Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Introduction to the Source–Sink Landscape Theory
2.2.1. Theoretical Introduction
2.2.2. Definition of Relevant Concepts for the Theory’s Application
2.3. Methodological Framework
3. Results
3.1. Change Process of the TAL Core Zone
3.1.1. Change Process at Macro Level
3.1.2. Change Process at Micro Level
3.2. Source–Sink Structure and Process
3.2.1. Source Landscape and Sink Landscape Identification
3.2.2. Source–Sink Structure and Process Model and Its Analyses
4. Discussion
4.1. The TAL Changes Manifest the Human–Land Relationship Changes
4.2. Source–Sink Structure and Process Reveals the TAL Change Mechanism
4.3. TAL Conservation Needs to Conform to the Source–Sink Structure and Process
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trisos, C.H.; Merow, C.; Pigot, A.L. The projected timing of abrupt ecological disruption from climate change. Nature 2020, 580, 496–501. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Diffenbaugh, N.S.; Burke, M. Global warming has increased global economic inequality. Proc. Natl. Acad. Sci. USA 2019, 116, 9808–9813. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M.; Williams, D.R.; Kimmel, K.; Polasky, S.; Packer, C. Future threats to biodiversity and pathways to their prevention. Nature 2017, 546, 73–81. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Fowler, P. World heritage cultural landscapes, 1992–2002: A review and prospect. In Cultural Landscapes: The Challenges of Conservation; WHC, Ed.; UNESCO World Heritage Centre: Paris, France, 2002; pp. 2–6. [Google Scholar]
- Dietz, K.; Engels, B. Analysing land conflicts in times of global crises. Geoforum 2020, 111, 208–217. [Google Scholar] [CrossRef]
- Dunn, C. Biocultural diversity should be a priority for conservation. Nature 2008, 456, 315. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.; Macinnes, L.; Thackray, D. The Culture Landscape Planning for a Sustainable Partnership between People and Place; ICOMOS-UK: London, UK, 2000; pp. 31–37. [Google Scholar]
- Sarmiento-Mateos, P.; Arnaiz-Schmitz, C.; Herrero-Jáuregui, C.; Pineda, F.D.; Schmitz, M.F. Designing protected areas for social-ecological sustainability: Effectiveness of management guidelines for preserving cultural landscapes. Sustainability 2019, 11, 2871. [Google Scholar] [CrossRef] [Green Version]
- Antrop, M. Why landscapes of the past are important for the future. Landsc. Urban Plan. 2005, 70, 21–34. [Google Scholar] [CrossRef]
- Schmitz, M.F.; Herrero-Jáuregui, C. Cultural landscape preservation and social–ecological sustainability. Sustainability 2021, 13, 2593. [Google Scholar] [CrossRef]
- Li, Q.; Wumaier, K.; Ishikawa, M. The spatial analysis and sustainability of rural cultural landscapes: Linpan Settlements in China’s Chengdu Plain. Sustainability 2019, 11, 4431. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Xu, M.; Liu, P.; Zeng, F. Cultural landscape protection compensation model of traditional villages and its application in Xiangxi. Acta Geogr. Sin. 2020, 75, 382–397, (In Chinese with English abstract). [Google Scholar]
- Kobori, H.; Primack, R.B. Participatory conservation approaches for satoyama, the traditional forest and agricultural landscape of Japan. Ambio 2003, 32, 307–311. [Google Scholar]
- Gobster, P.H. Re-wilding Europe’s traditional agricultural landscapes: Values and the link between science and practice. Landsc. Urban Plan. 2014, 126, 65. [Google Scholar] [CrossRef]
- Yang, Y.; Hobbie, S.E.; Hernandez, R.R.; Fargione, J.; Grodsky, S.M.; Tilman, D.; Zhu, Y.; Luo, Y.; Smith, T.M.; Jungers, J.M.; et al. Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth. One Earth 2020, 3, 176–186. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 26 August 2022).
