Social Media Data in Urban Design and Landscape Research: A Comprehensive Literature Review
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Systematic Reviews
2.3. Bibliometric Visualization
3. Results
3.1. Publication Growth Trend
3.2. Main Research Directions
3.2.1. Location-Based Social Media and Spatial Analysis
3.2.2. Natural Language Processing and Text Mining
3.2.3. Computer Vision and Image Processing
3.3. Bibliometric Visualization Results
3.3.1. Co-Citation Literature Analysis
3.3.2. Timeline Graph Analysis Based on Keywords
3.3.3. Burst Keywords Based on Keywords
4. Discussion
4.1. Bibliometric Discussion
4.2. LBSM Research Prospects
- Urban space evolution and identification research
- Demographic structure statistical research.
- Crowd activity pattern research.
4.3. Deep Learning Methods for NLP and CV Tasks
5. Conclusions
- Data acquisition is difficult and has many restrictions.
- The age and occupation of users are unevenly distributed, and user information is incomplete.
- Geotagged data account for about 20–30% of the total data, which makes the generalizability of LBSM spatial analysis results questionable.
- A high processing difficulty and low accuracy due to a large amount of text data, images, and video data.
- The contribution of the deep learning outputs in the NLP and CV fields on the urban design or landscape level in spatial analysis.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oktay, D. A Critical Review on The Current Thought and Practice of Urban Design: New Roles in the Future. ICONARP Int. J. Archit. Plan. 2015, 3, 1–11. [Google Scholar]
- Bild, E.; Coler, M.; Pfeffer, K.; Bertolini, L. Considering sound in planning and designing public spaces: A review of theory and applications and a proposed framework for integrating research and practice. J. Plan. Lit. 2016, 31, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Amado, M.; Santos, C.; Moura, E.; Silva, V. Public participation in sustainable urban planning. Int. J. Hum. Soc. Sci. 2010, 5, 102–108. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, D.M.; Ellison, N.B. Social Network Sites: Definition, History, and Scholarship. J. Comput.-Mediat. Commun. 2007, 13, 210–230. [Google Scholar] [CrossRef] [Green Version]
- Evans-Cowley, J.; Hollander, J. The new generation of public participation: Internet-based participation tools. Plan. Pract. Res. 2010, 25, 397–408. [Google Scholar] [CrossRef]
- Chen, S.; Lin, L.; Yuan, X. Social Media Visual Analytics. Comput. Graph. Forum 2017, 36, 563–587. [Google Scholar] [CrossRef]
- Ghermandi, A.; Sinclair, M. Passive crowdsourcing of social media in environmental research: A systematic map. Glob. Environ. Chang. 2019, 55, 36–47. [Google Scholar] [CrossRef]
- Owuor, I.; Hochmair, H. An Overview of Social Media Apps and their Potential Role in Geospatial Research. ISPRS Int. J. Geo-Inf. 2020, 9, 526. [Google Scholar] [CrossRef]
- Jiang, B.; Miao, Y. The Evolution of Natural Cities from the Perspective of Location-Based Social Media. Prof. Geogr. 2014, 67, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Cao, G.; Mulligan, K.; Li, X. Explore spatiotemporal and demographic characteristics of human mobility via Twitter: A case study of Chicago. Appl. Geogr. 2016, 70, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Ballestar, M.T.; Cuerdo-Mir, M.; Freire-Rubio, M.T. The Concept of Sustainability on Social Media: A Social Listening Approach. Sustainability 2020, 12, 2122. [Google Scholar] [CrossRef]
- Zhi, G.; Meng, B.; Wang, J.; Chen, S.; Tian, B.; Ji, H.; Yang, T.; Wang, B.; Liu, J. Spatial Analysis of Urban Residential Sensitivity to Heatwave Events: Case Studies in Five Megacities in China. Remote Sens. 2021, 13, 4086. [Google Scholar]
- Loureiro, M.L.; Alló, M. Sensing climate change and energy issues: Sentiment and emotion analysis with social media in the U.K. and Spain. Energy Policy 2020, 143, 111490. [Google Scholar] [CrossRef]
- Huang, Y.; Fei, T.; Kwan, M.-P.; Kang, Y.; Li, J.; Li, Y.; Li, X.; Bian, M. GIS-Based Emotional Computing: A Review of Quantitative Approaches to Measure the Emotion Layer of Human–Environment Relationships. ISPRS Int. J. Geo-Inf. 2020, 9, 551. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; Huang, Y. Analysis of Spatial Interaction between Different Food Cultures in South and North China: Practices from People’s Daily Life. ISPRS Int. J. Geo-Inf. 2020, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Payntar, N.D.; Hsiao, W.-L.; Covey, R.A.; Grauman, K. Learning patterns of tourist movement and photography from geotagged photos at archaeological heritage sites in Cuzco, Peru. Tour. Manag. 2021, 82, 104165. [Google Scholar] [CrossRef]
- Vaisanen, T.; Heikinheimo, V.; Hiippala, T.; Toivonen, T. Exploring human-nature interactions in national parks with social media photographs and computer vision. Conserv. Biol. 2021, 35, 424–436. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar]
