Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review
Abstract
:1. Introduction
- What BIM capabilities can be adopted in the design and planning of rural settlements?
- How are these BIM capabilities utilized in the design and planning phase of rural settlements in China?
- What are the benefits, challenges, and future directions of BIM utilization in the design and planning of rural settlements in China?
- Identify the BIM capabilities that can be utilized in the design and planning phase of rural settlements.
- Discuss and analyze the methods that BIM capabilities are performed in the design and planning phase of rural settlements in China.
- Summarize the benefits, challenges, and future directions of BIM utilization in the design and planning of rural settlements in China.
2. Methodology
- The journal articles, reviews, and conference papers can be searched through WoS and Scopus.
- The journal articles, reviews, and conference papers are written in English and can be retrieved in full text online.
- The journal articles, reviews, and conference papers that include the BIM capabilities in the design and planning of rural settlements.
- The journal articles, reviews, and conference papers contributed to solving this study’s research aim and objectives.
- The journal articles, reviews, and conference papers are written in non-English or cannot be retrieved in full text online.
- The duplicated articles were retrieved in both WoS and Scopus.
- The journal articles, reviews, and conference papers that do not include the BIM capabilities in the design and planning of rural settlements.
- The journal articles, reviews, and conference papers are not contributed to solving this study’s research aim and objectives.
3. Research Results
3.1. Descriptive Analysis
3.2. Results Analysis
3.2.1. Data Storage and Management
3.2.2. 3D Modeling and Visualization
3.2.3. Disaster Prevention and Environmental Analysis
- Disaster Prevention
- Environment Analysis
3.2.4. Cost Estimation and Optimization
- Preparation of Bill of quantity
- Budget estimation
- Expenditure optimization
4. Discussion
4.1. Knowledge Management
4.2. Simulation
4.3. Modeling
5. Conclusions
- A.
- Due to the restriction of the research aim, this study only reviews and discusses the BIM capabilities that can be utilized in the design and planning phase of rural settlements in China.
- B.
- Given the limitation of the authors’ language skills, only English articles are reviewed in this study. The articles written in non-English are excluded from the article screen process.
- C.
- To guarantee the reviewed articles were quality, only articles that could be retrieved in WoS and Scopus databases were contained in this study. This regulation might cause the omission of some BIM functions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Supreme People’s Court. Opinions of the Supreme People’s Court on Providing Judicial Services and Guarantees for Comprehensively Promoting Rural Revitalization and Accelerating the Modernization of Agriculture and Rural Areas; Supreme People’s Court: Beijing, China, 2021; Vol. No. 23 [2021] of the Supreme People’s Court.
- Chen, M.; Zhou, Y.; Huang, X.; Ye, C. The Integration of New-Type Urbanization and Rural Revitalization Strategies in China: Origin, Reality and Future Trends. Land 2021, 10, 207. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, Y.; Cheng, Z. Development and Research of Rural Renewable Energy Management and Ecological Management Information System under the Background of Beautiful Rural Revitalization Strategy. Sustain. Comput. Inform. Syst. 2021, 30, 100553. [Google Scholar] [CrossRef]
- Ye, C.; Chen, M.; Chen, R.; Liao, C. Rural-Urban Governance toward Sustainable Development Goals. J. Geogr. Sci. 2022, 32, 1405–1408. [Google Scholar] [CrossRef]
- Hou, D.; Wang, X. Measurement of Agricultural Green Development Level in the Three Provinces of Northeast China under the Background of Rural Vitalization Strategy. Front. Public Health 2022, 10, 824202. [Google Scholar] [CrossRef]
- Jiang, Y.; Long, H.; Tang, Y.; Deng, W.; Chen, K.; Zheng, Y. The Impact of Land Consolidation on Rural Vitalization at Village Level: A Case Study of a Chinese Village. J. Rural Stud. 2021, 86, 485–496. [Google Scholar] [CrossRef]
- Jiang, Y.; Long, H.; Ives, C.D.; Deng, W.; Chen, K.; Zhang, Y. Modes and Practices of Rural Vitalisation Promoted by Land Consolidation in a Rapidly Urbanising China: A Perspective of Multifunctionality. Habitat Int. 2022, 121, 102514. [Google Scholar] [CrossRef]
- Ling, W.; Dong, J.F. Rural Vitalization-Oriented Suitability Evaluation Index for Green Technologies of Rural Housing in Northeast China. IOP Conf. Ser. Earth Environ. Sci. 2018, 188, 012113. [Google Scholar] [CrossRef]
- Lu, M.; Wei, L.; Ge, D.; Sun, D.; Zhang, Z.; Lu, Y. Spatial Optimization of Rural Settlements Based on the Perspective of Appropriateness–Domination: A Case of Xinyi City. Habitat Int. 2020, 98, 102148. [Google Scholar] [CrossRef]
- Yurui, L.; Luyin, Q.; Qianyi, W.; Karácsonyi, D. Towards the Evaluation of Rural Livability in China: Theoretical Framework and Empirical Case Study. Habitat Int. 2020, 105, 102241. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the World’s Countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yang, X. Sustainable Development Levels and Influence Factors in Rural China Based on Rural Revitalization Strategy. Sustainability 2022, 14, 8908. [Google Scholar] [CrossRef]
- Gao, T.; Ivolga, A.; Erokhin, V. Sustainable Rural Development in Northern China: Caught in a Vice between Poverty, Urban Attractions, and Migration. Sustainability 2018, 10, 1467. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yang, T.; Wang, Y.; Jiang, H.; He, C. Effects of Ecological Restoration on Water Quality and Benthic Macroinvertebrates in Rural Rivers of Cold Regions: A Case Study of the Huaide River, Northeast China. Ecol. Indic. 2022, 142, 109169. [Google Scholar] [CrossRef]
- Qian, M.; Cheng, Z.; Wang, Z.; Qi, D. What Affects Rural Ecological Environment Governance Efficiency? Evidence from China. IJERPH 2022, 19, 5925. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, B.; Yu, W.; Yang, Q.; Wang, H.; Huang, D.; Sundell, J.; Norbäck, D. Rhinitis Symptoms and Asthma among Parents of Preschool Children in Relation to the Home Environment in Chongqing, China. PLoS ONE 2014, 9, e94731. [Google Scholar] [CrossRef]
- Zhou, J. Status, Causes and Countermeasures of Environmental Pollution in China’s Rural Tourism Development. Nat. Environ. Pollut. Technol. 2018, 17, 543–549. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2022.
- National Bureau of Statistics of China. China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2022.
- Song, Y. Is the Countryside Really Falling Behind under the Tide of Urbanization? Urban Environ. Stud. 2016, 03, 3–19. [Google Scholar]
- Feng, B.; Hu, M.H. Study on Ecological Environment Protection and Sustainable Development Strategy in Characteristic Rural Areas. AMR 2012, 616–618, 1383–1387. [Google Scholar] [CrossRef]
- Li, Y. Study on Rural Ecological Environment Pollution and Environmental Protection Countermeasures Based on Air Pollution Index. IOP Conf. Ser. Earth Environ. Sci. 2020, 450, 012105. [Google Scholar] [CrossRef]
- Peng, Y. Study on Sources, Causes and Countermeasures of Water Pollution in Rural Areas of Guangxi in China. Nat. Environ. Pollut. Technol. 2017, 16, 1235–1241. [Google Scholar]
- Wu, B.; Mu, D.; Luo, Y.; Xiao, Z.; Zhao, J.; Cui, D. Rural Ecological Problems in China from 2013 to 2022: A Review of Research Hotspots, Geographical Distribution, and Countermeasures. Land 2022, 11, 1326. [Google Scholar] [CrossRef]
- Yuan, J.; Guo, X. The Synergistic Relationship between Rural Environmental Pollution and Industrial Structural Change in Heilongjiang, China. Nat. Environ. Pollut. Technol. 2016, 15, 521. [Google Scholar]
- ISO 19650-1:2018; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling. British Standards Institution: London, UK, 2018.
- National Bureau of Statistics of China. NBS National BIM Report 2019; National Bureau of Statistics of China: Beijing, China, 2019.