- Beltran-Pea, A.A.; Rosa, L.; D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 2020, 15, 095004. [Google Scholar] [CrossRef]
- Mishra, A.; Zilberman, D.; Bruno, E. Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci. Total Environ. 2021, 754, 142210. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 1 September 2022).
- FAO. Tracking Progress on Food and Agriculture-Related SDG Indicators 2021: A Report on the Indicators under FAO Custodianship. Available online: http://www.fao.org/sdg-progress-report/en/ (accessed on 2 September 2022).
- FAO. Transforming the World through Food and Agriculture-FAO and the 2030 Agenda for Sustainable Development. Available online: http://www.fao.org/3/ca5299en/ca5299en.pdf (accessed on 1 September 2022).
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the world 2020. Transforming Food Systems for Affordable Healthy Diets. Available online: http://www.fao.org/3/ca9692en/online/ca9692en.html#chapter-Key_message (accessed on 3 September 2022).
- Zuo, L.; Zhang, Z.; Carlson, K.M.; MacDonald, G.K.; Brauman, K.A.; Liu, Y.; Zhang, W.; Zhang, H.; Wu, W.; Zhao, X.; et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 2018, 1, 304–313. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; Van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2021, 6, eaba1715. [Google Scholar] [CrossRef]
- FAO. Sustainable Development Goals. Available online: http://www.fao.org/sustainable-development-goals/overview/en/ (accessed on 1 September 2022).
- Gunton, R.; Firbank, L.; Inman, A.; Winter, D. How scalable is sustainable intensification? Nat. Plants 2016, 2, 16065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; Declerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Petherick, A. Agriculture: Drought in China. Nat. Clim. Chang. 2011, 1, 293. [Google Scholar] [CrossRef]
- Mccouch, S.; Baute, G.; Bradeen, J.; Bramel, P.; Bretting, P.; Buckler, E.; Burke, J.; Charest, D.; Cloutier, S.; Cole, G.; et al. Agriculture: Feeding the future. Nature 2013, 499, 23–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Chen, X.; Vitousek, P. Chinese agriculture: An experiment for the world. Nature 2013, 497, 33–35. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Li, W. Strategic Research on the Conservation and Development of China-Nationally Important Agricultural Heritage Systems; Science Press: Beijing, China, 2016; pp. 4–6. (In Chinese) [Google Scholar]
- Jiao, W.; Min, Q. Reviewing the Progress in the Identification, Conservation and Management of China-Nationally Important Agricultural Heritage Systems (China-NIAHS). Sustainability 2017, 9, 1698. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Chen, H.; Fan, J.; Wang, Y.; Li, Y.; Chen, J.; Fan, J.; Yang, S.; Hu, L.; Leung, H.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722. [Google Scholar] [CrossRef]
- Xie, J.; Hu, L.; Tang, J.; Wu, X.; Li, N.; Yuan, Y.; Yang, H.; Zhang, J.; Luo, S.; Chen, X.; et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system. Proc. Natl. Acad. Sci. USA 2011, 108, E1381–E1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Zhang, Y.; Xu, M.; He, L.; Liu, L.; Tang, Q. China eco-wisdom: A review of sustainability of agricultural heritage systems on aquatic-ecological conservation. Sustainability 2020, 12, 60. [Google Scholar] [CrossRef]
- Min, Q.; Zhang, Y.; Jiao, W.; Sun, X. Responding to common questions on the conservation of agricultural heritage systems in China. J. Geogr. Sci. 2016, 26, 969–982. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, X.; Min, Q. How to balance the relationship between conservation of Important Agricultural Heritage Systems (IAHS) and socio-economic development? A theoretical framework of sustainable industrial integration development. J. Clean. Prod. 2018, 204, 553–563. [Google Scholar] [CrossRef]