- Chen, C. Science mapping: A systematic review of the literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar]
- Cao, G.; Wang, S.; Hwang, M.; Padmanabhan, A.; Zhang, Z.; Soltani, K. A scalable framework for spatiotemporal analysis of location-based social media data. Comput. Environ. Urban Syst. 2015, 51, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Wan, W.; Ali Haidery, S.; Khan, N.U.; Ebrahimpour, Z.; Luo, T. Analyzing the Spatiotemporal Patterns in Green Spaces for Urban Studies Using Location-Based Social Media Data. ISPRS Int. J. Geo-Inf. 2019, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Wanggen, W.; Cervantes, O.; Gwiazdzinski, L. Using Location-Based Social Media Data to Observe Check-In Behavior and Gender Difference: Bringing Weibo Data into Play. ISPRS Int. J. Geo-Inf. 2018, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [PubMed] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar]
- Stock, K. Mining location from social media: A systematic review. Comput. Environ. Urban Syst. 2018, 71, 209–240. [Google Scholar] [CrossRef]
- Zhen, F.; Cao, Y.; Qin, X.; Wang, B. Delineation of an urban agglomeration boundary based on Sina Weibo microblog ‘check-in’ data: A case study of the Yangtze River Delta. Cities 2017, 60, 180–191. [Google Scholar] [CrossRef]
- García-Palomares, J.C.; Salas-Olmedo, M.H.; Moya-Gómez, B.; Condeço-Melhorado, A.; Gutiérrez, J. City dynamics through Twitter: Relationships between land use and spatiotemporal demographics. Cities 2018, 72, 310–319. [Google Scholar] [CrossRef]
- Martí, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A. Using locative social media and urban cartographies to identify and locate successful urban plazas. Cities 2017, 64, 66–78. [Google Scholar] [CrossRef]
- Hu, Q.; Bai, G.; Wang, S.; Ai, M. Extraction and monitoring approach of dynamic urban commercial area using check-in data from Weibo. Sustain. Cities Soc. 2019, 45, 508–521. [Google Scholar] [CrossRef]
- Cao, K.; Guo, H.; Zhang, Y. Comparison of Approaches for Urban Functional Zones Classification Based on Multi-Source Geospatial Data: A Case Study in Yuzhong District, Chongqing, China. Sustainability 2019, 11, 660. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Liu, Z.; Du, Y.; Liang, F.; Yi, J.; Ma, T.; Pei, T. Quantify city-level dynamic functions across China using social media and POIs data. Comput. Environ. Urban Syst. 2021, 85, 101552. [Google Scholar] [CrossRef]
- Shen, Y.; Karimi, K. Urban function connectivity: Characterisation of functional urban streets with social media check-in data. Cities 2016, 55, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Hui, E.C.M.; Wu, J.; Lang, W.; Li, X. Identifying urban spatial structure and urban vibrancy in highly dense cities using georeferenced social media data. Habitat Int. 2019, 89, 102005. [Google Scholar] [CrossRef]
- Wu, C.; Ye, X.; Ren, F.; Du, Q. Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China. Cities 2018, 77, 104–116. [Google Scholar] [CrossRef]
- Steiger, E.; Westerholt, R.; Resch, B.; Zipf, A. Twitter as an indicator for whereabouts of people? Correlating Twitter with UK census data. Comput. Environ. Urban Syst. 2015, 54, 255–265. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Ma, Y. A Comparative Study of Spatial and Temporal Preferences for Waterfronts in Wuhan based on Gender Differences in Check-In Behavior. ISPRS Int. J. Geo-Inf. 2019, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, R.; Zhao, Y.; Liu, F. Spatiotemporal Analysis to Observe Gender Based Check-In Behavior by Using Social Media Big Data: A Case Study of Guangzhou, China. Sustainability 2019, 11, 2822. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Zhang, A.; Qi, Q.; Su, H.; Wang, J. Spatial-Temporal Analysis of Human Dynamics on Urban Land Use Patterns Using Social Media Data by Gender. ISPRS Int. J. Geo-Inf. 2018, 7, 358. [Google Scholar] [CrossRef] [Green Version]
- Bernabeu-Bautista, Á.; Serrano-Estrada, L.; Perez-Sanchez, V.R.; Martí, P. The Geography of Social Media Data in Urban Areas: Representativeness and Complementarity. ISPRS Int. J. Geo-Inf. 2021, 10, 747. [Google Scholar] [CrossRef]
- Haffner, M.; Mathews, A.J.; Fekete, E.; Finchum, G.A. Location-based social media behavior and perception: Views of university students. Geogr. Rev. 2019, 108, 203–224. [Google Scholar] [CrossRef]
- Ebrahimpour, Z.; Wan, W.; Velázquez García, J.L.; Cervantes, O.; Hou, L. Analyzing Social-Geographic Human Mobility Patterns Using Large-Scale Social Media Data. ISPRS Int. J. Geo-Inf. 2020, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Nguyen, T.V.T.; Sahito, N. Role of Urban Public Space and the Surrounding Environment in Promoting Sustainable Development from the Lens of Social Media. Sustainability 2019, 11, 5967. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Newing, A.; Clarke, G. Understanding Chinese tourist mobility and consumption-related behaviours in London using Sina Weibo check-ins. Environ. Plan. B Urban Anal. City Sci. 2020, 48, 2436–2452. [Google Scholar] [CrossRef]
