Research on the Satisfaction of Beijing Waterfront Green Space Landscape Based on Social Media Data
Abstract
:1. Introduction
- (1)
- Compare the number of comments at different times based on the collected social media text data;
- (2)
- Explore the overall evaluation of parks in different water systems, categories and locations based on the weighted average of rating stars;
- (3)
- Study the factors that influence people’s satisfaction with landscape design and sensory perception of various parks based on importance–performance analysis;
- (4)
- The differences in the satisfaction of park evaluation factors between parks adjacent to different river systems, parks of different types, and parks in different districts, based on one-way analysis of variance.
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Analysis Process
3.3. Data Processing and Index Design
3.4. Evaluation Model and Method
3.5. Analysis of Variance and Comparison
4. Results
4.1. Comparative Analysis of the Changes in the Number of Reviews in Different Seasons
4.2. Comparative Analysis of Riverside Parks Beside Different River Systems
4.2.1. Rating Star Analysis
4.2.2. Importance–Performance Analysis Based on Spatial Landscape Design and Visitors’ Sensory Perception
4.2.3. One-Way Analysis of Variance and Multiple Comparison Analysis
4.3. Comparative Analysis of Riverside Parks of Different Types
4.3.1. Rating Star Analysis
4.3.2. Importance–Performance Analysis Based on Spatial Landscape Design and Visitor Sensory Perception
4.3.3. One-Way Analysis of Variance and Multiple Comparison Analysis
4.4. Comparative Analysis of Riverside Parks in Different Districts
4.4.1. Rating Star Analysis
4.4.2. Importance–Performance Analysis Based on Two Aspects of Spatial Landscape Design and Visitors’ Sensory Perception
4.4.3. One-Way Analysis of Variance and Multiple Comparison Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Notice of the Ministry of Natural Resources on Comprehensively Carrying out Territorial Space Planning Work. Available online: http://www.gov.cn/xinwen/2019-06/02/content_5396857.htm (accessed on 2 June 2019).
- Zhang, L. Demarcation and Management of Urban Growth Boundary in Combination with Ecological Security Patterns. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Li, T. New Progress in Study on Resilient Cities. Urban Plan. Int. 2017, 32, 15–25. [Google Scholar] [CrossRef]
- Yu, K.; Li, D.; Yuan, H.; Fu, W.; Qiao, Q.; Wang, S. “Sponge City”: Theory and Practice. City Plan. Rev. 2015, 39, 26–36. [Google Scholar]
- Di, W.; Wang, Y.; Chen, F.; Xia, B. Thermal environment effects and interactions of reservoirs and forests as urban blue-green infrastructures. Ecol. Indic. 2018, 91, 657–663. [Google Scholar] [CrossRef]
- Ahmed, S.; Meenar, M.; Alam, A. Designing a Blue-Green Infrastructure (BGI) Network: Toward Water-Sensitive Urban Growth Planning in Dhaka, Bangladesh. Land 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Shi, T.; Hu, Y.; Gao, C.; Miao, L.; Fu, S.; Wang, S. Urban green space planning based on computational fluid dynamics model and landscape ecology principle: A case study of Liaoyang City, Northeast China. Chin. Geogr. Sci. 2011, 21, 11. [Google Scholar] [CrossRef]
- Pouso, S.; Borja, A.; Fleming, L.E.; Gómez-Baggethun, E.; Uyarra, M.C. Contact with blue-green spaces during the COVID-19 pandemic lockdown beneficial for mental health. Sci. Total Environ. 2021, 756, 143984. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jrgensen, G.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Jin, Y.; Zhou, Y.; Shen, J. Research on LID Rainfall Unit Design Method for the Blue and Green Ecological Network System—Based on the Analysis of Mountain Hydrological Characteristics. Chin. Landsc. Archit. 2018, 34, 83–87. [Google Scholar]
- Vaeztavakoli, A.; Lak, A.; Yigitcanlar, T. Blue and Green Spaces as Therapeutic Landscapes: Health Effects of Urban Water Canal Areas of Isfahan. Sustainability 2018, 10, 4010. [Google Scholar] [CrossRef] [Green Version]
- Five Major Water Systems and Major Rivers in Beijing. Available online: http://www.pekingmemory.cn/bdsy/2018/09/28/72.html (accessed on 28 September 2018).