- Min, Q.; Zhang, Y. Comparison between Agri-cultural Heritage Systems and Agri-cultural Landscape. J. China Agric. Univ. (Soc. Sci.) 2016, 33, 119–126, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.; Min, Q.; Zhang, C.; He, L.; Zhang, S.; Yang, L.; Tian, M.; Xiong, Y. Traditional culture as an important power for maintaining agricultural landscapes in cultural heritage sites: A case study of the Hani terraces. J. Cult. Herit. 2017, 25, 170–179. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Wang, W.; Min, Q.; Zhang, W.; Zeng, C. Landscape characteristics and utilization in agro-cultural heritage systems in Lianhe Terrace. Chin. J. Eco-Agric. 2017, 25, 1752–1760, (In Chinese with English abstract). [Google Scholar]
- Gao, J.; Lin, H.; Zhang, C. Locally situated rights and the ‘doing’ of responsibility for heritage conservation and tourism development at the cultural landscape of Honghe Hani Rice Terraces, China. J. Sustain. Tour. 2021, 29, 193–213. [Google Scholar] [CrossRef]
- Yang, B.; He, L.; Min, Q. Cognition and protection of agricultural heritage from the perspective of cultural landscape: A case study of the Ancient Tea Garden and Tea Cultural System in Shuangjiang, Yunnan. J. Orig. Ecol. Natl. Cult. 2020, 12, 110–116, (In Chinese with English abstract). [Google Scholar]
- Hu, Z.; Min, Q.; Liu, P. Identification on cultural landscape of Traditional Rice Terraces in the Southern Area of China. Econ. Geogr. 2018, 38, 180–187, (In Chinese with English abstract). [Google Scholar]
- Liu, M.; Xiong, Y.; Yuan, Z.; Min, Q.; Sun, Y.; Fuller, A.M. Standards of ecological compensation for traditional eco-agriculture: Taking rice-fish system in Hani terrace as an example. J. Mt. Sci. 2014, 11, 1049–1059. [Google Scholar] [CrossRef]
- Zhang, Y.; He, L.; Li, X.; Zhang, C.; Qian, C.; Li, J.; Zhang, A. Why are the Longji Terraces in Southwest China maintained well? A conservation mechanism for agricultural landscapes based on agricultural multi-functions developed by multi-stakeholders. Land Use Pol. 2019, 85, 42–51. [Google Scholar] [CrossRef]
- Gullino, P.; Mellano, M.G.; Beccaro, G.L.; Devecchi, M.; Larcher, F. Strategies for the management of traditional chestnut landscapes in Pesio Valley, Italy: A participatory approach. Land 2020, 9, 536. [Google Scholar] [CrossRef]
- Barrena, J.; Nahuelhual, L.; Báez, A.; Schiappacasse, I.; Cerda, C. Valuing cultural ecosystem services: Agricultural heritage in Chiloé island, southern Chile. Ecosyst. Serv. 2014, 7, 66–75. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, Z.; Nakamura, K. Tourist preferences for agricultural landscapes: A case study of terraced paddy fields in Noto Peninsula, Japan. J. Mt. Sci. 2016, 13, 1880–1892. [Google Scholar] [CrossRef]
- Štefunková, D.; Špulerová, J.; DobrovodskÁ, M.; Mojses, M.; Petrovič, F. Traditional agricultural Landscapes—A model of detailed land use mapping. J. Landsc. Ecol. 2013, 11, 1–21. [Google Scholar]
- Lieskovský, J.; Kenderessy, P.; Špulerová, J.; Lieskovský, T.; Koleda, P.; Kienast, F.; Gimmi, U. Factors affecting the persistence of traditional agricultural landscapes in Slovakia during the collectivization of agriculture. Landsc. Ecol. 2014, 29, 867–877. [Google Scholar] [CrossRef]
- Lieskovský, J.; Bezák, P.; Špulerová, J.; Lieskovský, T.; Koleda, P.; Dobrovodská, M.; Bürgi, M.; Gimmi, U. The abandonment of traditional agricultural landscape in Slovakia – Analysis of extent and driving forces. J. Rural Stud. 2015, 37, 75–84. [Google Scholar] [CrossRef]
- Žarnovičan, H.; Kollár, J.; Falt’an, V.; Petrovič, F.; Gábor, M. Management and land cover changes in the Western Carpathian traditional orchard landscape in the period after 1948. Agronomy 2021, 11, 366. [Google Scholar] [CrossRef]