- Iranmanesh, A.; Atun, R.A. Exploring the spatial distribution of geo-tagged Twitter feeds via street-centrality measures. Urban Des. Int. 2018, 23, 293–306. [Google Scholar] [CrossRef]
- Shelton, T.; Poorthuis, A.; Zook, M. Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information. Landsc. Urban Plan. 2015, 142, 198–211. [Google Scholar] [CrossRef]
- Üsküplü, T.; Terzi, F.; Kartal, H. Discovering Activity Patterns in the City by Social Media Network Data: A Case Study of Istanbul. Appl. Spat. Anal. Policy 2020, 13, 945–958. [Google Scholar] [CrossRef]
- Wei, X.; Yao, X.A. Constructing and analyzing spatial-social networks from location-based social media data. Cartogr. Geogr. Inf. Sci. 2021, 48, 258–274. [Google Scholar] [CrossRef]
- Ali Haidery, S.; Ullah, H.; Khan, N.U.; Fatima, K.; Rizvi, S.S.; Kwon, S.J. Role of Big Data in the Development of Smart City by Analyzing the Density of Residents in Shanghai. Electronics 2020, 9, 837. [Google Scholar] [CrossRef]
- Lloyd, A.; Cheshire, J. Deriving retail centre locations and catchments from geo-tagged Twitter data. Comput. Environ. Urban Syst. 2017, 61, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Steiger, E.; Resch, B.; Zipf, A. Exploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks. Int. J. Geogr. Inf. Sci. 2015, 30, 1694–1716. [Google Scholar] [CrossRef]
- Dai, L.; Xue, T.; Wu, B.; Rong, X.; Xu, B. Spatiotemporal Structure Features of Network Check-in Activities of Urban Residents and Their Impacting Factors: A Case Study in Six Urban Districts of Beijing. J. Asian Archit. Build. Eng. 2018, 16, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhou, W. Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landsc. Urban Plan. 2018, 180, 27–35. [Google Scholar] [CrossRef]
- Lyu, F.; Zhang, L. Using multi-source big data to understand the factors affecting urban park use in Wuhan. Urban For. Urban Green. 2019, 43, 126367. [Google Scholar] [CrossRef]
- Martí, P.; García-Mayor, C.; Nolasco-Cirugeda, A.; Serrano-Estrada, L. Green infrastructure planning: Unveiling meaningful spaces through Foursquare users’ preferences. Land Use Policy 2020, 97, 104641. [Google Scholar] [CrossRef]
- Wan, C.; Shen, G.Q.; Choi, S. Eliciting users’ preferences and values in urban parks: Evidence from analyzing social media data from Hong Kong. Urban For. Urban Green. 2021, 62, 127172. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, H.; Chan, E. A Model to Measure Tourist Preference toward Scenic Spots Based on Social Media Data: A Case of Dapeng in China. Sustainability 2017, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, X.; Chen, S. Temporal Characteristics of Waterfronts in Wuhan City and People’s Behavioral Preferences Based on Social Media Data. Sustainability 2019, 11, 6308. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar]
- Monachesi, P. Shaping an alternative smart city discourse through Twitter: Amsterdam and the role of creative migrants. Cities 2020, 100, 102664. [Google Scholar] [CrossRef]
- Kim, H.J.; Chae, B.K.; Park, S.B. Exploring public space through social media: An exploratory case study on the High Line New York City. Urban Des. Int. 2017, 23, 69–85. [Google Scholar] [CrossRef]
- Roberts, H.V. Using Twitter data in urban green space research: A case study and critical evaluation. Appl. Geogr. 2017, 81, 13–20. [Google Scholar] [CrossRef]
- Fu, C.; McKenzie, G.; Frias-Martinez, V.; Stewart, K. Identifying spatiotemporal urban activities through linguistic signatures. Comput. Environ. Urban Syst. 2018, 72, 25–37. [Google Scholar] [CrossRef]
- van Weerdenburg, D.; Scheider, S.; Adams, B.; Spierings, B.; van der Zee, E. Where to go and what to do: Extracting leisure activity potentials from Web data on urban space. Comput. Environ. Urban Syst. 2019, 73, 143–156. [Google Scholar] [CrossRef]
- Zheng, Y.; Mou, N.; Zhang, L.; Makkonen, T.; Yang, T. Chinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data. Comput. Environ. Urban Syst. 2021, 85, 101561. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, T.; Sarkar, S.; Burgoyne, S. Capturing citizen voice online: Enabling smart participatory local government. Cities 2019, 95, 102400. [Google Scholar] [CrossRef]
- Mehta, Y.; Majumder, N.; Gelbukh, A.; Cambria, E. Recent trends in deep learning based personality detection. Artif. Intell. Rev. 2020, 53, 2313–2339. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Kim, B.; Yoo, M.; Park, K.C.; Lee, K.R.; Kim, J.H. A value of civic voices for smart city: A big data analysis of civic queries posed by Seoul citizens. Cities 2021, 108, 102941. [Google Scholar] [CrossRef]
- Niu, H.; Silva, E.A. Delineating urban functional use from points of interest data with neural network embedding: A case study in Greater London. Comput. Environ. Urban Syst. 2021, 88, 101651. [Google Scholar] [CrossRef]