- Chan, D.W.M.; Olawumi, T.O.; Ho, A.M.L. Perceived Benefits of and Barriers to Building Information Modelling (BIM) Implementation in Construction: The Case of Hong Kong. J. Build. Eng. 2019, 25, 100764. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Tookey, J.; Ghaffarianhoseini, A.; Naismith, N.; Azhar, S.; Efimova, O.; Raahemifar, K. Building Information Modelling (BIM) Uptake: Clear Benefits, Understanding Its Implementation, Risks and Challenges. Renew. Sustain. Energy Rev. 2017, 75, 1046–1053. [Google Scholar] [CrossRef]
- Huang, B.; Lei, J.; Ren, F.; Chen, Y.; Zhao, Q.; Li, S.; Lin, Y. Contribution and Obstacle Analysis of Applying BIM in Promoting Green Buildings. J. Clean. Prod. 2021, 278, 123946. [Google Scholar] [CrossRef]
- Toukola, S.; Ahola, T. Digital Tools for Stakeholder Participation in Urban Development Projects. Proj. Leadersh. Soc. 2022, 3, 100053. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, S.; Liao, L.; Zhang, L. A Digital Construction Framework Integrating Building Information Modeling and Reverse Engineering Technologies for Renovation Projects. Autom. Constr. 2019, 102, 45–58. [Google Scholar] [CrossRef]
- Blay, K.B.; Tuuli, M.M.; France-Mensah, J. Managing Change in BIM-Level 2 Projects: Benefits, Challenges, and Opportunities. BEPAM 2019, 9, 581–596. [Google Scholar] [CrossRef] [Green Version]
- Zakari, Z.; Ali, N.M.A.; Haron, A.T.; Ponting, A.M.; Hamid, Z.A. Exploring the Barriers and Driving Factors in Implementing Building Information Modelling (BIM) in the Malaysian Construction Industry: A Preliminary Study. J. Inst. Eng. Malays. 2014, 75, 1–10. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W.M. Identifying and Prioritizing the Benefits of Integrating BIM and Sustainability Practices in Construction Projects: A Delphi Survey of International Experts. Sustain. Cities Soc. 2018, 40, 16–27. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, Z.; He, Q.; Zhai, P. Investigating the Constraints to Buidling Information Modeling (BIM) Applications for Sustainable Building Projects: A Case of China. Sustainability 2019, 11, 1896. [Google Scholar] [CrossRef] [Green Version]
- Akhmetzhanova, B.; Nadeem, A.; Hossain, M.A.; Kim, J.R. Clash Detection Using Building Information Modeling (BIM) Technology in the Republic of Kazakhstan. Buildings 2022, 12, 102. [Google Scholar] [CrossRef]
- Tatygulov, A.; Gizatulina, A.; Zhamankulov, A. Level of BIM Development and Applying in Design and Engineering Survey Companies in the Republic of Kazakhstan. Research Results. Bull. Natl. Eng. Acad. Repub. Kazakhstan 2020, 4, 100–106. [Google Scholar]
- Kamel, E.; Memari, A.M. Review of BIM’s Application in Energy Simulation: Tools, Issues, and Solutions. Autom. Constr. 2019, 97, 164–180. [Google Scholar] [CrossRef]
- Pezeshki, Z.; Soleimani, A.; Darabi, A. Application of BEM and Using BIM Database for BEM: A Review. J. Build. Eng. 2019, 23, 1–17. [Google Scholar] [CrossRef]
- Kim, S.; Bhat, A.; Poirier, E.A.; Staub-French, S. Investigating Owner Requirements for BIM-Enabled Design Review. In Proceedings of the Construction Research Congress 2018, New Orleans, LA, USA, 2–4 April 2018; American Society of Civil Engineers: New Orleans, LA, USA, 2018; pp. 581–590. [Google Scholar]
- Dowsett, R.; Harty, C. Evaluating the Benefits of BIM for Sustainable Design–A Review. In Proceedings of the 29th Annual ARCOM conference, Reading, UK, 2–4 September 2013; pp. 13–23. [Google Scholar]
- Dong, J.Y.; Cheng, W.; Ma, C.P.; Xin, L.S.; Tan, Y.T. Thermal Environment Analysis and Energy Conservation Research of Rural Residence in Cold Regions of China Based on BIM Platform. IOP Conf. Ser. Earth Environ. Sci. 2017, 69, 012009. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Sun, J.; Wang, Z.; Xu, T. The Construction of BIM Application Value System for Residential Buildings’ Design Stage in China Based on Traditional DBB Mode. Procedia Eng. 2017, 180, 851–858. [Google Scholar] [CrossRef]
- Matejka, P. Utilization of Digitized Building Data and Information Models (BIM) in Value Estimation of Building in Rural Areas. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 22–24 May 2019. [Google Scholar]
- Mihindu, S.; Arayici, Y. Digital Construction through BIM Systems Will Drive the Re-Engineering of Construction Business Practices. In Proceedings of the 2008 International Conference Visualisation, London, UK, 9–11 July 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 29–34. [Google Scholar]
- Veeraraghavan, S.; Krishnaswamy, P. A Novel Technology Based Framework to Address Global Humanitarian Issues. In Proceedings of the 2011 IEEE Global Humanitarian Technology Conference, Seattle, WA, USA, 30 October–1 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 338–343. [Google Scholar]
- Cook, D.J. Systematic Reviews: Synthesis of Best Evidence for Clinical Decisions. Ann. Intern. Med. 1997, 126, 376. [Google Scholar] [CrossRef]
- Harris, J.D.; Quatman, C.E.; Manring, M.M.; Siston, R.A.; Flanigan, D.C. How to Write a Systematic Review. Am. J. Sport. Med. 2014, 42, 2761–2768. [Google Scholar] [CrossRef]
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2019, 39, 93–112. [Google Scholar] [CrossRef]
- Cao, Y.; Kamaruzzaman, S.N.; Aziz, N.M. Green Building Construction: A Systematic Review of BIM Utilization. Buildings 2022, 12, 1205. [Google Scholar] [CrossRef]
- Mulrow, C.D. Systematic Reviews: Rationale for Systematic Reviews. BMJ 1994, 309, 597–599. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic Review or Scoping Review? Guidance for Authors When Choosing between a Systematic or Scoping Review Approach. BMC Med. Res. Methodol. 2018, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A. Balancing the Evidence: Incorporating the Synthesis of Qualitative Data into Systematic Reviews. JBI Rep. 2004, 2, 45–64. [Google Scholar] [CrossRef]
- Pittaway, L.; Cope, J. Entrepreneurship Education: A Systematic Review of the Evidence. Int. Small Bus. J. 2007, 25, 479–510. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, V.; Beaudart, C.; Ajamieh, S.; Rabenda, V.; Tirelli, E.; Bruyère, O. Meta-Analyses Indexed in PsycINFO Had a Better Completeness of Reporting When They Mention PRISMA. J. Clin. Epidemiol. 2019, 115, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Page, M.J. PRISMA 2020 and PRISMA-S: Common Questions on Tracking Records and the Flow Diagram. JMLA 2021, 110, 253–257. [Google Scholar] [CrossRef]
- Al-Emran, M.; Mezhuyev, V.; Kamaludin, A.; Shaalan, K. The Impact of Knowledge Management Processes on Information Systems: A Systematic Review. Int. J. Inf. Manag. 2018, 43, 173–187. [Google Scholar] [CrossRef]
- Ali, O.; Shrestha, A.; Soar, J.; Wamba, S.F. Cloud Computing-Enabled Healthcare Opportunities, Issues, and Applications: A Systematic Review. Int. J. Inf. Manag. 2018, 43, 146–158. [Google Scholar] [CrossRef]
- Borges, A.F.S.; Laurindo, F.J.B.; Spínola, M.M.; Gonçalves, R.F.; Mattos, C.A. The Strategic Use of Artificial Intelligence in the Digital Era: Systematic Literature Review and Future Research Directions. Int. J. Inf. Manag. 2021, 57, 102225. [Google Scholar] [CrossRef]
- Cao, Y.; Kamaruzzaman, S.N.; Aziz, N.M. Building Information Modeling (BIM) Capabilities in the Operation and Maintenance Phase of Green Buildings: A Systematic Review. Buildings 2022, 12, 830. [Google Scholar] [CrossRef]
- Gupta, S.; Kar, A.K.; Baabdullah, A.; Al-Khowaiter, W.A. Big Data with Cognitive Computing: A Review for the Future. Int. J. Inf. Manag. 2018, 42, 78–89. [Google Scholar] [CrossRef]
- Lepenioti, K.; Bousdekis, A.; Apostolou, D.; Mentzas, G. Prescriptive Analytics: Literature Review and Research Challenges. Int. J. Inf. Manag. 2020, 50, 57–70. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, C.; Kamaruzzaman, S.N.; Aziz, N.M. A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions. Sustainability 2022, 14, 12293. [Google Scholar] [CrossRef]