- Kizos, T.; Koulouri, M. Agricultural landscape dynamics in the Mediterranean: Lesvos (Greece) case study using evidence from the last three centuries. Environ. Sci. Policy 2006, 9, 330–342. [Google Scholar] [CrossRef]
- Chen, L.; Fu, B.; Zhao, W. Source-sink landscape theory and its ecological significance. Front. Biol. China 2008, 3, 131–136. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, H. The landscape dynamics of ‘source’ and ‘sink’ and its quantification method. Res. Soil Water Conserv. 2008, 15, 64–67, 71, (In Chinese with English abstract). [Google Scholar]
- Wu, Z.; Lin, C.; Su, Z.; Zhou, S.; Zhou, H. Multiple landscape “source–sink” structures for the monitoring and management of non-point source organic carbon loss in a peri-urban watershed. Catena 2016, 145, 15–29. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Q.; Qiao, N.; Wang, Z.; Sha, W.; Luo, K.; Wang, H.; Zhe, F. Ecological risk assessment of coal mine area based on “source-sink” landscape theory—A case study of Pingshuo mining area. J. Clean. Prod. 2021, 295, 126371. [Google Scholar] [CrossRef]
- Xiong, X.; Tang, X.; Ye, H.; Wang, J.; Liu, L. Traditional rural landscape protection and control strategy based on the “source-sink” pattern. Areal Res. Dev. 2019, 38, 120–125, (In Chinese with English abstract). [Google Scholar]
- Li, Y.; Liu, Y.; Long, H.; Cui, W. Community-based rural residential land consolidation and allocation can help to revitalize hollowed villages in traditional agricultural areas of China: Evidence from Dancheng County, Henan Province. Land Use Pol. 2014, 39, 188–198. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Record of China-Nationally Important Agricultural Heritage Systems. Available online: http://www.moa.gov.cn/ztzl/zywhycsl/ (accessed on 3 September 2022). (In Chinese)
- He, L.; Min, Q.; Hong, C.; Zhang, Y. Features and socio-economic sustainability of traditional chestnut forestry landscape in China: A case of Kuancheng County, Hebei Province. Land 2021, 10, 952. [Google Scholar] [CrossRef]
- Gullino, P.; Devecchi, M.; Larcher, F. How can different stakeholders contribute to rural landscape planning policy? The case study of Pralormo Municipality (Italy). J. Rural Stud. 2018, 57, 99–109. [Google Scholar] [CrossRef]
- Brothwell, D. Early history of agriculture. Nature 1975, 255, 368–370. [Google Scholar] [CrossRef]
- Li, M.; Jin, X.; Tang, Q. Policies, regulations, and eco-ethical wisdom relating to ancient Chinese fisheries. J. Agric. Environ. Ethic. 2012, 25, 33–54. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, M.; Yu, Z. Agricultural landscapes and biodiversity in China. Agric. Ecosyst. Environ. 2013, 166, 46–54. [Google Scholar] [CrossRef]
- Špulerová, J.; Petrovič, F.; Mederly, P.; Mojses, M.; Izakovičová, Z. Contribution of traditional farming to ecosystem services provision: Case studies from Slovakia. Land 2018, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Wantzen, K.M.; Ballouche, A.; Longuet, I.; Bao, I.; Bocoum, H.; Cissé, L.; Chauhan, M.; Girard, P.; Gopal, B.; Kane, A.; et al. River culture: An eco-social approach to mitigate the biological and cultural diversity crisis in riverscapes. Ecohydrol. Hydrobiol. 2016, 16, 7–18. [Google Scholar] [CrossRef]
- The Central Committee of the Communist Party of China, the State Council of China. Opinions on Comprehensively Promoting rural Revitalization and Speeding Up Agricultural and Rural Modernization. Available online: http://www.gov.cn/zhengce/2021-02/21/content_5588098.htm (accessed on 3 September 2022). (In Chinese)
- Kunming Declaration Adopted at COP15. Available online: http://english.www.gov.cn/news/topnews/202110/14/content_WS6167997bc6d0df57f98e1a40.html (accessed on 3 September 2022).