- Chu, T. Exploration on Park City Design of Riverside Space Under Background of Inventory Land—Taking Urban Design of Riverside Space of Pihe Park in Chengdu as an Example. Urban Archit. Space 2022, 29, 9–15, 41. [Google Scholar]
- Donahue, M.L.; Keeler, B.L.; Wood, S.A.; Fisher, D.M.; Hamstead, Z.A.; Mcphearson, T. Using social media to understand drivers of urban park visitation in the Twin Cities, MN. Landsc. Urban Plan. 2018, 175, 1–10. [Google Scholar] [CrossRef]
- Yu, B.; Xie, C.; Yang, S.; Che, S. Correspondence Analysis on Residents’ Perceived Recreation Satisfaction and Importance in Shanghai Urban Community Park. Chin. Landsc. Archit. 2014, 30, 75–78. [Google Scholar]
- Xiao, X.; Du, K. A Study On Recreationists’ Satisfaction of Guangzhou City Parks. Hum. Geogr. 2011, 26, 129–133. [Google Scholar] [CrossRef]
- Li, C.; Xu, C.; Zhang, Z.; Gong, L.; Li, B.; Jin, G.; Chen, S. Residents’ Satisfaction on Country Parks in Beijing. J. Beijing For. Univ. (Soc. Sci.) 2010, 9, 68–72. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, B.; Liu, T. Sentiment Analysis. J. Softw. 2010, 21, 1834–1848. [Google Scholar] [CrossRef]
- Do, Y. Valuating aesthetic benefits of cultural ecosystem services using conservation culturomics. Ecosyst. Serv. 2019, 36, 100894. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, H.; Jian, Y.; Salman, Q.; Jie, H.; Wang, L. On the comparative use of social media data and survey data in prioritizing ecosystem services for cost-effective governance. Ecosyst. Serv. 2022, 56, 101446. [Google Scholar] [CrossRef]
- Kim, K.-J. Welfare Activation Strategy for a Urban Park Users. J. Korea Contents Assoc. 2012, 12, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Jie, H.; Fu, H.; Wang, L.; Jiang, H.; Ding, L.; Chen, Y. A social-media-based improvement index for urban renewal. Ecol. Indic. 2022, 137, 108775. [Google Scholar] [CrossRef]
- Tieskens, K.F.; Zanten, B.; Schulp, C.; Verburg, P.H. Aesthetic appreciation of the cultural landscape through social media: An analysis of revealed preference in the Dutch river landscape. Landsc. Urban Plan. 2018, 117, 128–137. [Google Scholar] [CrossRef]
- Sinclair, M.; Ghermandi, A.; Sheela, A.M. A crowdsourced valuation of recreational ecosystem services using social media data: An application to a tropical wetland in India. Sci. Total Environ. 2018, 642, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.M.; Wood, S.A.; White, E.M.; Blahna, D.J.; Lange, S.; Weinberg, A.; Tomco, M.; Lia, E. Recreational use in dispersed public lands measured using social media data and on-site counts. J. Environ. Manag. 2018, 222, 465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, J.; Zhang, L. A Research on Tourism Destination Image Perception of Huashan Scenic Spot: Based on Text Analysis of Weblogs. Tour. Sci. 2011, 25, 87–94. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, D.; Wang, X. Investigation about After-use Evaluation of Garden Exhibition Based on Online Comments Data. Landsc. Archit. 2018, 25, 74–80. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Peng, Y.; Yue, W. Comparative Evaluation of Guangzhou City Parks: Text Analysis Based on Social Media Data. Landsc. Archit. 2019, 26, 89–94. [Google Scholar] [CrossRef]