- Pereira, V.; Santos, J.; Leite, F.; Escórcio, P. Using BIM to Improve Building Energy Efficiency—A Scientometric and Systematic Review. Energy Build. 2021, 250, 111292. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. JOItmC 2022, 8, 45. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital Twin Paradigm: A Systematic Literature Review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Deshpande, A.; Azhar, S.; Amireddy, S. A Framework for a BIM-Based Knowledge Management System. Procedia Eng. 2014, 85, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Zheng, K.; Tan, Y. BIM Research vs BIM Practice: A Bibliometric-Qualitative Analysis from China. ECAM 2021, 28. [Google Scholar] [CrossRef]
- Wang, H.; Meng, X. Transformation from IT-Based Knowledge Management into BIM-Supported Knowledge Management: A Literature Review. Expert Syst. Appl. 2019, 121, 170–187. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Leite, F. Process Knowledge Capture in BIM-Based Mechanical, Electrical, and Plumbing Design Coordination Meetings. J. Comput. Civ. Eng. 2016, 30, 04015017. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for Green Buildings: A Critical Review and Future Directions. Autom. Constr. 2017, 83, 134–148. [Google Scholar] [CrossRef]
- Ding, L.; Xu, X. Application of Cloud Storage on BIM Life-Cycle Management. Int. J. Adv. Robot. Syst. 2014, 11, 129. [Google Scholar] [CrossRef]
- Aziz, Z.; Riaz, Z.; Arslan, M. Leveraging BIM and Big Data to Deliver Well Maintained Highways. Facilities 2017, 35, 818–832. [Google Scholar] [CrossRef] [Green Version]
- Gledson, B.J.; Greenwood, D. The Adoption of 4D BIM in the UK Construction Industry: An Innovation Diffusion Approach. ECAM 2017, 24, 950–967. [Google Scholar] [CrossRef]
- Bastos Porsani, G.; Del Valle de Lersundi, K.; Sánchez-Ostiz Gutiérrez, A.; Fernández Bandera, C. Interoperability between Building Information Modelling (BIM) and Building Energy Model (BEM). Appl. Sci. 2021, 11, 2167. [Google Scholar] [CrossRef]
- Ham, Y.; Golparvar-Fard, M. Mapping Actual Thermal Properties to Building Elements in GbXML-Based BIM for Reliable Building Energy Performance Modeling. Autom. Constr. 2015, 49, 214–224. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J. A Case-Based Reasoning Model for Retrieving Window Replacement Costs through Industry Foundation Class. Appl. Sci. 2019, 9, 4728. [Google Scholar] [CrossRef] [Green Version]
- Mirahadi, F.; McCabe, B.; Shahi, A. IFC-Centric Performance-Based Evaluation of Building Evacuations Using Fire Dynamics Simulation and Agent-Based Modeling. Autom. Constr. 2019, 101, 1–16. [Google Scholar] [CrossRef]
- Shalabi, F.; Turkan, Y. IFC BIM-Based Facility Management Approach to Optimize Data Collection for Corrective Maintenance. J. Perform. Constr. Facil. 2017, 31, 04016081. [Google Scholar] [CrossRef]
- Zhuang, D.; Zhang, X.; Lu, Y.; Wang, C.; Jin, X.; Zhou, X.; Shi, X. A Performance Data Integrated BIM Framework for Building Life-Cycle Energy Efficiency and Environmental Optimization Design. Autom. Constr. 2021, 127, 103712. [Google Scholar] [CrossRef]
- Bansal, V.K. Integrated Framework of BIM and GIS Applications to Support Building Lifecycle: A Move toward ND Modeling. J. Archit. Eng. 2021, 27, 05021009. [Google Scholar] [CrossRef]
- Grytting, I.; Svalestuen, F.; Lohne, J.; Sommerseth, H.; Augdal, S.; Lædre, O. Use of LoD Decision Plan in BIM-Projects. Procedia Eng. 2017, 196, 407–414. [Google Scholar] [CrossRef]
- Tolmer, C.-E.; Castaing, C.; Diab, Y.; Morand, D. Adapting LOD Definition to Meet BIM Uses Requirements and Data Modeling for Linear Infrastructures Projects: Using System and Requirement Engineering. Vis. Eng. 2017, 5, 21. [Google Scholar] [CrossRef]
- Liu, H.; Xie, L.; Shi, L.; Hou, M.; Li, A.; Hu, Y. A Method of Automatic Extraction of Parameters of Multi-LoD BIM Models for Typical Components in Wooden Architectural-Heritage Structures. Adv. Eng. Inform. 2019, 42, 101002. [Google Scholar] [CrossRef]
- Beach, T.; Petri, I.; Rezgui, Y.; Rana, O. Management of Collaborative BIM Data by Federating Distributed BIM Models. J. Comput. Civ. Eng. 2017, 31, 04017009. [Google Scholar] [CrossRef] [Green Version]
- Van Gassel, F.J.M.; Láscaris-Comneno, T.; Maas, G.J. The Conditions for Successful Automated Collaboration in Construction. Autom. Constr. 2014, 39, 85–92. [Google Scholar] [CrossRef]
- Alreshidi, E.; Mourshed, M.; Rezgui, Y. Requirements for Cloud-Based BIM Governance Solutions to Facilitate Team Collaboration in Construction Projects. Requir. Eng. 2018, 23, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Gu, N.; Wang, X. A Theoretical Framework of a BIM-Based Multi-Disciplinary Collaboration Platform. Autom. Constr. 2011, 20, 134–144. [Google Scholar] [CrossRef]
- Kalasapudi, V.S.; Turkan, Y.; Tang, P. Toward Automated Spatial Change Analysis of MEP Components Using 3D Point Clouds and As-Designed BIM Models. In Proceedings of the 2014 2nd International Conference on 3D Vision, Tokyo, Japan, 8–11 December 2014; IEEE: Piscataway, NJ, USA, 2014; Volume 2, pp. 145–152. [Google Scholar]
- Atazadeh, B.; Halalkhor Mirkalaei, L.; Olfat, H.; Rajabifard, A.; Shojaei, D. Integration of Cadastral Survey Data into Building Information Models. Geo-Spat. Inf. Sci. 2021, 24, 387–402. [Google Scholar] [CrossRef]
- Celeste, G.; Lazoi, M.; Mangia, M.; Mangialardi, G. Innovating the Construction Life Cycle through BIM/GIS Integration: A Review. Sustainability 2022, 14, 766. [Google Scholar] [CrossRef]
- Park, J.; Cai, H.; Dunston, P.S.; Ghasemkhani, H. Database-Supported and Web-Based Visualization for Daily 4D BIM. J. Constr. Eng. Manag. 2017, 143, 04017078. [Google Scholar] [CrossRef]
- Teizer, J.; Wolf, M.; Golovina, O.; Perschewski, M.; Propach, M.; Neges, M.; König, M. Internet of Things (IoT) for Integrating Environmental and Localization Data in Building Information Modeling (BIM). In Proceedings of the International Symposium on Automation and Robotics in Construction ISARCT, Taipei, Taiwan, 28 June–1 July 2017; IAARC Publications: Taipei, China, 2017; Volume 34. [Google Scholar]
- Chen, C.-J.; Chen, S.; Li, S.; Chiu, H. Green BIM-Based Building Energy Performance Analysis. Comput.-Aided Des. Appl. 2017, 14, 650–660. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Wright, G.; Cheng, J.; Li, X.; Liu, R. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). IJGI 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Ren, Y. Integrated Application of BIM and GIS: An Overview. Procedia Eng. 2017, 196, 1072–1079. [Google Scholar] [CrossRef]
- Cui, B.; Wen, X.; Zhang, D. The Application of Intelligent Emergency Response System for Urban Underground Space Disasters Based on 3D GIS, BIM and Internet of Things. In Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science, Wuhan, China, 12–13 July 2019; ACM: New York, NY, USA, 2019; pp. 745–749. [Google Scholar]
- Du, H.; Du, J.; Huang, S. GIS, GPS, and BIM-Based Risk Control of Subway Station Construction. In Proceedings of the ICTE 2015, Dailan, China, 26–27 September 2015; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 1478–1485. [Google Scholar]
- Kang, T.W.; Hong, C.H. A Study on Software Architecture for Effective BIM/GIS-Based Facility Management Data Integration. Autom. Constr. 2015, 54, 25–38. [Google Scholar] [CrossRef]
- Marzouk, M.; Othman, A. Planning Utility Infrastructure Requirements for Smart Cities Using the Integration between BIM and GIS. Sustain. Cities Soc. 2020, 57, 102120. [Google Scholar] [CrossRef]
- Sani, M.J.; Rahman, A.A. GIS and BIM Integration at Data Level: A Review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Mi, S.; Olsson, P.O.; Paulsson, J.; Harrie, L. Utilizing BIM and GIS for Representation and Visualization of 3D Cadastre. IJGI 2019, 8, 503. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Yang, J.; Liu, L.; Huang, W.; Wu, P. Integrating IFC and CityGML Model at Schema Level by Using Linguistic and Text Mining Techniques. IEEE Access 2020, 8, 56429–56440. [Google Scholar] [CrossRef]
- Kardinal Jusuf, S.; Mousseau, B.; Godfroid, G.; Soh Jin Hui, V. Integrated Modeling of CityGML and IFC for City/Neighborhood Development for Urban Microclimates Analysis. Energy Procedia 2017, 122, 145–150. [Google Scholar] [CrossRef]
- Stouffs, R.; Tauscher, H.; Biljecki, F. Achieving Complete and Near-Lossless Conversion from IFC to CityGML. Int. J. Geo-Inf. 2018, 7, 355. [Google Scholar] [CrossRef] [Green Version]
