Study on the Scale Effect of Spatial Variation in Soil Salinity Based on Geostatistics: A Case Study of Yingdaya River Irrigation Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Collection of Soil Sample
2.3. Sample Data Processing
2.4. Data Analysis and Methods
3. Results
3.1. Probabilistic Statistical Analysis of Soil Salinity
3.2. Spatial Scale Effect of Soil Salinity
3.2.1. Isotropic Analysis
3.2.2. Anisotropic Analysis
3.3. Spatial Distribution Characteristics of Salt Content in Soil and Multi-Scale Nesting
3.3.1. Spatial Distribution Characteristics of Soil Salinity at Different Scales
3.3.2. Scale Effect and Multi-Scale Nesting of Soil Salinity Spatial Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, D.; Xu, X.; Hao, Y.; Huang, G. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. J. Hydrol. 2016, 532, 122–139. [Google Scholar] [CrossRef]
- Masoud, A.A.; Koike, K.; Atwia, M.G.; El-Horiny, M.M.; Gemail, K.S. Mapping soil salinity using spectral mixture analysis of landsat 8 OLI images to identify factors influencing salinization in an arid region. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101944. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Zhu, M.; Xu, Y.; Wang, X. Linkage between soil salinization indicators and physicochemical properties in a long-term intensive agricultural coastal reclamation area, Eastern China. J. Soils Sediments 2019, 19, 3699–3707. [Google Scholar] [CrossRef]
- Emadi, M.; Baghernejad, M. Comparison of spatial interpolation techniques for mapping soil pH and salinity in agricultural coastal areas, northern Iran. Arch. Agron. Soil Sci. 2014, 60, 1315–1327. [Google Scholar] [CrossRef]
- Eljebri, S.; Mounir, M.; Faroukh, A.T.; Zouahri, A.; Tellal, R. Application of geostatistical methods for the spatial distribution of soils in the irrigated plain of Doukkala, Morocco. Model. Earth Syst. Environ. 2019, 5, 669–687. [Google Scholar] [CrossRef]
- Benslama, A.; Khanchoul, K.; Benbrahim, F.; Boubehziz, S.; Chikhi, F.; Navarro-Pedreño, J. Monitoring the Variations of Soil Salinity in a Palm Grove in Southern Algeria. Sustainability 2020, 12, 6117. [Google Scholar] [CrossRef]
- Shi, W.; Ma, Y.; Xu, F.; Wang, Q. Spatial variability of soil moisture and salt content in cotton field on microscales under mulch drip irrigation. Adv. Water Sci. 2014, 25, 585–593. [Google Scholar]
- Chen, P.; Chu, Y.; Gu, F.; Zhang, Y.; Pan, X. Spatial heterogeneity of vegetation and soil characteristics in oasis-desert ecotone. Chin. J. Appl. Ecol. 2003, 14, 904. [Google Scholar]
- Huo, X.; Li, H.; Zhang, W.; Sun, D.; Zhou, L.; Li, B. Multi-scale spatial structure of heavy metals in Beijing cultivated soils. Trans. Chin. Soc. Agric. Eng. 2009, 25, 223–229. [Google Scholar]
- Sylla, M.; Stein, A.; van Breemen, N.; Fresco, L.O. Spatial variability of soil salinity at different scales in the mangrove rice agro-ecosystem in West Africa. Agric. Ecosyst. Environ. 1995, 54, 1–15. [Google Scholar] [CrossRef]
- Cui, K.; Zhao, G.; Wang, Z.; Xue, X. Multiscale spatial variation of soil salinity in typical fields of the Yellow River Delta in summer. Chin. J. Appl. Ecol. 2020, 31, 1451–1458. [Google Scholar]