- Li, L. Identification Research of Tangible and Intangible Attribute Value of Urban Heritage Based on Deep Learning: A Case Study of Suzhou River. Urban Dev. Stud. 2021, 28, 104–110. [Google Scholar]
- Dwivedi, M. Online destination image of India: A consumer based perspective. Int. J. Contemp. Hosp. Manag. 2009, 21, 226–232. [Google Scholar] [CrossRef]
- Govers, R.; Go, F.M. Projected destination image online: Website content analysis of pictures and text. Inf. Technol. Tour. 2004, 7, 73–89. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, X.; Dong, R.; Shao, G. Landsenses ecology and ecological planning toward sustainable development. Int. J. Sustain. Dev. World Ecol. 2016, 23, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Liu, X.; Liu, M.; Feng, Q.; Su, X.; Wu, G. Landsenses ecological planning for the Xianghe Segment of China’s Grand Canal. Int. J. Sustain. Dev. World Ecol. 2016, 23, 298–304. [Google Scholar] [CrossRef]
- Gao, Y.; Yuan, J.; Yan, M. Study on the influencing factors of the vitality of public space in Wulihe Park in Shenyang. In Proceedings of the 2020/2021 China Urban Planning Annual Conference and 2021 China Urban Planning Academic Season, Chengdu, China, 25–30 September 2021; pp. 1192–1198. [Google Scholar]
- Zhao, J.; Yan, Y.; Deng, H.; Liu, G.; Shao, G. Remarks about landsenses ecology and ecosystem services. Int. J. Sustain. Dev. World Ecol. 2020, 27, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Fu, H. Trait of Urban Water System Property and its Tourism Utility and Preservation in Beijing. J. Cap. Norm. Univ. (Nat. Sci. Ed.) 2004, 02, 66–70, 84. [Google Scholar] [CrossRef]
- Zhang, F. The new born in the old: Urban renewal in Beijing. Beijing Plan. Rev. 2022, 04, 164. [Google Scholar]
- Zhang, K. The relationship between river and open space in Europe, Cities: Case studies of London and Emshere District Park. City Plan. Rev. 2013, 37, 76–80. [Google Scholar]
- Jo, T.; Sato, M.; Minamoto, T.; Ushimaru, A. Valuing the cultural services from urban blue-space ecosystems in Japanese megacities during the COVID-19 pandemic. People Nat. 2022, 4, 1176–1189. [Google Scholar] [CrossRef]
- Knight, S.J.; McClean, C.J.; White, P.C.L. The importance of ecological quality of public green and blue spaces for subjective well-being. Landsc. Urban Plan. 2022, 226, 104510. [Google Scholar] [CrossRef]
- Mishra, H.S.; Bell, S.; Vassiljev, P.; Kuhlmann, F.; Niin, G.; Grellier, J. The development of a tool for assessing the environmental qualities of urban blue spaces. Urban For. Urban Green. 2020, 49, 126575. [Google Scholar] [CrossRef]
- Subiza-Pérez, M.; Hauru, K.; Korpela, K.; Haapala, A.; Lehvävirta, S. Perceived Environmental Aesthetic Qualities Scale (PEAQS)—A self-report tool for the evaluation of green-blue spaces. Urban For. Urban Green. 2019, 43, 126383. [Google Scholar] [CrossRef]
- Gong, M.; Ren, M.Y.; Dai, Q.; Luo, X.Y. Aging-Suitability of Urban Waterfront Open Spaces in Gongchen Bridge Section of the Grand Canal. Sustainability 2019, 11, 6095. [Google Scholar] [CrossRef] [Green Version]
- Martilla, J.A.; James, J.C. Importance-Performance Analysis. J. Mark. 1977, 41, 77–79. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Y.; Liu, M. Tourists’ Perception of Local Food Experience in Tourist Destination by IPA Analysis: A Case Study in Enshi, Hubei. J. Agro-For. Econ. Manag. 2016, 15, 335–342. [Google Scholar] [CrossRef]