- Ministry of Agriculture Announces the Results of the 2016 National Survey of Agricultural Heritage Systems. Available online: http://www.gov.cn/xinwen/2016-12/13/content_5147058.htm (accessed on 3 September 2022). (In Chinese)
- FAO. GIAHS around the World. Available online: http://www.fao.org/giahs/giahsaroundtheworld/en/ (accessed on 3 September 2022).
- Yiu, E.; Nagata, A.; Takeuchi, K. Comparative study on conservation of agricultural heritage systems in China, Japan and Korea. J. Resour. Ecol. 2016, 7, 170–179. [Google Scholar]
- Lee, J.H.; Yoo, H.Y.; Jeon, Y.O.; Choi, S.I.; Youn, W.K. A study on the development of management system for KIAHS (Korea’s Important Agricultural Heritage Systems) sites. J. Korean Soc. Rural Plan. 2018, 24, 13–24. [Google Scholar] [CrossRef]
- Kohsaka, R.; Matsuoka, H.; Uchiyama, Y.; Rogel, M. Regional management and biodiversity conservation in GIAHS: Text analysis of municipal strategy and tourism management. Ecosyst. Health Sustain. 2019, 5, 124–132. [Google Scholar] [CrossRef] [Green Version]
- China Nature Education Network. Introduction to Nature Education; China Forestry Publishing House: Beijing, China, 2021; pp. 47–48. (In Chinese) [Google Scholar]
- Lin, K.; Yong, Y. Natural education: Origin, concept and practice. World For. Res. 2022, 35, 8–14, (In Chinese with English abstract). [Google Scholar]
- Šatalová, B. Assessment of Historical Structures of Agricultural Landscape in the Region of Považie. In Research and Management of the Historical Agricultural Landscape: Proceedings from International Conference Vinicné; Dobrovodská, M., Špulerová, J., Štefunková, D., Eds.; ILE SAS: Bratislava, Slovakia, 2011; pp. 149–156. [Google Scholar]
- Špulerová, J.; Piscová, V.; Gerhátová, K.; Bača, A.; Kalivoda, H.; Kanka, R. Orchards as traces of traditional agricultural landscape in Slovakia. Agric. Ecosyst. Environ. 2015, 199, 67–76. [Google Scholar] [CrossRef]
Stakeholder Category | Number of Participants (Number Invited) |
---|---|
Local traditional cultivation farmer | 6 (6) |
Village head | 5 (6) |
Town government department representative | 2 (2) |
County government department representative | 2 (2) |
Academic researcher | 2 (2) |
Major marketers of AHS product | 2 (3) |
AHS product industrial producer | 2 (2) |
Native expert | 2 (2) |
Total | 23 (25) |
Key Historical Time Node | Area of the Subzone/km2 | ||
---|---|---|---|
TRL | ANEL | MVL | |
1920 | 5.36 | 2.53 | 0 |
1950 | 5.23 | 2.55 | 0.11 |
1985 | 4.92 | 2.17 | 0.8 |
2005 | 4.58 | 1.95 | 1.36 |
2020 | 3.92 | 2.32 | 1.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhang, Y.; Miao, C.; He, L.; Chen, J. Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020). Land 2022, 11, 1863. https://doi.org/10.3390/land11101863
Li M, Zhang Y, Miao C, He L, Chen J. Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020). Land. 2022; 11(10):1863. https://doi.org/10.3390/land11101863
Chicago/Turabian StyleLi, Maolin, Yongxun Zhang, Changhong Miao, Lulu He, and Jiatao Chen. 2022. "Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020)" Land 11, no. 10: 1863. https://doi.org/10.3390/land11101863
APA StyleLi, M., Zhang, Y., Miao, C., He, L., & Chen, J. (2022). Centennial Change and Source–Sink Interaction Process of Traditional Agricultural Landscape: Case from Xin’an Traditional Cherry Cultivation System (1920–2020). Land, 11(10), 1863. https://doi.org/10.3390/land11101863