- Pepe, M.; Costantino, D.; Alfio, V.S.; Restuccia, A.G.; Papalino, N.M. Scan to BIM for the Digital Management and Representation in 3D GIS Environment of Cultural Heritage Site. J. Cult. Herit. 2021, 50, 115–125. [Google Scholar] [CrossRef]
- Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings. Appl. Sci. 2020, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Mignard, C.; Nicolle, C. Merging BIM and GIS Using Ontologies Application to Urban Facility Management in ACTIVe3D. Comput. Ind. 2014, 65, 1276–1290. [Google Scholar] [CrossRef]
- Cesconetto, J.; Augusto Silva, L.; Bortoluzzi, F.; Navarro-Cáceres, M.; Zeferino, C.A.; Leithardt, V.R.Q. PRIPRO—Privacy Profiles: User Profiling Management for Smart Environments. Electronics 2020, 9, 1519. [Google Scholar] [CrossRef]
- Hossein Motlagh, N.; Khatibi, A.; Aslani, A. Toward Sustainable Energy-Independent Buildings Using Internet of Things. Energies 2020, 13, 5954. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A Review of Building Information Modeling (BIM) and the Internet of Things (IoT) Devices Integration: Present Status and Future Trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Qian, H. Design of Tunnel Automatic Monitoring System Based on BIM and IOT. J. Phys. Conf. Ser. 2021, 1982, 012073. [Google Scholar] [CrossRef]
- Shahinmoghadam, M.; Motamedi, A. Review of BIM-Centred IoT Deployment–State of the Art, Opportunities, and Challenges. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC 2019), Banff, AB, Canada, 21–24 May 2019; pp. 1268–1275. [Google Scholar]
- Chang, K.-M.; Dzeng, R.-J.; Wu, Y.-J. An Automated IoT Visualization BIM Platform for Decision Support in Facilities Management. Appl. Sci. 2018, 8, 1086. [Google Scholar] [CrossRef] [Green Version]
- Natephra, W.; Motamedi, A. Live Data Visualization of IoT Sensors Using Augmented Reality (AR) and BIM. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC 2019), Banff, AB, Canada, 21–24 May 2019. [Google Scholar]
- Yuan, Y.; Yang, J.; Shao, R.; Mao, J.; Zhang, C. Research on BIM Model Lightweighting Methods and IoT Technology Application in the Context of WebGL. J. Phys. Conf. Ser. 2022, 2215, 012008. [Google Scholar] [CrossRef]
- Al-Ashmori, Y.Y.; Othman, I.; Rahmawati, Y.; Amran, Y.H.M.; Sabah, S.H.A.; Rafindadi, A.D.; Mikić, M. BIM Benefits and Its Influence on the BIM Implementation in Malaysia. Ain Shams Eng. J. 2020, 11, 1013–1019. [Google Scholar] [CrossRef]
- Wang, H.; Meng, X. BIM-Supported Knowledge Management: Potentials and Expectations. J. Manag. Eng. 2021, 37, 04021032. [Google Scholar] [CrossRef]
- Cavieres, A.; Bhatia, U.; Joshi, P.; Zhao, F.; Ram, A. CBArch: A Case-Based Reasoning Framework for Conceptual Design of Commercial Buildings. In Proceedings of the 2011 AAAI Spring Symposium Series, Stanford, CA, USA, 21–23 March 2011. [Google Scholar]
- Coupry, C.; Noblecourt, S.; Richard, P.; Baudry, D.; Bigaud, D. BIM-Based Digital Twin and XR Devices to Improve Maintenance Procedures in Smart Buildings: A Literature Review. Appl. Sci. 2021, 11, 6810. [Google Scholar] [CrossRef]
- Napps, D.; Pawlowski, D.; König, M. BIM-Based Variant Retrieval of Building Designs Using Case-Based Reasoning and Pattern Matching. In Proceedings of the ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, Online, 2–4 November 2021; Volume 38, pp. 435–442. [Google Scholar]
- Zabin, A.; González, V.A.; Zou, Y.; Amor, R. Applications of Machine Learning to BIM: A Systematic Literature Review. Adv. Eng. Inform. 2022, 51, 101474. [Google Scholar] [CrossRef]
- Zhang, F.; Chan, A.P.C.; Darko, A.; Chen, Z.; Li, D. Integrated Applications of Building Information Modeling and Artificial Intelligence Techniques in the AEC/FM Industry. Autom. Constr. 2022, 139, 104289. [Google Scholar] [CrossRef]
- Lee, P.-C.; Lo, T.-P.; Tian, M.-Y.; Long, D. An Efficient Design Support System Based on Automatic Rule Checking and Case-Based Reasoning. KSCE J. Civ Eng. 2019, 23, 1952–1962. [Google Scholar] [CrossRef]
- Li, P.; Chen, H. Evaluation of Green Building Suppliers Based on IVPLTS-CBR Decision-Making Method. IJICC 2022, 15, 17–40. [Google Scholar] [CrossRef]
- Motawa, I.; Almarshad, A. Case-Based Reasoning and BIM Systems for Asset Management. Built Environ. Proj. Asset Manag. 2015, 5, 233–247. [Google Scholar] [CrossRef]
- Wang, H.; Meng, X.; Zhu, X. Improving Knowledge Capture and Retrieval in the BIM Environment: Combining Case-Based Reasoning and Natural Language Processing. Autom. Constr. 2022, 139, 104317. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, K.T.; Tanoli, W.A.; Seo, J.W. Flexible 3D Model Partitioning System for ND-Based BIM Implementation of Alignment-Based Civil Infrastructure. J. Manag. Eng. 2020, 36, 04019037. [Google Scholar] [CrossRef]
- Montiel-Santiago, F.J.; Hermoso-Orzáez, M.J.; Terrados-Cepeda, J. Sustainability and Energy Efficiency: BIM 6D. Study of the BIM Methodology Applied to Hospital Buildings. Value of Interior Lighting and Daylight in Energy Simulation. Sustainability 2020, 12, 5731. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Qi, Y. Research on the Application of BIM Technology in the Design of Green Buildings. In Proceedings of the 2021 International Conference on E-Commerce and E-Management (ICECEM), Dalian, China, 24–26 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 94–98. [Google Scholar]
- Zhou, X.; Wang, J.; Guo, M.; Gao, Z. Cross-Platform Online Visualization System for Open BIM Based on WebGL. Multimed. Tools Appl. 2019, 78, 28575–28590. [Google Scholar] [CrossRef]
- Johansson, M.; Roupé, M.; Bosch-Sijtsema, P. Real-Time Visualization of Building Information Models (BIM). Autom. Constr. 2015, 54, 69–82. [Google Scholar] [CrossRef]
- Boton, C.; Kubicki, S.; Halin, G. The Challenge of Level of Development in 4D/BIM Simulation Across AEC Project Lifecyle. A Case Study. Procedia Eng. 2015, 123, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhao, J.; Wang, J.; Su, D.; Zhang, H.; Guo, M.; Guo, M.; Li, Z. OutDet: An Algorithm for Extracting the Outer Surfaces of Building Information Models for Integration with Geographic Information Systems. Int. J. Geogr. Inf. Sci. 2019, 33, 1444–1470. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, L.; Li, H.; Lin, Y.-H.; Yin, S. Combining IFC and 3D Tiles to Create 3D Visualization for Building Information Modeling. Autom. Constr. 2020, 109, 102995. [Google Scholar] [CrossRef]
- Ayman, H.M.; Mahfouz, S.Y.; Alhady, A. Integrated EDM and 4D BIM-Based Decision Support System for Construction Projects Control. Buildings 2022, 12, 315. [Google Scholar] [CrossRef]
- Charlesraj, V.P.C.; Dinesh, T. Status of 4D BIM Implementation in Indian Construction. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction, Online. 27–28 October 2020; pp. 199–206. [Google Scholar]
- Jupp, J. 4D BIM for Environmental Planning and Management. Procedia Eng. 2017, 180, 190–201. [Google Scholar] [CrossRef]
- Ding, L.; Zhou, Y.; Akinci, B. Building Information Modeling (BIM) Application Framework: The Process of Expanding from 3D to Computable ND. Autom. Constr. 2014, 46, 82–93. [Google Scholar] [CrossRef]
- Ivson, P.; Nascimento, D.; Celes, W.; Barbosa, S.D. CasCADe: A Novel 4D Visualization System for Virtual Construction Planning. IEEE Trans. Visual. Comput. Graph. 2018, 24, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kim, E. Middleware for Translating Urban GIS Information for Building a Design Society Via General BIM Tools. J. Asian Archit. Build. Eng. 2016, 15, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Pan, Y.; Luo, X. Integration of BIM and GIS in Sustainable Built Environment: A Review and Bibliometric Analysis. Autom. Constr. 2019, 103, 41–52. [Google Scholar] [CrossRef]
- Deng, Y.; Cheng, J.C.P.; Anumba, C. Mapping between BIM and 3D GIS in Different Levels of Detail Using Schema Mediation and Instance Comparison. Autom. Constr. 2016, 67, 1–21. [Google Scholar] [CrossRef]