- Zhai, W.; Bai, X.; Shi, Y.; Han, Y.; Peng, Z.-R.; Gu, C. Beyond Word2vec: An approach for urban functional region extraction and identification by combining Place2vec and POIs. Comput. Environ. Urban Syst. 2019, 74, 1–12. [Google Scholar] [CrossRef]
- Vargas-Calderón, V.; Camargo, J.E. Characterization of citizens using word2vec and latent topic analysis in a large set of tweets. Cities 2019, 92, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.X.; Jiang, J.; Weng, J.; He, J.; Lim, E.-P.; Yan, H.; Li, X. Comparing twitter and traditional media using topic models. In Proceedings of the European Conference on Information Retrieval, Dublin, Ireland, 18–21 April 2011; pp. 338–349. [Google Scholar]
- Shi, Z.; Pun-Cheng, L.S. Spatiotemporal data clustering: A survey of methods. ISPRS Int. J. Geo-Inf. 2019, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Lansley, G.; Longley, P.A. The geography of Twitter topics in London. Comput. Environ. Urban Syst. 2016, 58, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, R.; Fernandez, J.; Li, D. Investigating sense of place of the Las Vegas Strip using online reviews and machine learning approaches. Landsc. Urban Plan. 2021, 205, 103956. [Google Scholar] [CrossRef]
- Zhong, C.; Zeng, S.; Tu, W.; Yoshida, M. Profiling the Spatial Structure of London: From Individual Tweets to Aggregated Functional Zones. ISPRS Int. J. Geo-Inf. 2018, 7, 386. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Lin, D.; Jendryke, M.; Zuo, C.; Ding, L.; Meng, L. Geo-Tagged Social Media Data-Based Analytical Approach for Perceiving Impacts of Social Events. ISPRS Int. J. Geo-Inf. 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, H.; Wu, Z. Attitude of the Chinese public toward off-site construction: A text mining study. J. Clean. Prod. 2019, 238, 117926. [Google Scholar] [CrossRef]
- Wei, Y.; Gong, P.; Zhang, J.; Wang, L. Exploring public opinions on climate change policy in “Big Data Era”—A case study of the European Union Emission Trading System (EU-ETS) based on Twitter. Energy Policy 2021, 158, 112559. [Google Scholar] [CrossRef]
- Taecharungroj, V.; Mathayomchan, B. Analysing TripAdvisor reviews of tourist attractions in Phuket, Thailand. Tour. Manag. 2019, 75, 550–568. [Google Scholar] [CrossRef]
- Song, Y.; Fernandez, J.; Wang, T. Understanding Perceived Site Qualities and Experiences of Urban Public Spaces: A Case Study of Social Media Reviews in Bryant Park, New York City. Sustainability 2020, 12, 8036. [Google Scholar] [CrossRef]
- Lai, Y.; Kontokosta, C.E. Topic modeling to discover the thematic structure and spatial-temporal patterns of building renovation and adaptive reuse in cities. Comput. Environ. Urban Syst. 2019, 78, 101383. [Google Scholar] [CrossRef]
- Sun, S.; Luo, C.; Chen, J. A review of natural language processing techniques for opinion mining systems. Inf. Fusion 2017, 36, 10–25. [Google Scholar] [CrossRef]
- Morente-Molinera, J.A.; Kou, G.; Peng, Y.; Torres-Albero, C.; Herrera-Viedma, E. Analysing discussions in social networks using group decision making methods and sentiment analysis. Inf. Sci. 2018, 447, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Bulagang, A.F.; Weng, N.G.; Mountstephens, J.; Teo, J. A review of recent approaches for emotion classification using electrocardiography and electrodermography signals. Inform. Med. Unlock. 2020, 20, 100363. [Google Scholar] [CrossRef]
- Sailunaz, K.; Alhajj, R. Emotion and sentiment analysis from Twitter text. J. Comput. Sci. 2019, 36, 101003. [Google Scholar] [CrossRef] [Green Version]
- Balahur, A.; Mihalcea, R.; Montoyo, A. Computational approaches to subjectivity and sentiment analysis: Present and envisaged methods and applications. Comput. Speech Lang. 2014, 28, 1–6. [Google Scholar] [CrossRef]
- Deitz, M.; Notley, T.; Catanzaro, M.; Third, A.; Sandbach, K. Emotion mapping: Using participatory media to support young people’s participation in urban design. Emot. Space Soc. 2018, 28, 9–17. [Google Scholar] [CrossRef]
- Fathullah, A.; Willis, K. Engaging the Senses: The Potential of Emotional Data for Participation in Urban Planning. Urban Sci. 2018, 2, 98. [Google Scholar] [CrossRef] [Green Version]
- Galaktionova, A. Emotional boundaries of public involvement in city improvement. Cities 2021, 115, 103254. [Google Scholar] [CrossRef]
- Roberts, H.; Sadler, J.; Chapman, L. The value of Twitter data for determining the emotional responses of people to urban green spaces: A case study and critical evaluation. Urban Stud. 2018, 56, 818–835. [Google Scholar] [CrossRef] [Green Version]
- Park, S.B.; Kim, J.; Lee, Y.K.; Ok, C.M. Visualizing theme park visitors’ emotions using social media analytics and geospatial analytics. Tour. Manag. 2020, 80, 104127. [Google Scholar] [CrossRef]