- Ren, D.; Wei, B.; Xu, X.; Engel, B.; Li, G.; Huang, Q.; Xiong, Y.; Huang, G. Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches. Geoderma 2019, 356, 113935. [Google Scholar] [CrossRef]
- Xuejin, Q.; Jianchu, S.; Lili, T.; Weihua, F.; Junwei, X.; Jiandong, S.; Qiang, Z. Multiscale spatial distribution characteristics of soil salt in root layer of cotton field under drip irrigation under film in AnJiHai Irrigation District, Xinjiang. Acta Pedol. Sin. 2021, 58, 1202–1213. [Google Scholar]
- Tingting, G.; Jianli, D.; Xueping, H. Spatial variation characteristics of soil salinity based on Watershed Scale-Taking the delta oasis of Weigan Kuche River Basin as an example. Acta Ecol. Sin. 2010, 30, 2695–2705. [Google Scholar]
- Lu, L.; Li, S.; Gao, Y.; Ge, Y. Spatial distribution and variation characteristics of soil salt in Wei Ku oasis. J. Arid Land Resour. Environ. 2022, 36, 136–142. [Google Scholar]
- Wang, D.; Yu, Z.; Cheng, M. Analysis of soil salt change characteristics of different land use types in Weigan River Oasis. Arid Land Geo. 2018, 41, 349–357. [Google Scholar]
- Bloschl, G.; Sivapalan, M. Scale issues in hydrological modeling: A review. Hydrol. Process. 2010, 9, 251–290. [Google Scholar] [CrossRef]
- Dan, X. Spatial Variability and Three-Dimensional Simulation of Soil Organic Matter and Total Nitrogen in Different Scales of Farmland; Henan University of Technology: Zhengzhou, China, 2016. [Google Scholar]
- Jilong, L.; Lu, L.; Xiaoyi, M.; Qiang, F.; Haijiang, W.; Zhenhua, Z.; Lingling, Z.; Peng, Y. Study on spatial variability of soil salinity in different scales and soil layers. J. Basic Sci. Eng. 2018, 26, 305–312. [Google Scholar]
- Xue, Z.; Yaoxuan, C.; Pan, Z.; Fengtian, Y. Spatial distribution and variation characteristics of soil salt in agricultural irrigation areas of Kongque River Basin. Soil 2016, 48, 1223–1228. [Google Scholar]
- Qiyong, Y.; Jinsong, Y.; Rongjiang, Y. Indicator Kriging evaluation of spatial variation of soil salinity at different scales. Soil 2011, 43, 998–1003. [Google Scholar]
- Yuchun, P.; Qiaoqin, L.; Bojie, Y.; Zhou, L.; Yanbing, Z. Influence of sampling scale on spatial variability analysis of soil nutrients. Chin. J. Soil Sci. 2010, 41, 257–262. [Google Scholar]
- Rukun, L. Soil Agrochemical Analysis Method; Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Zunqin, W.; Shouquan, Z.; Renpei, Y. Chinese Saline Soil; Science Press: Beijing, China, 1993. [Google Scholar]
- Gambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Trangmarb, B.; Yostr, S.; Ueharag, G. Application of geostatistics to spatial studies of soil properties. Adv. Agron. 1986, 38, 45–94. [Google Scholar]
- Sifeng, L. Grey System Theory and its Application; Science Press: Beijing, China, 2010. [Google Scholar]
- Clark, I. Practical Geostatistics; Applied Science Ltd.: London, UK, 1981. [Google Scholar]
- Qiyong, Y.; Jinsong, Y. Spatial variation characteristics of soil organic matter and total nitrogen in cultivated land under different scales. J. Soil Water Conserv. 2010, 24, 100–104. [Google Scholar]
- Piotrowska-D ł ugosz, A.; Lemanowicz, J.; D. ł ugosz, G.; Spychaj-Fabisiak, E.; Gozdowski, D.; Rybacki, M. Spatio-temporal variations of soil properties in a plot scale: A case study of soil phosphorus forms and related enzymes. J. Soils Sediments 2016, 16, 62–76. [Google Scholar] [CrossRef]