- Chen, X. The Modified Importance-performance Analysis Method and its Application in Tourist Satisfaction Research. Tour. Trib. 2013, 28, 59–66. [Google Scholar]
- Chen, P.; Liu, W. Assessing management performance of the national forest park using impact range-performance analysis and impact-asymmetry analysis. For. Policy Econ. 2019, 104, 121–138. [Google Scholar] [CrossRef]
- Go, F.; Zhang, W.J. Applying Importance-Performance Analysis to Beijing as an International Meeting Destination. J. Travel Res. 1997, 35, 42–49. [Google Scholar] [CrossRef]
- Evans, M.R.; Chon, K.S. Formulating and Evaluating Tou Rism Policy Using Importance-Performance Analysis. J. Hosp. Tour. Res. 1989, 13, 203–213. [Google Scholar] [CrossRef]
- Gu, X. Research for Vistors’ Structure, Behavior, Demand Characteristics and Influencing Factors in Shanghai Parks. Master’s Thesis, East China Normal University, Shanghai, China, 2013. [Google Scholar]
- Fan, Y.; Mao, D.; Zhou, C.; Ye, J.; Chen, L.; Zheng, Y. Recreational Resources Evaluation of Fuzhou West Lake Park Based on Internet Text Analysis. J. Chin. Urban For. 2019, 17, 41–46. [Google Scholar]
- Liu, Q.; Pan, Y.; Zhang, Z.; Wang, X. Recreational Satisfaction of Typical Riverfront Public Spaces in Shanghai Based on IPA Analysis. J. Chin. Urban For. 2021, 19, 29–34. [Google Scholar]
- Lin, P.; Chen, L.L.; Luo, Z.S. Analysis of Tourism Experience in Haizhu National Wetland Park Based on Web Text. Sustainability 2022, 14, 3011. [Google Scholar] [CrossRef]
- Zheng, T.; Yan, Y.; Zhang, W.; Zhu, J.; Wang, C.; Rong, Y.; Lu, H. Landsense assessment on urban parks using social media data. Acta Ecol. Sin. 2022, 42, 561–568. [Google Scholar]
- Dai, J.; Yuan, J. Comparison of one-way analysis of variance and multiple linear regression analysis. Stat. Decis. 2016, 09, 23–26. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2012, 28, 271–283. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, T.; Zhang, W.K.; Meng, H.; Zhang, Z. Research on visual behavior characteristics and cognitive evaluation of different types of forest landscape spaces. Urban For. Urban Green. 2020, 54, 126788. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Shao, L.; Tang, Y. Guiding Factors and Orientations for Improving Urban Waterfront Space: A Case Study of Haidian Section of Qinghe River in Beijing. World Archit. 2022, 24–33. [Google Scholar] [CrossRef]
- Li, F.; Li, K.; Li, X. Research on Scenario Planning of Beijing Second Green Belt Country Park Ring. Landsc. Archit. 2021, 28, 58–64. [Google Scholar] [CrossRef]
- Dianping Official Website. Available online: https://www.dianping.com/ (accessed on 2 February 2022).
- Ctrip Official Website. Available online: https://www.ctrip.com/ (accessed on 2 February 2022).
- Mafengwo Official Website. Available online: https://www.mafengwo.cn/ (accessed on 2 February 2022).
- Notice of Beijing Municipal Bureau of Landscape and Afforestation on the Issuance of the Measures for the Classification and Classification of Parks in Beijing. Available online: http://yllhj.beijing.gov.cn/zwgk/fgwj/gfxwj/202206/t20220621_2747422.shtml (accessed on 2 February 2022).
- Liu, Q.; Jia, H. A View of Chinese Word Automatic Segmentation Research in the Chinese Information Disposal. Comput. Eng. Appl. 2006, 175–177, 182. [Google Scholar]