- Hor, A.-H.; Jadidi, A.; Sohn, G. BIM-GIS Integrated Geospatial Information Model Using Semantic Web and RDF Graphs. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III–4, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Suwardhi, D.; Trisyanti, S.W.; Ainiyah, N.; Fajri, M.N.; Hanan, H.; Virtriana, R.; Edmarani, A.A. 3D Surveying, Modeling and Geo-Information System of the Newcampus of Itb-Indonesia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLII-2/W2, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Musliman, I.A.; Abdul-Rahman, A.; Coors, V. Incorporating 3D Spatial Operator with Building Information Models in Construction Management Using Geo-DBMS. In Proceedings of the 5th International 3D GeoInfo Conference, Berlin, Germany, 3–4 November 2010. [Google Scholar]
- Dore, C.; Murphy, M. Integration of Historic Building Information Modeling (HBIM) and 3D GIS for Recording and Managing Cultural Heritage Sites. In Proceedings of the 2012 18th International Conference on Virtual Systems and Multimedia, Milan, Italy, 2–5 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 369–376. [Google Scholar]
- Nappo, N.; Mavrouli, O.; Nex, F.; van Westen, C.; Gambillara, R.; Michetti, A.M. Use of UAV-Based Photogrammetry Products for Semi-Automatic Detection and Classification of Asphalt Road Damage in Landslide-Affected Areas. Eng. Geol. 2021, 294, 106363. [Google Scholar] [CrossRef]
- Döllner, J.; Hagedorn, B. Integrating Urban GIS, CAD, and BIM Data by Service-Based Virtual 3D City Models. In Urban and Regional Data Management; CRC Press: Boca Raton, FL, USA, 2007; pp. 169–182. [Google Scholar]
- Lotai, P.S.; Trivedi, J. Site Layout Planning Through BIM Visualisation—A Case Study. In Proceedings of the 27th Annual Conference of the International Group for Lean Construction, Dublin, Ireland, 3–5 July 2019; pp. 865–876. [Google Scholar]
- Zhu, J.; Wu, P. BIM/GIS Data Integration from the Perspective of Information Flow. Autom. Constr. 2022, 136, 104166. [Google Scholar] [CrossRef]
- Vacca, G.; Quaquero, E. BIM-3D GIS: An Integrated System for the Knowledge Process of the Buildings. J. Spat. Sci. 2020, 65, 193–208. [Google Scholar] [CrossRef]
- Xia, H.; Liu, Z.; Efremochkina, M.; Liu, X.; Lin, C. Study on City Digital Twin Technologies for Sustainable Smart City Design: A Review and Bibliometric Analysis of Geographic Information System and Building Information Modeling Integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P. Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique. Remote Sens. 2021, 13, 1889. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, C.; Cai, Y.; Lu, C.; Wang, H.; Yu, T. BIM-Based Visualization Research in the Construction Industry: A Network Analysis. Int. J. Environ. Res. Public Health 2019, 16, 3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Chen, W.; Cheng, J.C.P.; Wang, Q. Developing Efficient Mechanisms for BIM-to-AR/VR Data Transfer. J. Comput. Civ. Eng. 2020, 34, 04020037. [Google Scholar] [CrossRef]
- Garbett, J.; Hartley, T.; Heesom, D. A Multi-User Collaborative BIM-AR System to Support Design and Construction. Autom. Constr. 2021, 122, 103487. [Google Scholar] [CrossRef]
- Schiavi, B.; Havard, V.; Beddiar, K.; Baudry, D. BIM Data Flow Architecture with AR/VR Technologies: Use Cases in Architecture, Engineering and Construction. Autom. Constr. 2022, 134, 104054. [Google Scholar] [CrossRef]
- He, Z.; Weng, W. A Risk Assessment Method for Multi-Hazard Coupling Disasters. Risk Anal. 2021, 41, 1362–1375. [Google Scholar] [CrossRef]
- Roopnarine, C.; Ramlal, B.; Roopnarine, R. A Comparative Analysis of Weighting Methods in Geospatial Flood Risk Assessment: A Trinidad Case Study. Land 2022, 11, 1649. [Google Scholar] [CrossRef]
- Sinčić, M.; Bernat Gazibara, S.; Krkač, M.; Lukačić, H.; Mihalić Arbanas, S. The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments. Land 2022, 11, 1360. [Google Scholar] [CrossRef]
- Sugianto, S.; Deli, A.; Miswar, E.; Rusdi, M.; Irham, M. The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya. Land 2022, 11, 1271. [Google Scholar] [CrossRef]
- Cui, P.; Peng, J.; Shi, P.; Tang, H.; Ouyang, C.; Zou, Q.; Liu, L.; Li, C.; Lei, Y. Scientific Challenges of Research on Natural Hazards and Disaster Risk. Geogr. Sustain. 2021, 2, 216–223. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Cheng, H.; Kang, J.; Liu, X. Land Cover Changing Pattern in Pre- and Post-Earthquake Affected Area from Remote Sensing Data: A Case of Lushan County, Sichuan Province. Land 2022, 11, 1205. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, J.; Yang, J.; Liu, P.; Chang, D.; Xu, W. A Research on Cohesion Hyperspectral Detection Model of Fine-Grained Sediments in Beichuan Debris Flow, Sichuan Province, China. Land 2022, 11, 1609. [Google Scholar] [CrossRef]
- Wu, T.; Xie, X.; Wu, H.; Zeng, H.; Zhu, X. A Quantitative Analysis Method of Regional Rainfall-Induced Landslide Deformation Response Variation Based on a Time-Domain Correlation Model. Land 2022, 11, 703. [Google Scholar] [CrossRef]
- Xu, C.; Fu, H.; Yang, J.; Wang, L. Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China. Land 2022, 11, 1182. [Google Scholar] [CrossRef]
- Anil, E.B.; Akinci, B.; Kurc, O.; Garrett, J.H. Building-Information-Modeling–Based Earthquake Damage Assessment for Reinforced Concrete Walls. J. Comput. Civ. Eng. 2016, 30, 04015076. [Google Scholar] [CrossRef]
- Welch, D.P.; Sullivan, T.J.; Filiatrault, A. Potential of Building Information Modelling for Seismic Risk Mitigation in Buildings. BNZSEE 2014, 47, 253–263. [Google Scholar] [CrossRef]
- Vitiello, U.; Ciotta, V.; Salzano, A.; Asprone, D.; Manfredi, G.; Cosenza, E. BIM-Based Approach for the Cost-Optimization of Seismic Retrofit Strategies on Existing Buildings. Autom. Constr. 2019, 98, 90–101. [Google Scholar] [CrossRef]
- Perrone, D.; Filiatrault, A. Automated Seismic Design of Non-Structural Elements with Building Information Modelling. Autom. Constr. 2017, 84, 166–175. [Google Scholar] [CrossRef]
- Chang, Z.; Zhiwen, C.; Meng, W.; Jun, H. 3D Monitoring of Landslide Geological Disaster and Its Application Based on BIM. J. Chengdu Univ. Technol. 2017, 44, 377–384. [Google Scholar]
- Fitz, T.; Theiler, M.; Smarsly, K. A Metamodel for Cyber-Physical Systems. Adv. Eng. Inform. 2019, 41, 100930. [Google Scholar] [CrossRef]
- Lei, Y.; Rao, Y.; Wu, J.; Lin, C.-H. BIM Based Cyber-Physical Systems for Intelligent Disaster Prevention. J. Ind. Inf. Integr. 2020, 20, 100171. [Google Scholar] [CrossRef]
- Wu, W.; Li, W.; Law, D.; Na, W. Improving Data Center Energy Efficiency Using a Cyber-Physical Systems Approach: Integration of Building Information Modeling and Wireless Sensor Networks. Procedia Eng. 2015, 118, 1266–1273. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Yang, B.; Wang, C.; Wang, Z.; Liu, B.; Fang, T. Computer Vision-Based Construction Process Sensing for Cyber–Physical Systems: A Review. Sensors 2021, 21, 5468. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.-M.; Wang, G.-F.; Shen, J.; Lu, L.-H.; Wang, G.-Q. Analysis and GIS Mapping of Flooding Hazards on 10 May 2016, Guangzhou, China. Water 2016, 8, 447. [Google Scholar] [CrossRef]
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A Framework for a Microscale Flood Damage Assessment and Visualization for a Building Using BIM–GIS Integration. Int. J. Digit. Earth 2016, 9, 363–386. [Google Scholar] [CrossRef]
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A BIM-GIS Integration Method in Support of the Assessment and 3D Visualisation of Flood Damage to a Building. J. Spat. Sci. 2016, 61, 317–350. [Google Scholar] [CrossRef]
- Chen, X.-S.; Liu, C.-C.; Wu, I.-C. A BIM-Based Visualization and Warning System for Fire Rescue. Adv. Eng. Inform. 2018, 37, 42–53. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Chiu, K.-C.; Hsieh, Y.-M.; Yang, I.-T.; Chou, J.-S. Development of BIM-Based Real-Time Evacuation and Rescue System for Complex Buildings. In Proceedings of the ISARC, International Symposium on Automation and Robotics in Construction, Auburn, AL, USA, 18–21 July 2016; Volume 33, p. 1. [Google Scholar]
- Gao, X.; Pishdad-Bozorgi, P. Past, Present, and Future of BIM-Enabled Facilities Operation and Maintenance. In Proceedings of the Construction Research Congress 2018, New Orleans, LA, USA, 2–4 April 2018; American Society of Civil Engineers: New Orleans, LA, USA, 2018; pp. 51–61. [Google Scholar]