- Park, S.B.; Kim, H.J.; Ok, C.M. Linking emotion and place on Twitter at Disneyland. J. Travel Tour. Mark. 2017, 35, 664–677. [Google Scholar] [CrossRef]
- Ma, Y.; Ling, C.; Wu, J. Exploring the Spatial Distribution Characteristics of Emotions of Weibo Users in Wuhan Waterfront Based on Gender Differences Using Social Media Texts. ISPRS Int. J. Geo-Inf. 2020, 9, 465. [Google Scholar] [CrossRef]
- Kovacs-Györi, A.; Ristea, A.; Kolcsar, R.; Resch, B.; Crivellari, A.; Blaschke, T. Beyond Spatial Proximity—Classifying Parks and Their Visitors in London Based on Spatiotemporal and Sentiment Analysis of Twitter Data. ISPRS Int. J. Geo-Inf. 2018, 7, 378. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Zhou, J.; Fan, Y.V.; Klemeš, J.J.; Zheng, M.; Varbanov, P.S. Data analysis of resident engagement and sentiments in social media enables better household waste segregation and recycling. J. Clean. Prod. 2021, 319, 128809. [Google Scholar] [CrossRef]
- Abdul-Rahman, M.; Chan, E.H.W.; Wong, M.S.; Irekponor, V.E.; Abdul-Rahman, M.O. A framework to simplify pre-processing location-based social media big data for sustainable urban planning and management. Cities 2021, 109, 102986. [Google Scholar] [CrossRef]
- Koh, Y.F.; Loc, H.H.; Park, E. Towards a “City in Nature”: Evaluating the Cultural Ecosystem Services Approach Using Online Public Participation GIS to Support Urban Green Space Management. Sustainability 2022, 14, 1499. [Google Scholar] [CrossRef]
- Tan, M.J.; Guan, C. Are people happier in locations of high property value? Spatial temporal analytics of activity frequency, public sentiment and housing price using twitter data. Appl. Geogr. 2021, 132, 102474. [Google Scholar] [CrossRef]
- Park, Y.; Kim, M.; Shin, J.; Heim LaFrombois, M.E. Changing Trends in Long-Term Sentiments and Neighborhood Determinants in a Shrinking City. J. Plan. Educ. Res. 2021, 0739456X211044215. [Google Scholar] [CrossRef]
- Kim, E.; Rosenwasser, D.; Garcia del Castillo Lopez, J.L. Urban Emotion-The interrogation of social media and its implications within urban context. Cogn. City AI 2020, 2, 475–482. [Google Scholar]
- Rajpurkar, P.; Zhang, J.; Lopyrev, K.; Liang, P. Squad: 100,000+ questions for machine comprehension of text. arXiv 2016, arXiv:1606.05250. [Google Scholar]
- Sun, Y.; Shao, Y. Measuring visitor satisfaction toward peri-urban green and open spaces based on social media data. Urban For. Urban Green. 2020, 53, 126709. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, Z.; Li, L.; Wang, Y.; Liu, Y. A BiLSTM-CNN model for predicting users’ next locations based on geotagged social media. Int. J. Geogr. Inf. Sci. 2020, 35, 639–660. [Google Scholar] [CrossRef]
- Gong, J.; Li, R.; Yao, H.; Kang, X.; Li, S. Recognizing Human Daily Activity Using Social Media Sensors and Deep Learning. Int. J. Environ. Res. Public Health 2019, 16, 3955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Meng, B.; Wang, J.; Chen, S.; Liu, J. Perceiving Residents’ Festival Activities Based on Social Media Data: A Case Study in Beijing, China. ISPRS Int. J. Geo-Inf. 2021, 10, 474. [Google Scholar] [CrossRef]
- Liu, J.; Meng, B.; Wang, J.; Chen, S.; Tian, B.; Zhi, G. Exploring the Spatiotemporal Patterns of Residents’ Daily Activities Using Text-Based Social Media Data: A Case Study of Beijing, China. ISPRS Int. J. Geo-Inf. 2021, 10, 389. [Google Scholar] [CrossRef]
- Kim, S.Y.; Ganesan, K.; Dickens, P.; Panda, S. Public Sentiment toward Solar Energy—Opinion Mining of Twitter Using a Transformer-Based Language Model. Sustainability 2021, 13, 2673. [Google Scholar] [CrossRef]
- Jain, P.K.; Quamer, W.; Saravanan, V.; Pamula, R. Employing BERT-DCNN with sentic knowledge base for social media sentiment analysis. J. Ambient Intell. Humaniz. Comput. 2022. [Google Scholar] [CrossRef]
- Abas, A.R.; Elhenawy, I.; Zidan, M.; Othman, M. BERT-CNN: A Deep Learning Model for Detecting Emotions from Text. Comput. Mater. Contin. 2022, 71, 2943–2961. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Z.; Qi, X.; Liu, J. Could Social Bots’ Sentiment Engagement Shape Humans’ Sentiment on COVID-19 Vaccine Discussion on Twitter? Sustainability 2022, 14, 5566. [Google Scholar] [CrossRef]
- Ezen-Can, A. A Comparison of LSTM and BERT for Small Corpus. arXiv 2020, arXiv:2009.05451. [Google Scholar]
- Cardoso, A.S.; Renna, F.; Moreno-Llorca, R.; Alcaraz-Segura, D.; Tabik, S.; Ladle, R.J.; Vaz, A.S. Classifying the content of social media images to support cultural ecosystem service assessments using deep learning models. Ecosyst. Serv. 2022, 54, 101410. [Google Scholar] [CrossRef]
- Moxley, E.; Kleban, J.; Manjunath, B. Spirittagger: A geo-aware tag suggestion tool mined from flickr. In Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, Vancouver, BC, Canada, 30–31 October 2008; pp. 24–30. [Google Scholar]
- Dunkel, A. Visualizing the perceived environment using crowdsourced photo geodata. Landsc. Urban Plan. 2015, 142, 173–186. [Google Scholar] [CrossRef]