- Wang, M.; Qiu, M.; Wang, J.; Peng, Y. The Supply-demand Relation Analysis and Improvements Based on Importance-Performance Analysis of Cultural Ecosystem Services in Waterfront Areas Along the Suzhou Creek in Shanghai. Landsc. Archit. 2019, 26, 107–112. [Google Scholar] [CrossRef]
- Zheng, T.; Yan, Y.X.; Lu, H.; Pan, Q.; Zhu, J.; Wang, C.; Zhang, W.; Rong, Y.; Zhan, Y. Visitors’ perception based on five physical senses on ecosystem services of urban parks from the perspective of landsenses ecology. Int. J. Sustain. Dev. World Ecol. 2020, 27, 214–223. [Google Scholar] [CrossRef]
- Xu, B.; Shi, Q.; Zhang, Y. Evaluation of the Health Promotion Capabilities of Greenway Trails: A Case Study in Hangzhou, China. Land 2022, 11, 547. [Google Scholar] [CrossRef]
- Hausmann, A.; Toivonen, T.; Fink, C.; Heikinheimo, V.; Kulkarni, R.; Tenkanen, H.; Di Minin, E. Understanding sentiment of national park visitors from social media data. People Nat. 2020, 2, 750–760. [Google Scholar] [CrossRef]
Evaluation Term | Indicators | Indicator Definition |
---|---|---|
Landscape (A) | Natural ecological environment (A1) | Environmental quality, beautiful scenery, etc. |
Plant landscape (A2) | Trees, leaves, flowers, etc. | |
Animal landscape (A3) | Ducks, birds, fish, squirrels, frogs, etc. | |
River landscape (A4) | Water, rivers, lakes, ponds, etc. | |
Historical and cultural landscape (A5) | Culture, history, royal, red walls, ancient pavilions, the Hall of Abstinence, circular mounds, ancient trees, etc. | |
Activity (B) | Humanities activities (B1) | Exhibition halls, temple fairs, sacrifices, gardening, etc. |
Country activities (B2) | Boating, camping, mountain climbing, picnics, tents, etc. | |
Recreational activities (B3) | Dancing, walking, taking pictures, resting, etc. | |
Fitness activities (B4) | Exercise, sports, running, cycling, gym, etc. | |
Infrastructure (C) | Transportation accessibility (C1) | Highway, subway, bus, driving, walking, distance, location, etc. |
Public service facilities (C2) | Parking lots, restrooms, toilets, trash cans, etc. | |
Navigation signage system (C3) | Navigation, maps, explanations, etc. | |
Food and beverage facilities (C4) | Catering, restaurants, kiosks, ice cream, commodities, etc. | |
Management (D) | Consumer spending (D1) | Ticket price, free, charge, consumption, etc. |
Services provided (D2) | Management, attitude, reservations, complaints, quality, maintenance, queuing, etc. | |
Planning layout (D3) | Planning, routes, areas, buildings, spaces, etc. | |
Science education (D4) | Popular science, exhibitions, learning, knowledge, etc. |
Senses Term | Indicators | Indicator Definition |
---|---|---|
Vision (E) | Visual identification (E1) | Vision of special sights |
Vision of plants (E2) | Vision of trees, grass, flowers, etc. | |
Vision of water (E3) | Vision of water | |
Vision of animals (E4) | Vision of wild ducks, squirrels, birds, etc. | |
Vision of humans (E5) | Moderate number of people and no interference | |
Vision of roads (E6) | Vision of the line shape, color, etc. of the road | |
Hearing (F) | Sound of voice (F1) | Moderate voice |
Sound of broadcast (F2) | Sound of broadcast | |
Sound of animals (F3) | Sound of birds, insects, etc. | |
Sound of water (F4) | Sound of water flow | |
Smell (G) | Smell of air and water (G1) | Fresh air and good water quality |