- Wehbe, R.; Shahrour, I. A BIM-Based Smart System for Fire Evacuation. Future Internet 2021, 13, 221. [Google Scholar] [CrossRef]
- Aly, A.M.; Bitsuamlak, G. Aerodynamics of Ground-Mounted Solar Panels: Test Model Scale Effects. J. Wind Eng. Ind. Aerodyn. 2013, 123, 250–260. [Google Scholar] [CrossRef]
- Delavar, M.; Bitsuamlak, G.T.; Dickinson, J.K.; Costa, L.M.F. Automated BIM-Based Process for Wind Engineering Design Collaboration. Build. Simul. 2020, 13, 457–474. [Google Scholar] [CrossRef]
- Reina, G.P.; De Stefano, G. Computational Evaluation of Wind Loads on Sun-Tracking Ground-Mounted Photovoltaic Panel Arrays. J. Wind Eng. Ind. Aerodyn. 2017, 170, 283–293. [Google Scholar] [CrossRef]
- Bre, F.; Gimenez, J.M. A Cloud-Based Platform to Predict Wind Pressure Coefficients on Buildings. Build. Simul. 2022, 15, 1507–1525. [Google Scholar] [CrossRef] [PubMed]
- Hamidavi, T.; Abrishami, S.; Hosseini, M.R. Towards Intelligent Structural Design of Buildings: A BIM-Based Solution. J. Build. Eng. 2020, 32, 101685. [Google Scholar] [CrossRef]
- Cheng, J.C.P.; Kwok, H.H.L.; Li, A.T.Y.; Tong, J.C.K.; Lau, A.K.H. Sensitivity Analysis of Influence Factors on Multi-Zone Indoor Airflow CFD Simulation. Sci. Total Environ. 2021, 761, 143298. [Google Scholar] [CrossRef]
- Usman, F.; Bakar, A.R.A. Thermal Comfort Study Using CFD Analysis in Residential House with Mechanical Ventilation System. In Proceedings of AICCE’19; Mohamed Nazri, F., Ed.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2020; Volume 53, pp. 1613–1628. ISBN 978-3-030-32815-3. [Google Scholar]
- Xu, F.; Yang, J.; Zhu, X. A Comparative Study on the Difference of CFD Simulations Based on a Simplified Geometry and a More Refined BIM Based Geometry. AIP Adv. 2020, 10, 125318. [Google Scholar] [CrossRef]
- Yan, J.; Kensek, K.; Konis, K.; Noble, D. CFD Visualization in a Virtual Reality Environment Using Building Information Modeling Tools. Buildings 2020, 10, 229. [Google Scholar] [CrossRef]
- Çöltekin, A.; Lochhead, I.; Madden, M.; Christophe, S.; Devaux, A.; Pettit, C.; Lock, O.; Shukla, S.; Herman, L.; Stachoň, Z.; et al. Extended Reality in Spatial Sciences: A Review of Research Challenges and Future Directions. Int. J. Geo-Inf. 2020, 9, 439. [Google Scholar] [CrossRef]
- Hosokawa, M.; Fukuda, T.; Yabuki, N.; Michikawa, T.; Motamedi, A. Integrating CFD and VR for Indoor Thermal Environment Design Feedback. In Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016), Melbourne, Australia, 30 March–2 April 2016; pp. 663–672. [Google Scholar]
- Azis, S.S.A. Improving Present-Day Energy Savings among Green Building Sector in Malaysia Using Benefit Transfer Approach: Cooling and Lighting Loads. Renew. Sustain. Energy Rev. 2021, 137, 110570. [Google Scholar] [CrossRef]
- Natephra, W.; Motamedi, A.; Yabuki, N.; Fukuda, T. Integrating 4D Thermal Information with BIM for Building Envelope Thermal Performance Analysis and Thermal Comfort Evaluation in Naturally Ventilated Environments. Build. Environ. 2017, 124, 194–208. [Google Scholar] [CrossRef]
- Wang, D.; Meng, J.; Zhang, T. Evaluating the Thermal Performance Index for Future Architectures in China’s Hot Summer and Cool Winter Regions. Sustain. Energy Technol. Assess. 2021, 46, 101241. [Google Scholar] [CrossRef]
- Kim, J.B.; Jeong, W.; Clayton, M.J.; Haberl, J.S.; Yan, W. Developing a Physical BIM Library for Building Thermal Energy Simulation. Autom. Constr. 2015, 50, 16–28. [Google Scholar] [CrossRef]
- Chen, Z.; Hammad, A.; Kamardeen, I.; Akbarnezhad, A. Optimising Embodied Energy and Thermal Performance of Thermal Insulation in Building Envelopes via an Automated Building Information Modelling (BIM) Tool. Buildings 2020, 10, 218. [Google Scholar] [CrossRef]
- Ounis, S.; Aste, N.; Butera, F.M.; Pero, C.D.; Leonforte, F.; Adhikari, R.S. Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value. Energies 2022, 15, 3570. [Google Scholar] [CrossRef]
- Seghier, T.E.; Lim, Y.-W.; Harun, M.F.; Ahmad, M.H.; Samah, A.A.; Majid, H.A. BIM-Based Retrofit Method (RBIM) for Building Envelope Thermal Performance Optimization. Energy Build. 2022, 256, 111693. [Google Scholar] [CrossRef]
- Iddon, C.R.; Firth, S.K. Embodied and Operational Energy for New-Build Housing: A Case Study of Construction Methods in the UK. Energy Build. 2013, 67, 479–488. [Google Scholar] [CrossRef]
- Gbadamosi, A.-Q.; Mahamadu, A.-M.; Oyedele, L.O.; Akinade, O.O.; Manu, P.; Mahdjoubi, L.; Aigbavboa, C. Offsite Construction: Developing a BIM-Based Optimizer for Assembly. J. Clean. Prod. 2019, 215, 1180–1190. [Google Scholar] [CrossRef]
- Jalaei, F.; Jrade, A. An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects. J. Constr. Eng. 2014, 2014, 672896. [Google Scholar] [CrossRef]
- Iversen, A.; Roy, N.; Hvass, M.; Jørgensen, M.; Christoffersen, J.; Osterhaus, W.; Johnsen, K. Daylight Calculations in Practice: An Investigation of the Ability of Nine Daylight Simulation Programs to Calculate the Daylight Factor in Five Typical Rooms; Danish Building Research Institute, Aalborg University: Copenhagen, Denmark, 2013. [Google Scholar]
- Jakica, N. State-of-the-Art Review of Solar Design Tools and Methods for Assessing Daylighting and Solar Potential for Building-Integrated Photovoltaics. Renew. Sustain. Energy Rev. 2018, 81, 1296–1328. [Google Scholar] [CrossRef] [Green Version]
- Schregle, R.; Grobe, L.; Wittkopf, S. Progressive Photon Mapping for Daylight Redirecting Components. Sol. Energy 2015, 114, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Mazzoli, C.; Iannantuono, M.; Giannakopoulos, V.; Fotopoulou, A.; Ferrante, A.; Garagnani, S. Building Information Modeling as an Effective Process for the Sustainable Re-Shaping of the Built Environment. Sustainability 2021, 13, 4658. [Google Scholar] [CrossRef]
- Ruggiero, S.; Iannantuono, M.; Fotopoulou, A.; Papadaki, D.; Assimakopoulos, M.N.; De Masi, R.F.; Vanoli, G.P.; Ferrante, A. Multi-Objective Optimization for Cooling and Interior Natural Lighting in Buildings for Sustainable Renovation. Sustainability 2022, 14, 8001. [Google Scholar] [CrossRef]
- Amoruso, F.M.; Dietrich, U.; Schuetze, T. Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea. Sustainability 2019, 11, 2699. [Google Scholar] [CrossRef] [Green Version]
- Zima, K. Impact of Information Included in the BIM on Preparation of Bill of Quantities. Procedia Eng. 2017, 208, 203–210. [Google Scholar] [CrossRef]
- Ying, T.Y.; Mustafa Kamal, E. The Revolution of Quantity Surveying Profession in Building Information Modelling (BIM) Era: The Malaysian Perspective. IJSCET 2021, 12, 185–195. [Google Scholar] [CrossRef]
- Zainon, N.; Mohd-Rahim, F.A.; Salleh, H. The Rise of BIM in Malaysia And Its Impact Towards Quantity Surveying Practices. MATEC Web Conf. 2016, 66, 00060. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Jiang, S.; Qi, L.; Su, Y.; Mao, Y.; Wang, M.; Cha, H.S. Design and Implementation of Quantity Calculation Method Based on BIM Data. Sustainability 2022, 14, 7797. [Google Scholar] [CrossRef]
- Ismail, N.A.A.; Adnan, H.; Bakhary, N.A. Building Information Modelling (BIM) Adoption by Quantity Surveyors: A Preliminary Survey from Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2019, 267, 052041. [Google Scholar] [CrossRef]
- Kehily, D.; Underwood, J. Embedding Life Cycle Costing in 5D BIM. J. Inf. Technol. Constr. 2017, 22, 145–167. [Google Scholar]
- Khosakitchalert, C.; Yabuki, N.; Fukuda, T. Improving the Accuracy of BIM-Based Quantity Takeoff for Compound Elements. Autom. Constr. 2019, 106, 102891. [Google Scholar] [CrossRef]
- Khosakitchalert, C.; Yabuki, N.; Fukuda, T. Automated Modification of Compound Elements for Accurate BIM-Based Quantity Takeoff. Autom. Constr. 2020, 113, 103142. [Google Scholar] [CrossRef]
- Khosakitchalert, C.; Yabuki, N.; Fukuda, T. Development of BIM-Based Quantity Takeoff for Light-Gauge Steel Wall Framing Systems. ITcon 2020, 25, 522–544. [Google Scholar] [CrossRef]