- Oteros-Rozas, E.; Martín-López, B.; Fagerholm, N.; Bieling, C.; Plieninger, T. Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecol. Indic. 2018, 94, 74–86. [Google Scholar] [CrossRef]
- Heikinheimo, V.; Minin, E.D.; Tenkanen, H.; Hausmann, A.; Erkkonen, J.; Toivonen, T. User-Generated Geographic Information for Visitor Monitoring in a National Park: A Comparison of Social Media Data and Visitor Survey. ISPRS Int. J. Geo-Inf. 2017, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Tieskens, K.F.; Van Zanten, B.T.; Schulp, C.J.E.; Verburg, P.H. Aesthetic appreciation of the cultural landscape through social media: An analysis of revealed preference in the Dutch river landscape. Landsc. Urban Plan. 2018, 177, 128–137. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, B. Using social media data in understanding site-scale landscape architecture design: Taking Seattle Freeway Park as an example. Landsc. Res. 2020, 45, 627–648. [Google Scholar] [CrossRef]
- Li, D.; Zhou, X.; Wang, M. Analyzing and visualizing the spatial interactions between tourists and locals: A Flickr study in ten US cities. Cities 2018, 74, 249–258. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, C.; Kimmons, B. Detecting tourism destinations using scalable geospatial analysis based on cloud computing platform. Comput. Environ. Urban Syst. 2015, 54, 144–153. [Google Scholar] [CrossRef]
- Retka, J.; Jepson, P.; Ladle, R.J.; Malhado, A.C.M.; Vieira, F.A.S.; Normande, I.C.; Souza, C.N.; Bragagnolo, C.; Correia, R.A. Assessing cultural ecosystem services of a large marine protected area through social media photographs. Ocean Coast. Manag. 2019, 176, 40–48. [Google Scholar] [CrossRef]
- Moreno-Llorca, R.; Pablo, F.M.; Ros-Candeira, A.; Alcaraz-Segura, D.; Santamaria, L.; Ramos-Ridao, A.F.; Revilla, E.; Bonet-Garcia, F.J.; Vaz, A.S. Evaluating tourist profiles and nature-based experiences in Biosphere Reserves using Flickr: Matches and mismatches between online social surveys and photo content analysis. Sci. Total Environ. 2020, 737, 140067. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Frau, A.; Ospina-Alvarez, A.; Villasante, S.; Pita, P.; Maya-Jariego, I.; de Juan, S. Using graph theory and social media data to assess cultural ecosystem services in coastal areas: Method development and application. Ecosyst. Serv. 2020, 45, 101176. [Google Scholar] [CrossRef]
- Chen, Y.; Parkins, J.R.; Sherren, K. Using geo-tagged Instagram posts to reveal landscape values around current and proposed hydroelectric dams and their reservoirs. Landsc. Urban Plan. 2018, 170, 283–292. [Google Scholar] [CrossRef]
- Wartmann, F.M.; Tieskens, K.F.; van Zanten, B.T.; Verburg, P.H. Exploring tranquillity experienced in landscapes based on social media. Appl. Geogr. 2019, 113, 102112. [Google Scholar] [CrossRef]
- Gosal, A.S.; Ziv, G. Landscape aesthetics: Spatial modelling and mapping using social media images and machine learning. Ecol. Indic. 2020, 117, 106638. [Google Scholar] [CrossRef]
- Fox, N.; Graham, L.J.; Eigenbrod, F.; Bullock, J.M.; Parks, K.E. Enriching social media data allows a more robust representation of cultural ecosystem services. Ecosyst. Serv. 2021, 50, 101328. [Google Scholar] [CrossRef]
- Richards, D.R.; Tunçer, B. Using image recognition to automate assessment of cultural ecosystem services from social media photographs. Ecosyst. Serv. 2018, 31, 318–325. [Google Scholar] [CrossRef]
- Wilkins, E.J.; Van Berkel, D.; Zhang, H.; Dorning, M.A.; Beck, S.M.; Smith, J.W. Promises and pitfalls of using computer vision to make inferences about landscape preferences: Evidence from an urban-proximate park system. Landsc. Urban Plan. 2022, 219, 104315. [Google Scholar] [CrossRef]
- Kaiser, N.N.; Ghermandi, A.; Feld, C.K.; Hershkovitz, Y.; Palt, M.; Stoll, S. Societal benefits of river restoration–Implications from social media analysis. Ecosyst. Serv. 2021, 50, 101317. [Google Scholar] [CrossRef]
- Sinha, R.K.; Pandey, R.; Pattnaik, R. Deep learning for computer vision tasks: A review. arXiv 2018, arXiv:1804.03928. [Google Scholar]
- Al-Saffar, A.A.M.; Tao, H.; Talab, M.A. Review of deep convolution neural network in image classification. In Proceedings of the 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Jakarta Selatan, Indonesia, 23–24 October 2017; pp. 26–31. [Google Scholar]
- Weichenthal, S.; Hatzopoulou, M.; Brauer, M. A picture tells a thousand…exposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology. Environ. Int. 2019, 122, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Luo, L.; Li, B.; Xu, L.; Zhu, J.; He, S.; Li, H. Analysis of the Uniqueness and Similarity of City Landscapes Based on Deep Style Learning. ISPRS Int. J. Geo-Inf. 2021, 10, 734. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Y.; Li, C. Discovering the tourists’ behaviors and perceptions in a tourism destination by analyzing photos’ visual content with a computer deep learning model: The case of Beijing. Tour. Manag. 2019, 75, 595–608. [Google Scholar] [CrossRef]