- Manping, K.; Chengzhang, Z.; Xue, B. Spatial heterogeneity and influencing factors of soil total salt content in Sugan Lake Wetland. Acta Ecol. Sin. 2021, 41, 2282–2291. [Google Scholar]
- Fasheng, Z.; Zuoxin, L.; Wei, Q. Spatial variability of soil organic matter in small-scale farmland under long-term cultivation. Agric. Res. Arid Areas 2010, 28, 167–171. [Google Scholar]
- Kelin, H.; Yan, Y.; Fengrong, Z.; Ru, W. Spatial and temporal variation of soil organic matter content in Beijing suburbs and its influencing factors. Sci. Agric. Sin. 2006, 4, 764–771. [Google Scholar] [CrossRef]
- Yemefack, M.; Rossiter, D.G.; Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 2005, 125, 117–143. [Google Scholar] [CrossRef]
- Chengzheng, W. Geostatistics and Its Application in Ecology; Science Press: Beijing, China, 1999. [Google Scholar]
- Aili, L. Introduction to Geostatistics; Science Press: Beijing, China, 2012. [Google Scholar]
- Haibin, S.; Yaxin, C. Nested structure model of spatial variation of soil moisture and regional information estimation. J. Hydraul. Eng. 1994, 7, 70–77. [Google Scholar] [CrossRef]
- Sheng, L.; Li, L.; Yuan, G.; Zhang, Y.; Shen, D. An Analysis on the Characteristics and Influence Factors of Soil Salinity in the Wasteland of the Kashgar River Basin. Sustainability 2022, 14, 3500. [Google Scholar]
- Yuyi, L.; Fenghua, Z.; Xudong, P. Soil salt accumulation change of different geomorphic types in Manas River Basin of Xinjiang. Trans. Chin. Soc. Agric. Eng. 2007, 2, 60–64. [Google Scholar] [CrossRef]
- Fang, Z.; Heigang, X.; Yuan, T. Influence of regional scale topographic factors on spatial distribution of soil salinization in Qitai oasis. Res. Environ. Sci. 2011, 24, 731–739. [Google Scholar]
- Zaiming, Z. Study on Spatial Variability and Influence Mechanism of Soil Salinity in Low Plain around Bohai Sea; Chinese Academy of Geological Sciences: Beijing, China, 2012. [Google Scholar]
- Fan, Y.; Guangxin, Z.; Xiongrui, Y.; Xiujun, L. Study on the relationship between spatial variation of soil salinization and microtopography in the west of Songnen Plain. Sci. Geogr. Sin. 2009, 29, 869–873. [Google Scholar]
- Zhuoran, W.; Gengxing, Z.; Mingxiu, G.; Chunyan, C.; Shuqian, J.; Jichao, J.; Jin, L. Spatial variation of soil water and salt in Kenli County of the Yellow River Delta in summer and characteristics of soil salt microdomains. Acta Ecol. Sin. 2016, 36, 1040–1049. [Google Scholar]
- Bing, D.; Xi, C.; Yongxiang, C.; Ling, W. Analysis on the change trend of negative correlation between vegetation and soil salinization in Junggar Basin. Acta Ecol. Sin. 2021, 41, 1–13. [Google Scholar]
- Yupeng, J.; Yuejin, L.; Gao, W.A. Salt characteristics of saline alkali soil in Hetao Plain with different utilization modes. Res. Soil Water Conserv. 2020, 27, 372–379. [Google Scholar]
Salt Series and Zone of Application | Soil Salt Content/% | |||||
---|---|---|---|---|---|---|
Non | Mild | Moderate | Severe | Saltierra | ||
Ⅰ | Coastal, Semi-humid, Semiarid, Arid area | <0.1 | 0.1–0.2 | 0.2–0.4 | 0.4–0.6 | >0.6 |
II | Semi-desert and Desert area | <0.2 | 0.2–0.3 | 0.3–0.5 | 0.5–1 | >1 |