Smell of plants (G2) | Smell of plants | |
Touch (H) | Feel of sunlight (H1) | Feel of the balance of light and shadow |
Feel of wind (H2) | Feel of wind | |
Feel of roads (H3) | Comfortable roads | |
Feel of water (H4) | Hydrophilic experience | |
Contact with animals (H5) | No mosquito bites | |
Taste (L) | Food available (L1) | Food available |
I | J | A5 | B3 | C2 | C4 | D2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | ||
a | b | 0.1405 * | 0.0210 | 0.1116 * | 0.0090 | 0.1172 * | 0.0190 | 0.0695 | 0.3830 | 0.1278 * | 0.0060 |
e | 0.3114 * | 0.0090 | 0.2318 * | 0.0050 | 0.0990 | 0.2990 | 0.3734 * | 0.0170 | 0.1862 * | 0.0360 | |
b | a | −0.1405 * | 0.0210 | −0.1116 * | 0.0090 | −0.1172 * | 0.0190 | −0.0695 | 0.3830 | −0.1278 * | 0.0060 |
c | e | 0.2289 | 0.1320 | 0.1237 | 0.2410 | −0.0279 | 0.8210 | 0.4162 * | 0.0400 | 0.0449 | 0.6920 |
I | J | E1 | E4 | E5 | G2 | H3 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | ||
a | b | 0.1034 * | 0.0443 | 0.1219 * | 0.0058 | 0.1644 * | 0.0281 | 0.2204 * | 0.0106 | 0.2590 * | 0.0072 |
e | 0.3138 * | 0.0020 | 0.1164 | 0.1669 | 0.0197 | 0.8904 | 0.1601 | 0.3305 | 0.4131 * | 0.0262 | |
b | a | −0.1034 * | 0.0443 | −0.1219 * | 0.0058 | −0.1644 * | 0.0281 | −0.2204 * | 0.0106 | −0.2590 * | 0.0072 |
e | 0.2104 * | 0.0471 | −0.0054 | 0.9513 | −0.1447 | 0.3427 | −0.0603 | 0.7291 | 0.1540 | 0.4285 | |
c | e | 0.2563 * | 0.0473 | −0.0137 | 0.8997 | −0.0901 | 0.6272 | 0.2275 | 0.2858 | 0.4113 | 0.0852 |
I | J | A2 | A3 | A5 | D1 | D2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | ||
f | i | 0.1272 * | 0.0040 | 0.1598 * | 0.0000 | 0.2169 | 0.0550 | 0.0547 | 0.2600 | 0.0691 | 0.1820 |
j | 0.1004 * | 0.0160 | 0.0993 * | 0.0160 | 0.1501 * | 0.0450 | 0.0204 | 0.6590 | 0.0295 | 0.5500 | |
k | 0.0535 | 0.3930 | 0.0690 | 0.2710 | 0.3964 | 0.3560 | 0.2323 * | 0.0020 | 0.2312 * | 0.0030 | |
g | i | 0.1007 | 0.1740 | 0.1566 * | 0.0360 | 0.2259 * | 0.0280 | 0.0871 | 0.3000 | 0.1805 * | 0.0460 |
j | 0.0739 | 0.3100 | 0.0961 | 0.1880 | 0.1591 * | 0.0080 | 0.0528 | 0.5230 | 0.1410 | 0.1120 | |
k | 0.0271 | 0.7550 | 0.0658 | 0.4490 | 0.4053 | 0.3410 | 0.2647 * | 0.0090 | 0.3426 * | 0.0020 | |
h | i | 0.1514 * | 0.0050 | 0.1962 * | 0.0000 | 0.2724 * | 0.0070 | 0.0682 | 0.2520 | 0.1826 * | 0.0050 |
j | 0.1246 * | 0.0160 | 0.1358 * | 0.0090 | 0.2056 * | 0.0020 | 0.0339 | 0.5560 | 0.1430 * | 0.0220 | |
k | 0.0777 | 0.2650 | 0.1055 | 0.1310 | 0.4519 | 0.2360 | 0.2458 * | 0.0030 | 0.3447 * | 0.0000 | |
i | f | −0.1272 * | 0.0040 | −0.1598 * | 0.0000 | −0.2169 | 0.0550 | −0.0547 | 0.2600 | −0.0691 | 0.1820 |
g | −0.1007 | 0.1740 | −0.1566 * | 0.0360 | −0.2259 * | 0.0280 | −0.0871 | 0.3000 | −0.1805 * | 0.0460 | |
h | −0.1514 * | 0.0050 | −0.1962 * | 0.0000 | −0.2724 * | 0.0070 | −0.0682 | 0.2520 | −0.1826 * | 0.0050 | |
k | −0.0737 | 0.2410 | −0.0908 | 0.1490 | 0.1795 | 0.9880 | 0.1776 * | 0.0140 | 0.1621 * | 0.0350 | |
j | f | −0.1004 * | 0.0160 | −0.0993 * | 0.0160 | −0.1501 * | 0.0450 | −0.0204 | 0.6590 | −0.0295 | 0.5500 |
g | −0.0739 | 0.3100 | −0.0961 | 0.1880 | −0.1591 * | 0.0080 | −0.0528 | 0.5230 | −0.1410 | 0.1120 | |
h | −0.1246 * | 0.0160 | −0.1358 * | 0.0090 | −0.2056 * | 0.0020 | −0.0339 | 0.5560 | −0.1430 * | 0.0220 | |
k | −0.0469 | 0.4460 | −0.0303 | 0.6210 | 0.2463 | 0.8630 | 0.2119 * | 0.0030 | 0.2016 * | 0.0080 |