- Wong, P.F.; Salleh, H.; Rahim, F.A.M. A Relationship Framework for Building Information Modeling (BIM) Capability in Quantity Surveying Practice and Project Performance. Inf. Constr. 2015, 67, e119. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.; Tang, Y.; Wang, C.; Yap, J.B.H.; Lim, Y.S. System Dynamics Outlook on BIM and LEAN Interaction in Construction Quantity Surveying. Iran J. Sci Technol Trans. Civ. Eng. 2022, 46, 3947–3962. [Google Scholar] [CrossRef]
- Mo, L. Research on Application of BIM Technology in Construction Project Cost Management. In Proceedings of the 2018 3rd International Conference on Smart City and Systems Engineering (ICSCSE), Xiamen, China, 29–30 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 208–210. [Google Scholar]
- Kim, S.; Chin, S.; Kwon, S. A Discrepancy Analysis of BIM-Based Quantity Take-Off for Building Interior Components. J. Manag. Eng. 2019, 35, 05019001. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Luo, H.; Tan, Y.; Deng, M.; Kwok, H.L. BIM and Data-Driven Predictive Analysis of Optimum Thermal Comfort for Indoor Environment. Sensors 2021, 21, 4401. [Google Scholar] [CrossRef]
- Alshehri, F.; Kenny, P.; O’Donnell, J. Requirements for BIM-Based Thermal Comfort Analysis. In Proceedings of the SimAUD 2017: Symposium on Simulation for Architecture and Urban Design, Toronto, ON, Canada, 22–24 May 2017; ACM: New York, NY, USA, 2017; Volume 49, pp. 9–16. [Google Scholar]
- Fazeli, A.; Dashti, M.S.; Jalaei, F.; Khanzadi, M. An Integrated BIM-Based Approach for Cost Estimation in Construction Projects. ECAM 2021, 28, 2828–2854. [Google Scholar] [CrossRef]
- Tahir, M.M.; Haron, N.A.; Alias, A.H.; Al-Jumaa, A.T.; Muhammad, I.B.; Harun, A.N. Applications of Building Information Model (BIM) in Malaysian Construction Industry. IOP Conf. Ser. Mater. Sci. Eng. 2017, 291, 012009. [Google Scholar] [CrossRef]
- Chahrour, R.; Hafeez, M.A.; Ahmad, A.M.; Sulieman, H.I.; Dawood, H.; Rodriguez-Trejo, S.; Kassem, M.; Naji, K.K.; Dawood, N. Cost-Benefit Analysis of BIM-Enabled Design Clash Detection and Resolution. Constr. Manag. Econ. 2021, 39, 55–72. [Google Scholar] [CrossRef]
- Lin, W.Y.; Huang, Y.-H. Filtering of Irrelevant Clashes Detected by BIM Software Using a Hybrid Method of Rule-Based Reasoning and Supervised Machine Learning. Appl. Sci. 2019, 9, 5324. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Castro-Lacouture, D.; Eastman, C.M. Holistic Clash Detection Improvement Using a Component Dependent Network in BIM Projects. Autom. Constr. 2019, 105, 102832. [Google Scholar] [CrossRef]
- Akponeware, A.; Adamu, Z. Clash Detection or Clash Avoidance? An Investigation into Coordination Problems in 3D BIM. Buildings 2017, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Hasannejad, A.; Sardrud, J.M.; Shirzadi Javid, A.A. BIM-Based Clash Detection Improvement Automatically. Int. J. Constr. Manag. 2022, 22, 1–7. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J.; Sing, M.C.P. Origins and Probabilities of MEP and Structural Design Clashes within a Federated BIM Model. Autom. Constr. 2018, 85, 209–219. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, W. Automatic Classification of Design Conflicts Using Rulebased Reasoning and Machine Learning-An Example of Structural Clashes Against the MEP Model. In Proceedings of the ISARC, International Symposium on Automation and Robotics in Construction, Banff, AB, Canada, 21–24 May 2019; Volume 36, pp. 324–331. [Google Scholar]
- Zhao, X.; Tan, Y.; Shen, L.; Zhang, G.; Wang, J. Case-Based Reasoning Approach for Supporting Building Green Retrofit Decisions. Build. Environ. 2019, 160, 106210. [Google Scholar] [CrossRef]
- Abdelaal, F.; Guo, B.H.W. Stakeholders’ Perspectives on BIM and LCA for Green Buildings. J. Build. Eng. 2022, 48, 103931. [Google Scholar] [CrossRef]
- Malacarne, G.; Marcher, C.; Riedl, M.; Matt, D. Investigating Benefits and Criticisms of Bim for Construction Scheduling in SMEs: An Italian Case Study. Int. J. Sustain. Dev. Plan. 2018, 13, 139–150. [Google Scholar] [CrossRef]
- Solla, M.; Ismail, L.H.; Yunus, R. Investigation on the Potential of Integrating BIM into Green Building Assessment Tools. ARPN J. Eng. Appl. Sci. 2016, 11, 2412–2418. [Google Scholar]
- Zhang, L.; Chu, Z.; Song, H. Understanding the Relation between BIM Application Behavior and Sustainable Construction: A Case Study in China. Sustainability 2019, 12, 306. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Koch, C.; Wu, Y. Building Information Modelling Based Building Energy Modelling: A Review. Appl. Energy 2019, 238, 320–343. [Google Scholar] [CrossRef]
- Farzaneh, A.; Monfet, D.; Forgues, D. Review of Using Building Information Modeling for Building Energy Modeling during the Design Process. J. Build. Eng. 2019, 23, 127–135. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Zhou, X.; Xie, Q. Multi-Scale Information Retrieval for BIM Using Hierarchical Structure Modelling and Natural Language Processing. ITcon 2021, 26, 409–426. [Google Scholar] [CrossRef]
- Xiao, Y.; Yi, S.; Tang, Z. Integrated Flood Hazard Assessment Based on Spatial Ordered Weighted Averaging Method Considering Spatial Heterogeneity of Risk Preference. Sci. Total Environ. 2017, 599–600, 1034–1046. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Le, P.Q.H.; Pham, V.V.; Nguyen, X.P.; Balasubramaniam, D.; Hoang, A.-T. Application of the Internet of Things in 3E (Efficiency, Economy, and Environment) Factor-Based Energy Management as Smart and Sustainable Strategy. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 1–23. [Google Scholar] [CrossRef]
- Rowland, A.; Folmer, E.; Beek, W. Towards Self-Service GIS—Combining the Best of the Semantic Web and Web GIS. IJGI 2020, 9, 753. [Google Scholar] [CrossRef]
- Hussain, Y.; Schlögel, R.; Innocenti, A.; Hamza, O.; Iannucci, R.; Martino, S.; Havenith, H.-B. Review on the Geophysical and UAV-Based Methods Applied to Landslides. Remote Sens. 2022, 14, 4564. [Google Scholar] [CrossRef]
- Cao, D.; Li, H.; Wang, G.; Luo, X.; Tan, D. Relationship Network Structure and Organizational Competitiveness: Evidence from BIM Implementation Practices in the Construction Industry. J. Manag. Eng. 2018, 34, 04018005. [Google Scholar] [CrossRef]
- Gao, X.; Pishdad-Bozorgi, P. BIM-Enabled Facilities Operation and Maintenance: A Review. Adv. Eng. Inform. 2019, 39, 227–247. [Google Scholar] [CrossRef]
- Ardani, J.A.; Utomo, C.; Rahmawati, Y. Model Ownership and Intellectual Property Rights for Collaborative Sustainability on Building Information Modeling. Buildings 2021, 11, 346. [Google Scholar] [CrossRef]
- Baharom, M.H.; Habib, S.N.H.A.; Ismail, S. Building Information Modelling (BIM): Contractual Issues of Intellectual Property Rights (IPR) in Construction Projects. Int. J. Sustain. Constr. Eng. Technol. 2021, 12, 170–178. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Wu, Q.; Pei, S.; Xu, N.; Ni, G. Using Network Theory to Explore BIM Application Barriers for BIM Sustainable Development in China. Sustainability 2020, 12, 3190. [Google Scholar] [CrossRef] [Green Version]
- GhaffarianHoseini, A.; Zhang, T.; Nwadigo, O.; GhaffarianHoseini, A.; Naismith, N.; Tookey, J.; Raahemifar, K. Application of ND BIM Integrated Knowledge-Based Building Management System (BIM-IKBMS) for Inspecting Post-Construction Energy Efficiency. Renew. Sustain. Energy Rev. 2017, 72, 935–949. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lu, Y.; Shen, M.; Peh, L.C. Transition from Building Information Modeling (BIM) to Integrated Digital Delivery (IDD) in Sustainable Building Management: A Knowledge Discovery Approach Based Review. J. Clean. Prod. 2021, 291, 125223. [Google Scholar] [CrossRef]
- Tallgren, M.V.; Roupé, M.; Johansson, M.; Bosch-Sijtsema, P. BIM Tool Development Enhancing Collaborative Scheduling for Pre-Construction. ITcon 2020, 25, 374–397. [Google Scholar] [CrossRef]
- Adibfar, A.; Costin, A.; Issa, R.R.A. Design Copyright in Architecture, Engineering, and Construction Industry: Review of History, Pitfalls, and Lessons Learned. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2020, 12, 04520032. [Google Scholar] [CrossRef]
- Adibfar, A.; Costin, A.; Issa, R.R. Review of Copyright Challenges in AECO Industry and Prospective Developments for Building Information Modeling (BIM). In Proceedings of the Construction Research Congress 2020, Tempe, AZ, USA, 8–10 March 2020; American Society of Civil Engineers: Tempe, AZ, USA, 2020; pp. 1168–1176. [Google Scholar]
