
R4 | 14.4 bc | 21.8 a | 10.1 b | 17.6 b | 14.2 ab | 14.7 b | 29.5 abc |
R5 | 14.5 b | 21.0 b | 10.6 a | 17.8 b | 14.1 b | 14.6 bc | 29.5 abc |
R6 | 15.1 a | 19.7 c | 10.7 a | 16.6 c | 13.5 c | 14.3 c | 29.2 c |
R7 | 14.1 c | 21.7 a | 9.9 b | 19.2 a | 14.6 ab | 15.0 ab | 29.9 ab |
LSD (p ≤ 0.05) | 0.3 | 0.6 | 0.3 | 0.7 | 0.5 | 0.5 | 0.5 |
Treatments | Bulk Density (g cm−3) | Soil Penetration Resistance (kPa) | ||||
---|---|---|---|---|---|---|
Soil Depth (cm) | Soil Depth (cm) | |||||
0–7.5 | 7.5–15 | 10 | 20 | 30 | 40 | |
R1 | 1.40 a | 1.42 a | 369 ab | 944 ab | 688 a | 648 a |
R2 | 1.40 a | 1.43 a | 452 a | 1003 a | 712 a | 658 a |
R3 | 1.33 c | 1.37 bc | 262 c | 693 c | 522 bc | 548 a |
R4 | 1.31 c | 1.37 bc | 268 c | 673 c | 523 bc | 551 a |
R5 | 1.36 b | 1.41 a | 317 bc | 769 bc | 648 a | 561 a |
R6 | 1.32 c | 1.35 c | 250 c | 659 c | 496 c | 552 a |
R7 | 1.38 ab | 1.40 ab | 362 b | 781 bc | 665 ab | 547 a |
LSD (p ≤ 0.05) | 0.03 | 0.03 | 88 | 190 | 143 | NS |
Treatments | Grain Hardness (kg) | Hectoliter Weight (kg Hectoliter−1) | Protein Content (%) | Grain Protein Yield (kg ha−1) |
---|---|---|---|---|
Residue management practices | ||||
R1 | 10.6 a | 75.9 a | 11.7 a | 574 b |
R2 | 10.6 a | 75.7 a | 11.7 a | 581 b |
R3 | 10.6 a | 76.3 a | 11.6 a | 627 a |
R4 | 10.6 a | 76.4 a | 11.6 a | 645 a |
R5 | 10.6 a | 76.1 a | 11.6 a | 640 a |
R6 | 10.5 a | 76.5 a | 11.5 a | 644 a |
R7 | 10.5 a | 76.0 a | 11.6 a | 589 b |
LSD (p ≤ 0.05) | NS | NS | NS | 31.2 |
Fertilizer N levels | ||||
N1 | 10.5 a | 76.0 a | 11.1 c | 587 c |
N2 | 10.6 a | 76.1 a | 11.6 b | 615 b |
N3 | 10.7 a | 76.3 a | 12.1 a | 641 a |
LSD (p ≤ 0.05) | NS | NS | 0.19 | 11.1 |
Interaction | NS | NS | NS | NS |
Treatments | Cost of Cultivation | Gross Returns | Net Returns | B:C |
---|---|---|---|---|
($ha−1) | ||||
Residue management practices | ||||
R1 | 393.0 a | 1397.4 b | 1004.4 c | 2.55 c |
R2 | 410.6 a | 1410.9 b | 1000.3 c | 2.43 c |
R3 | 354.9 a | 1539.9 ab | 1185.1 a | 3.34 a |
R4 | 375.9 a | 1570.4 ab | 1194.5 a | 3.18 b |
R5 | 352.3 a | 1563.8 ab | 1211.5 a | 3.44 a |
R6 | 354.9 a | 1593.3 a | 1238.4 a | 3.49 a |
R7 | 346.3 a | 1439.5 b | 1093.2 b | 3.16 b |
LSD (p ≤ 0.05) | NS | 53.9 | 53.9 | 0.15 |
Fertilizer N levels | ||||
N1 | 365.6 a | 1491.7 b | 1126.1 a | 3.10 a |
N2 | 369.7 a | 1504.4 ab | 1134.7 a | 3.09 a |
N3 | 373.7 a | 1510.4 a | 1136.7 a | 3.06 a |
LSD (p ≤ 0.05) | NS | 12.6 | NS | NS |
Interaction | NS | 33.4 | 33.4 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.K.; Kaur, J.; Kang, J.S.; Singh, H.; Kaur, S.; Sayed, S.; Gaber, A.; Hossain, A. Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties. Land 2022, 11, 1693. https://doi.org/10.3390/land11101693
Gupta RK, Kaur J, Kang JS, Singh H, Kaur S, Sayed S, Gaber A, Hossain A. Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties. Land. 2022; 11(10):1693. https://doi.org/10.3390/land11101693
Chicago/Turabian StyleGupta, Rajeev Kumar, Jagroop Kaur, Jasjit Singh Kang, Harmeet Singh, Sukhveer Kaur, Samy Sayed, Ahmed Gaber, and Akbar Hossain. 2022. "Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties" Land 11, no. 10: 1693. https://doi.org/10.3390/land11101693
APA StyleGupta, R. K., Kaur, J., Kang, J. S., Singh, H., Kaur, S., Sayed, S., Gaber, A., & Hossain, A. (2022). Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties. Land, 11(10), 1693. https://doi.org/10.3390/land11101693