I | J | E1 | E3 | E4 | G1 | H1 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | ||
f | i | 0.1285 | 0.3350 | 0.0605 | 0.1630 | 0.1680 * | 0.0010 | 0.1011 | 0.0640 | 0.0989 | 0.9210 |
j | 0.1081 | 0.2250 | 0.0532 | 0.2000 | 0.1186 * | 0.0090 | 0.0770 | 0.1390 | 0.0655 | 0.9360 | |
k | 0.2373 | 0.9690 | 0.2147 * | 0.0010 | 0.2731 * | 0.0000 | 0.2544 * | 0.0020 | 0.2204 | 0.8210 | |
g | i | 0.1283 | 0.4950 | 0.0888 | 0.2360 | 0.1514 | 0.0630 | 0.1023 | 0.2760 | 0.2132 * | 0.0450 |
j | 0.1078 | 0.5110 | 0.0816 | 0.2700 | 0.1019 | 0.2020 | 0.0781 | 0.3980 | 0.1799 * | 0.0030 | |
k | 0.2371 | 0.9700 | 0.2431 * | 0.0070 | 0.2564 * | 0.0080 | 0.2556 * | 0.0230 | 0.3348 | 0.3660 | |
h | i | 0.2030 * | 0.0220 | 0.1418 * | 0.0090 | 0.1829 * | 0.0020 | 0.1342 * | 0.0450 | 0.1548 | 0.3020 |
j | 0.1825 * | 0.0070 | 0.1345 * | 0.0100 | 0.1335 * | 0.0180 | 0.1100 | 0.0900 | 0.1214 | 0.0800 | |
k | 0.3118 | 0.8380 | 0.2960 * | 0.0000 | 0.2880 * | 0.0000 | 0.2875 * | 0.0020 | 0.2763 | 0.5820 | |
i | f | −0.1285 | 0.3350 | −0.0605 | 0.1630 | −0.1680 * | 0.0010 | −0.1011 | 0.0640 | −0.0989 | 0.9210 |
g | −0.1283 | 0.4950 | −0.0888 | 0.2360 | −0.1514 | 0.0630 | −0.1023 | 0.2760 | −0.2132 * | 0.0450 | |
h | −0.2030 * | 0.0220 | −0.1418 * | 0.0090 | −0.1829 * | 0.0020 | −0.1342 * | 0.0450 | −0.1548 | 0.3020 | |
k | 0.1088 | 1.0000 | 0.1542 * | 0.0170 | 0.1051 | 0.1280 | 0.1533 | 0.0570 | 0.1215 | 0.9990 | |
j | f | −0.1081 | 0.2250 | −0.0532 | 0.2000 | −0.1186 * | 0.0090 | −0.0770 | 0.1390 | −0.0655 | 0.9360 |
g | −0.1078 | 0.5110 | −0.0816 | 0.2700 | −0.1019 | 0.2020 | −0.0781 | 0.3980 | −0.1799 * | 0.0030 | |
h | −0.1825 * | 0.0070 | −0.1345 * | 0.0100 | −0.1335 * | 0.0180 | −0.1100 | 0.0900 | −0.1214 | 0.0800 | |
k | 0.1293 | 1.0000 | 0.1615 * | 0.0110 | 0.1545 * | 0.0240 | 0.1774 * | 0.0250 | 0.1549 | 0.9820 |
I | J | B3 | C4 | ||
---|---|---|---|---|---|
Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | ||
l | n | 0.1577 * | 0.0450 | 0.2949 * | 0.0391 |
m | n | 0.1387 | 0.0789 | 0.2818 * | 0.0497 |
I | J | E2 | F1 | H3 | |||
---|---|---|---|---|---|---|---|
Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | Mean Dif. (I−J) | Sig. | ||
l | m | 0.0477 | 0.4868 | 0.1028 * | 0.0423 | 0.0759 | 0.7428 |
n | 0.0717 * | 0.0215 | 0.1484 | 0.1622 | 0.3998 * | 0.0057 | |
m | l | −0.0477 | 0.4868 | −0.0103 * | 0.0423 | −0.0759 | 0.7428 |
n | 0.0240 | 0.8764 | 0.0457 | 0.6672 | 0.3239 * | 0.0206 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Zhai, Z.; Sun, W.; Wang, Y.; Yu, R.; Ge, X. Research on the Satisfaction of Beijing Waterfront Green Space Landscape Based on Social Media Data. Land 2022, 11, 1849. https://doi.org/10.3390/land11101849
Cheng S, Zhai Z, Sun W, Wang Y, Yu R, Ge X. Research on the Satisfaction of Beijing Waterfront Green Space Landscape Based on Social Media Data. Land. 2022; 11(10):1849. https://doi.org/10.3390/land11101849
Chicago/Turabian StyleCheng, Siya, Zheran Zhai, Wenzhuo Sun, Yuan Wang, Rui Yu, and Xiaoyu Ge. 2022. "Research on the Satisfaction of Beijing Waterfront Green Space Landscape Based on Social Media Data" Land 11, no. 10: 1849. https://doi.org/10.3390/land11101849
APA StyleCheng, S., Zhai, Z., Sun, W., Wang, Y., Yu, R., & Ge, X. (2022). Research on the Satisfaction of Beijing Waterfront Green Space Landscape Based on Social Media Data. Land, 11(10), 1849. https://doi.org/10.3390/land11101849