- Chen, M.; Arribas-Bel, D.; Singleton, A. Quantifying the Characteristics of the Local Urban Environment through Geotagged Flickr Photographs and Image Recognition. ISPRS Int. J. Geo-Inf. 2020, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Xu, Y.; Liu, L. Crowd-Sourced City Images: Decoding Multidimensional Interaction between Imagery Elements with Volunteered Photos. ISPRS Int. J. Geo-Inf. 2021, 10, 740. [Google Scholar] [CrossRef]
- Kim, J.; Kang, Y. Automatic Classification of Photos by Tourist Attractions Using Deep Learning Model and Image Feature Vector Clustering. ISPRS Int. J. Geo-Inf. 2022, 11, 245. [Google Scholar] [CrossRef]
- Ding, X.; Fan, H. Exploring the Distribution Patterns of Flickr Photos. ISPRS Int. J. Geo-Inf. 2019, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Paukaeva, A.A.; Setoguchi, T.; Watanabe, N.; Luchkova, V.I. Temporary Design on Public Open Space for Improving the Pedestrian’s Perception Using Social Media Images in Winter Cities. Sustainability 2020, 12, 6062. [Google Scholar] [CrossRef]
- Xiao, X.; Fang, C.; Lin, H. Characterizing Tourism Destination Image Using Photos’ Visual Content. ISPRS Int. J. Geo-Inf. 2020, 9, 730. [Google Scholar] [CrossRef]
- Kang, Y.; Cho, N.; Yoon, J.; Park, S.; Kim, J. Transfer Learning of a Deep Learning Model for Exploring Tourists’ Urban Image Using Geotagged Photos. ISPRS Int. J. Geo-Inf. 2021, 10, 137. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, N.; Das, I.; Maulik, U. Understanding deep learning techniques for image segmentation. ACM Comput. Surv. (CSUR) 2019, 52, 1–35. [Google Scholar] [CrossRef]
- Song, Y.; Ning, H.; Ye, X.; Chandana, D.; Wang, S. Analyze the usage of urban greenways through social media images and computer vision. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 1682–1696. [Google Scholar] [CrossRef]
- Koylu, C.; Zhao, C.; Shao, W. Deep Neural Networks and Kernel Density Estimation for Detecting Human Activity Patterns from Geo-Tagged Images: A Case Study of Birdwatching on Flickr. ISPRS Int. J. Geo-Inf. 2019, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Knura, M.; Kluger, F.; Zahtila, M.; Schiewe, J.; Rosenhahn, B.; Burghardt, D. Using Object Detection on Social Media Images for Urban Bicycle Infrastructure Planning: A Case Study of Dresden. ISPRS Int. J. Geo-Inf. 2021, 10, 733. [Google Scholar] [CrossRef]
- Ashkezari-Toussi, S.; Kamel, M.; Sadoghi-Yazdi, H. Emotional maps based on social networks data to analyze cities emotional structure and measure their emotional similarity. Cities 2019, 86, 113–124. [Google Scholar] [CrossRef]
- Cao, R.; Zhu, J.; Tu, W.; Li, Q.; Cao, J.; Liu, B.; Zhang, Q.; Qiu, G. Integrating Aerial and Street View Images for Urban Land Use Classification. Remote Sens. 2018, 10, 1553. [Google Scholar] [CrossRef] [Green Version]
- Yue, H.; Xie, H.; Liu, L.; Chen, J. Detecting People on the Street and the Streetscape Physical Environment from Baidu Street View Images and Their Effects on Community-Level Street Crime in a Chinese City. ISPRS Int. J. Geo-Inf. 2022, 11, 151. [Google Scholar] [CrossRef]
- Wang, M.; He, Y.; Meng, H.; Zhang, Y.; Zhu, B.; Mango, J.; Li, X. Assessing Street Space Quality Using Street View Imagery and Function-Driven Method: The Case of Xiamen, China. ISPRS Int. J. Geo-Inf. 2022, 11, 282. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, D.; Pang, R.; Xie, F.; Zhang, J.; Sun, D. Research Progress and Development Trend of Social Media Big Data (SMBD): Knowledge Mapping Analysis Based on CiteSpace. ISPRS Int. J. Geo-Inf. 2020, 9, 632. [Google Scholar] [CrossRef]
- Martí, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A. Social Media data: Challenges, opportunities and limitations in urban studies. Comput. Environ. Urban Syst. 2019, 74, 161–174. [Google Scholar] [CrossRef]
- Sloan, L. Social science “lite”? Deriving demographic proxies. In The SAGE Handbook of Social Media Research Methods; Sage Publications Ltd.: London, UK, 2017; p. 90. [Google Scholar]
- Chorley, M.J.; Whitaker, R.M.; Allen, S.M. Personality and location-based social networks. Comput. Hum. Behav. 2015, 46, 45–56. [Google Scholar] [CrossRef]
Author | Article Title | Year | Count |
---|---|---|---|
E. Rozas et al. [117] | Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites | 2018 | 53 |
H. Tenkanen et al. | Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas | 2017 | 49 |
Van Zanten et al. | Continental-scale quantification of landscape values using social media data | 2016 | 46 |
Y Liu et al. | Social Sensing: A New Approach to Understanding Our Socioeconomic Environments | 2015 | 46 |
V. Heikinheimo et al. [118] | User-Generated Geographic Information for Visitor Monitoring in a National Park: A Comparison of Social Media Data and Visitor Survey | 2017 | 43 |
Z. Hamstead et al. | Geolocated social media as a rapid indicator of park visitation and equitable park access | 2018 | 43 |