- Erpay, M.Y.; Sertyesilisik, B. Preliminary Checklist Proposal for Enhancing BIM-Based Construction Project Contracts. ITcon 2021, 26, 341–365. [Google Scholar] [CrossRef]
- Jo, T.M.; Ishak, S.S.M.; Rashid, Z.Z.A. Overview of the Legal Aspects and Contract Requirements of the BIM Practice in Malaysian Construction Industry. MATEC Web Conf. 2018, 203, 02011. [Google Scholar] [CrossRef]
- Liu, H.; Abudayyeh, O.; Liou, W. BIM-Based Smart Facility Management: A Review of Present Research Status, Challenges, and Future Needs. In Proceedings of the Construction Research Congress 2020: Computer Applications, Tempe, AZ, USA, 8–10 March 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 1087–1095. [Google Scholar]
- Hooper, M. Automated Model Progression Scheduling Using Level of Development. Constr. Innov. 2015, 15, 428–448. [Google Scholar] [CrossRef]
- Andriamamonjy, A.; Saelens, D.; Klein, R. A Combined Scientometric and Conventional Literature Review to Grasp the Entire BIM Knowledge and Its Integration with Energy Simulation. J. Build. Eng. 2019, 22, 513–527. [Google Scholar] [CrossRef]
- Costin, A.; Adibfar, A.; Hu, H.; Chen, S.S. Building Information Modeling (BIM) for Transportation Infrastructure—Literature Review, Applications, Challenges, and Recommendations. Autom. Constr. 2018, 94, 257–281. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N. Investigating Building Information Model (BIM) to Building Energy Simulation (BES): Interoperability and Simulation Results. IOP Conf. Ser. Earth Environ. Sci. 2019, 397, 012013. [Google Scholar] [CrossRef] [Green Version]
- Shirowzhan, S.; Sepasgozar, S.M.E.; Edwards, D.J.; Li, H.; Wang, C. BIM Compatibility and Its Differentiation with Interoperability Challenges as an Innovation Factor. Autom. Constr. 2020, 112, 103086. [Google Scholar] [CrossRef]
- Zhong, B.; Gan, C.; Luo, H.; Xing, X. Ontology-Based Framework for Building Environmental Monitoring and Compliance Checking under BIM Environment. Build. Environ. 2018, 141, 127–142. [Google Scholar] [CrossRef]
- Muller, M.F.; Garbers, A.; Esmanioto, F.; Huber, N.; Loures, E.R.; Canciglieri Junior, O. Data Interoperability Assessment Though IFC for BIM in Structural Design–a Five-Year Gap Analysis. J. Civ. Eng. Manag. 2017, 23, 943–954. [Google Scholar] [CrossRef]
- Steel, J.; Drogemuller, R.; Toth, B. Model Interoperability in Building Information Modelling. Softw. Syst. Model. 2012, 11, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Coraglia, U.M.; Simeone, D.; Cursi, S.; Fioravanti, A.; Wurzer, G.; D’Alessandro, D. A Simulation Model for Logical and Operative Clash Detection. In Proceedings of the 35th eCAADe Conference, Rome, Italy, 20–22 September 2017. [Google Scholar]
- Hosny, A.; Nik-Bakht, M.; Moselhi, O. Physical Distancing Analytics for Construction Planning Using 4D BIM. J. Comput. Civ. Eng. 2022, 36, 04022012. [Google Scholar] [CrossRef]
- Tak, A.N.; Taghaddos, H.; Mousaei, A.; Bolourani, A.; Hermann, U. BIM-Based 4D Mobile Crane Simulation and Onsite Operation Management. Autom. Constr. 2021, 128, 103766. [Google Scholar] [CrossRef]
- Hu, Z.-Z.; Leng, S.; Lin, J.-R.; Li, S.-W.; Xiao, Y.-Q. Knowledge Extraction and Discovery Based on BIM: A Critical Review and Future Directions. Arch. Comput. Methods Eng. 2022, 29, 335–356. [Google Scholar] [CrossRef]
- Biel, S. Concept of Using the BIM Technology to Support the Defect Management Process. Arch. Civ. Eng. 2021, 67, 209–229. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, C.; Guo, Y.; Osmani, M.; Demian, P. A Building Information Modelling (BIM) Based Water Efficiency (BWe) Framework for Sustainable Building Design and Construction Management. Electronics 2019, 8, 599. [Google Scholar] [CrossRef] [Green Version]
- Zaker, R.; Coloma, E. Virtual Reality-Integrated Workflow in BIM-Enabled Projects Collaboration and Design Review: A Case Study. Vis. Eng. 2018, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Stachniss, C.; Ju, S.; Heo, J. Automated 3D Volumetric Reconstruction of Multiple-Room Building Interiors for as-Built BIM. Adv. Eng. Inform. 2018, 38, 811–825. [Google Scholar] [CrossRef]
- Tang, L.; Li, L.; Ying, S.; Lei, Y. A Full Level-of-Detail Specification for 3D Building Models Combining Indoor and Outdoor Scenes. Int. J. Geo-Inf. 2018, 7, 419. [Google Scholar] [CrossRef] [Green Version]
- Boton, C. Supporting Constructability Analysis Meetings with Immersive Virtual Reality-Based Collaborative BIM 4D Simulation. Autom. Constr. 2018, 96, 1–15. [Google Scholar] [CrossRef]
- Crowther, J.; Ajayi, S.O. Impacts of 4D BIM on Construction Project Performance. Int. J. Constr. Manag. 2021, 21, 724–737. [Google Scholar] [CrossRef] [Green Version]
- Baldrich Aragó, A.; Roig Hernando, J.; Llovera Saez, F.J.; Coll Bertran, J. Quantity Surveying and BIM 5D. Its Implementation and Analysis Based on a Case Study Approach in Spain. J. Build. Eng. 2021, 44, 103234. [Google Scholar] [CrossRef]
- Elghaish, F.; Abrishami, S.; Abu Samra, S.; Gaterell, M.; Hosseini, M.R.; Wise, R. Cash Flow System Development Framework within Integrated Project Delivery (IPD) Using BIM Tools. Int. J. Constr. Manag. 2021, 21, 555–570. [Google Scholar] [CrossRef]
- Daniotti, B.; Pavan, A.; Lupica Spagnolo, S.; Caffi, V.; Pasini, D.; Mirarchi, C. Benefits and Challenges Using BIM for Operation and Maintenance. In BIM-Based Collaborative Building Process Management; Springer Tracts in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2020; pp. 167–181. ISBN 978-3-030-32888-7. [Google Scholar]
- Georgiadou, M.C. An Overview of Benefits and Challenges of Building Information Modelling (BIM) Adoption in UK Residential Projects. Constr. Innov. 2019, 19, 298–320. [Google Scholar] [CrossRef]
- Central Committee of the Chinese Communist Party; State Council of the People’s Republic of China. Opinions of the Central Committee of the Communist Party of China and the State Council on the Key Efforts to Comprehensively Promote Rural Revitalization in 2022; State Council of the People’s Republic of China: Beijing, China, 2022.
Primary Criteria | Secondary Criteria | ||
---|---|---|---|
Inclusionary | Exclusionary | Inclusionary | Exclusionary |
Journal articles, reviews, and conference papers can be searched in the databases of WoS or Scopus. | Duplicated papers | The articles that can support authors to accomplish research aim or objectives. | The articles cannot provide support for authors to accomplish research aim and objectives. |
Invalid articles (the articles that cannot provide the online version of full-text content.) | |||
Written in English | Written in Non-English. |
Search Engine | Search String | Results |
---|---|---|
WoS | TS = ((“BIM” OR “Building Information Modeling” OR “artificial intelligence” OR “digital twin”) AND (rural) AND (design OR plan OR layout OR development OR revitalization)) | 729 |
Document Types: Articles or Proceedings Papers or Review Articles | 725 | |
AND LANGUAGES: (ENGLISH) | 718 | |
Scopus | TITLE-ABS-KEY ((“BIM” OR “Building Information Modeling” OR “artificial intelligence” OR “digital twin”) AND (rural) AND (design OR plan OR layout OR development OR revitalization)) | 616 |
AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “re” | 521 | |
AND (LIMIT-TO (LANGUAGE, “English”)) | 508 | |
Total | 1226 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Huang, L.; Aziz, N.M.; Kamaruzzaman, S.N. Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review. Land 2022, 11, 1861. https://doi.org/10.3390/land11101861
Cao Y, Huang L, Aziz NM, Kamaruzzaman SN. Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review. Land. 2022; 11(10):1861. https://doi.org/10.3390/land11101861
Chicago/Turabian StyleCao, Yu, Liyan Huang, Nur Mardhiyah Aziz, and Syahrul Nizam Kamaruzzaman. 2022. "Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review" Land 11, no. 10: 1861. https://doi.org/10.3390/land11101861
APA StyleCao, Y., Huang, L., Aziz, N. M., & Kamaruzzaman, S. N. (2022). Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review. Land, 11(10), 1861. https://doi.org/10.3390/land11101861