Scale | Min (%) | Max (%) | Mean (%) | SD | Skewness | Kurtosis | CV | Converted p-Value |
---|---|---|---|---|---|---|---|---|
L | 0.069 | 22.636 | 1.664 | 4.266 | 3.780 | 15.315 | 2.564 | 0.200 |
M | 0.092 | 1.570 | 0.263 | 0.345 | 3.194 | 9.909 | 1.312 | 0.087 |
S | 0.078 | 0.618 | 0.217 | 0.188 | 1.481 | 0.471 | 0.866 | 0.047 |
Project | Scale | Model | Nugget | Sill | Range | Nugget Coefficients C0/C0 + C | R2 | RSS |
---|---|---|---|---|---|---|---|---|
C0 | C0 + C | a/km | ||||||
Salt content | L | Spherical | 0.801 | 2.685 | 21.460 | 0.298 | 0.394 | 2.2712 |
M | Exponential | 0.237 | 0.611 | 13.310 | 0.387 | 0.502 | 0.0463 | |
S | Spherical | 0.314 | 0.512 | 1.685 | 0.613 | 0.922 | 0.0548 |
Scale | Major Axis Direction Angle/° | Major Axis Range a/km | Minor Axis Range a/km | Anisotropy Ratio/k | Nugget C0 | Sill C0 + C |
---|---|---|---|---|---|---|
L | 113 | 35.43 | 20.27 | 1.748 | 0.794 | 2.654 |
315 | 23.08 | 18.44 | 1.252 | 1.21 | 2.627 | |
M | 139 | 16.91 | 5.718 | 2.957 | 0.0164 | 0.653 |
49 | 5.718 | 16.91 | 0.338 | 0.0164 | 0.653 | |
348 | 16.89 | 10.17 | 1.661 | 0.252 | 0.602 | |
S | 86 | 3.46 | 1.527 | 2.266 | 0.223 | 0.562 |
176 | 1.527 | 3.46 | 0.441 | 0.223 | 0.562 |
Soil Salt Content/% | Statistical Items | Scale | ||
---|---|---|---|---|
L | M | S | ||
<0.1 (Non) | Area (km2) | 0 | 0 | 0.09 |
Proportion (%) | 0 | 0 | 0.98 | |
0.1–0.2 (Mild) | Area (km2) | 200.37 | 161.60 | 5.61 |
Proportion (%) | 28.35 | 80.42 | 64.22 | |
0.2–0.4 (Moderate) | Area (km2) | 175.26 | 39.35 | 2.22 |
Proportion (%) | 24.79 | 19.58 | 25.40 | |
0.4–0.6 (Severe) | Area (km2) | 193.05 | 0 | 0.82 |
Proportion (%) | 27.31 | 0 | 9.39 | |
>0.6 (Saltierra) | Area (km2) | 138.16 | 0 | 0 |
Proportion (%) | 19.55 | 0 | 0 |
Interpolation Method | I Value | |
---|---|---|
Single-scale ordinary Kriging (q) | 15.692 | 15.275 |
Single-scale ordinary Kriging (Q) | 11.861 | 11.334 |
Nested model method | 6.797 | 6.769 |
Scale | Subsequence | |||||
---|---|---|---|---|---|---|
Elevation | Groundwater Mineralization | Groundwater Burial Depth | Slope | Land Use Type | Silt Content | |
L | 0.507 | 0.756 | 0.635 | 0.327 | 0.422 | 0.721 |
M | 0.409 | 0.589 | 0.427 | 0.342 | 0.402 | 0.521 |
S | 0.201 | 0.382 | 0.391 | 0.541 | 0.218 | 0.353 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Li, S.; Wu, R.; Shen, D. Study on the Scale Effect of Spatial Variation in Soil Salinity Based on Geostatistics: A Case Study of Yingdaya River Irrigation Area. Land 2022, 11, 1697. https://doi.org/10.3390/land11101697
Lu L, Li S, Wu R, Shen D. Study on the Scale Effect of Spatial Variation in Soil Salinity Based on Geostatistics: A Case Study of Yingdaya River Irrigation Area. Land. 2022; 11(10):1697. https://doi.org/10.3390/land11101697
Chicago/Turabian StyleLu, Li, Sheng Li, Rong Wu, and Deyou Shen. 2022. "Study on the Scale Effect of Spatial Variation in Soil Salinity Based on Geostatistics: A Case Study of Yingdaya River Irrigation Area" Land 11, no. 10: 1697. https://doi.org/10.3390/land11101697
APA StyleLu, L., Li, S., Wu, R., & Shen, D. (2022). Study on the Scale Effect of Spatial Variation in Soil Salinity Based on Geostatistics: A Case Study of Yingdaya River Irrigation Area. Land, 11(10), 1697. https://doi.org/10.3390/land11101697