D. Richards et al. [130] | Using image recognition to automate assessment of cultural ecosystem services from social media photographs | 2018 | 39 |
M. Donahue et al. | Using social media to understand drivers of urban park visitation in the Twin Cities, MN | 2018 | 39 |
K. Tieskens et al. [119] | Aesthetic appreciation of the cultural landscape through social media: An analysis of revealed preference in the Dutch river landscape | 2018 | 37 |
T. Shelton et al. [46] | Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information | 2015 | 32 |
Y. Chen et al. | Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k-medoids method | 2017 | 30 |
N. Yoshimura et al. | Demand and supply of cultural ecosystem services: Use of geotagged photos to map the aesthetic value of landscapes in Hokkaido | 2018 | 30 |
A. Hausmann et al. | Social Media Data Can Be Used to Understand Tourists’ Preferences for Nature-Based Experiences in Protected Areas | 2018 | 30 |
P. Tenerelli et al. | Crowdsourcing indicators for cultural ecosystem services: A geographically weighted approach for mountain landscapes | 2016 | 30 |
A. Dunkel [116] | Visualizing the perceived environment using crowdsourced photo geodata | 2015 | 30 |
Main Data Source | Tasks | Main Method | Features |
---|---|---|---|
Sharing Texts TripAdvisor Google Reviews | Text mining | 1. Word Frequency 2. TD-IDF 3. Word2Vec 4. LDA Topic 5. DBSCAN and K-means … | 1. Effective content analysis method, commonly using word cloud for visualization. 2. TF-IDF is a statistical method used to evaluate the importance of a word to a text set. 3. Word2Vec mainly includes skip-gram and a continuous bag of words (CBOW). 4. LDA is an unsupervised learning model for discovering implicit topic information in text mining tasks. 5. DBSCAN is a density-based clustering algorithm, and the K-means clustering algorithm is suitable for spherical distribution datasets. |
Sentiment (emotion) analysis | 1. Human Performance 2. Emotion Lexicons 3. Machine Learning 4. RNN-LSTM, Bi-LSTM, LSTM-CNN 5. Transformer-BERT … | 1. Suitable for small data samples with short text. 2. Emotional polarity classification, emotional words are provided by different emotional lexicons. 3. Supervised learning training, mostly used to analyze sentiment polarity. 4. Still performs well using short texts for emotion detection. 5. BERT performed better than LSTM in most cases and showed a better performance for long sentences due to the self-attention module. | |
Sharing Images Flickr Panoramio | Image classification | 1. Human Performance 2. Machine Learning 3. Google Cloud vision 4. Based on CNN 5. Emerging frameworks | 1. Concentrate on the tags and scores for ranking references, suitable for small data samples. 2. The recognition rate of traditional methods such as Random Forest, K-means, and SVM, in the case of small samples, is close to the deep learning method. 3. Image label detection based on machine learning. 4. ResNet-50, ResNet-101, ResNet-152, VGGNet, Dense-net-161, Inception v3. Suitable for big data and small data samples, with a high accuracy. Places365 and ImageNet datasets can be used as transfer learning databases for deep learning. 5. The Top1 accuracy rate of the Transformer, EfficientNet, and Conv + Transformer model can be over 90%. |
Object Detection | 1. R-CNN 2. YOLO V1-V7 3. Mask-RCNN 4. PSPNet … | 1. R-CNN, Fast R-CNN, and Faster R-CNN train a linear regression model to predict the edge box offset. 2. YOLO object detection has the ability of real-time prediction, and objects can be detected using YouTube video content. 3. Mask-RCNN algorithm is composed of Faster-RCNN and the semantic segmentation algorithm mask branch (FCN). 4. PSPNet provides efficient global context priors for pixel-level scene parsing. | |
Semantic segmentation | |||
Facial emotion recognition | 1. Manual recognition 2. EmoDetect 3. Google Cloud vision | 1. Manual emotion classification and emotion indexes. 2. Extracted to describe the expression. Face landmarks are illustrated on the face. 3. Detecting 8 emotions, including happy, sad, etc. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Liu, T. Social Media Data in Urban Design and Landscape Research: A Comprehensive Literature Review. Land 2022, 11, 1796. https://doi.org/10.3390/land11101796
Yang C, Liu T. Social Media Data in Urban Design and Landscape Research: A Comprehensive Literature Review. Land. 2022; 11(10):1796. https://doi.org/10.3390/land11101796
Chicago/Turabian StyleYang, Chenghao, and Tongtong Liu. 2022. "Social Media Data in Urban Design and Landscape Research: A Comprehensive Literature Review" Land 11, no. 10: 1796. https://doi.org/10.3390/land11101796
APA StyleYang, C., & Liu, T. (2022). Social Media Data in Urban Design and Landscape Research: A Comprehensive Literature Review. Land, 11(10), 1796. https://doi.org/10.3390/land11101796